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REGULARIZED SELF-INTERSECTION LOCAL TIMES OF
PLANAR BROWNIAN MOTION!
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Cornell University
Let
TE(As tyyeenn i) = p( X, ) g (X, — X,) -+ ¢(X,, - X, ),

where X, is a Brownian motion in R%, A(dx) = p(x) dx and g° converges to
Dirac’s delta function as € | 0. The self-intersection local times of order % are
described by a generalized random field

Tp(A; b,y ty) = EMTE(A; 8,000, 8,), for0<¢ < -0 <.
el0

The field “blows up” as ¢, — t; > 0 for some i # j. We show that with a
proper choice of the coefficients BL(¢), a generalized random field

k-1
TN by ty) = “j‘; Ti(As by, e ty) + 3 [ BT (A5 8,00 t8)
€ =1

is well defined for all0 < ¢, < --- < ¢, and it coincides with Ty(A; ¢, ..., &)
for t, < --- <.

1. Main results.

1.1. We denote by (X,, P,) the Brownian motion in R 2 with the initial law p
(which can be any o-finite measure on R?). If 0 < ¢, < --- < ¢,, then the joint
probability density for X,,..., X, is given by the formula

(1.1) P,L(t’ x) = fﬂ(dxo)pt,(xl - xo)ptz-t,(xz —x;) - pt,,-t,,_,(xn - X,)

Here

(1.2) p(x) = t7p(x/VE),  p(z) = (@2m) le k2,
We start from a probability density g(z) on R? such that

/|ln|x| |*q(x) dx < o0, forall &> 0,
(1.3)

fep""q(x) dx < oo, forsomepf > 0.
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Put

(1.4) q(x) = e%q(x/¢),
fix a measure A(dx) = p(x) dx and consider a sequence of functions

Tke()\; tiyenns tk) = P(th)qE(th - th) T qe(th - th_l),

(1.5)
(tl,...,tk)EDk,fOI‘k=1,2,....

Here

(1.6) D,={0<t < - <t}.

1.2. Let D be a region in R*. A generalized random field (g.r.f.) over D is a
continuous linear mapping F from a space 2 of functions on D (test functions)
to a space L of random variables [i.e., measurable functions on (Q, &%, P)l.

In this paper we use the following test functions. Put

llollg = Sugeﬂ"'lqv(t)l, forf>0, |t =1t + - +t,
te

and denote by 2#(D) the set of all functions ¢ on D which are infinitely
differentiable (including the boundary) and satisfy the condition |D'p|| g < oo for
all I=(l,...,1,). Here D' = D% ... D% with D, = 9/3¢t,. For every positive
integer n we put
llellg, , = sup ||D1<P||ﬁ-
l|<n

The space of test functions 2(D) is the union of 28(D) over all B > 0. The
convergence ¢, — ¢ in 9(D) means that all ¢, and ¢ belong to the same 24(D)
and ||lp, — 9|l , — O for all n.

The space L of random variables is defined as the intersection of L?(F,) over
all p > 2; the convergence Y, » Y in L means that PJY, — Y]? - 0 for all
p=2.

The formula

Te(A; @) = fD TN t)e(t) dt, @ € D(D,),
'k

defines a g.r.f. if

(a) A has a bounded density; and
(b) either p is finite or p has a bounded density and then A is finite.

We write f, = f, if f,(e) — fy(€) = O(|e|*) for some a > 0 as [¢] — O [in fact,
everywhere we use the notation =, f,(e) — f,(¢) = O(|e|*) for all 0 < « < 1 and,
in many cases, for all 0 < a < 2].

1.3. Suppose that B is a continuous linear mapping from 2(D,) to 2(D)).
To every gr.f. F over D, there corresponds a gr.f. BF over D, defined by the
formula (BF)(¢) = F(Be).
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For every I < k we consider a mapping B}, from 2(D,) to 2(D,) given as
(1'7) (Blla‘p)(tl’ tl) = Z(p(tu LA u,,)

where the sum is taken over all mappings o from (1,2,..., £} onto {1,2,...,1}
such that o; < o; for i <. For instance,

(Brp)(ty,--s tr) = @(ty,..., t),
(Bl?_1<p)(t1""’ tk——l) = (p(th tl: t27°-', tk——l) + ‘p(tl, t2’ t2"--7 tk—l)
o +(p(t1’t2,'--,tk—1’tk—l)’

(B}e‘p)(tl) = (P(tv cees t1)-
Our main result is stated in the following theorem.

THEOREM 1.1. Let measures p, A satisfy conditions (a), (b) in Section 1.2
and let q satisfy condition (1.3). Put

(1.8) Ti(A) = JZ heH(BRTY)(N),
-1
where B} are given by (1.7),
(1.9) h =—1-<lne+fC+lnM}q(y)dy}
. == %5

and C = 0.5772157 ... is Euler’s constant.
There exist generalized random fields 7,(\) (independent of q) such that

(1.10) TN, ) = ﬁ?gf}fﬁ; ¢), inLforall g € D(D,).

Moreover, for every m > 2 and each ¢ € 9(D,,),
(1.11) P[17:(A, ) = Z&(A; @)I"] = 0.

REMARK. The limit of the field (1.8) exists with A, replaced by &, + « with
an arbitrary constant k. For example, we can take A, = (1/7)In &. Our choice of
k is made to get the limit independent of q.

14. Put Tk(e’ >" u) = TI:(}\, lAbku)’ ‘Ze(e’ A u) T (A l\l’ku), where ‘I’ku(t)

1 t € Dy, u > 0. Since By, = |*~ 1| ¥;,, we have

ty<u
k
(1.12) T, N\, u) = Y, [I;__ll]hf“’Tl(e,}\,u).

=1

It is proved in Dynkin (1987) that there exist random variables 7,(A, ©) such
that

[
/0 due " P\T(e, A, u) = TH(A, u)P = 0
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for all r > 0 and all p > 2. This implies

0 P
_rug'k(s,}\,u)—j(; due T\, u)| =

Note that
[ duerig(e, N, u) = TE(N, ),
0

where ¢, (¢) = r~'e”" belongs to 2(D,). It follows from (1.11) that

(1.13) T(\; 9,) = fw due ™7, (\, u).
0

1.5. The expression for 7,5(A) can be simplified by the change of variables
v, =t1, Di=ti_ti~l’ f0ri=2... k.

To every function f there corresponds a function f such that f(ol, Y
f(ty,..., t). In particular,

(1‘14) TI:(A’V) = p(Xol)qe(Xol+o2 - le) e qe(Xol+ R 7 - Xv,+ +vk_1)'

Let @ be a function of v = (v,,...,v,) and let A = {i,,...,i,} € {1,..., k}.
We put v, = (v;,...,0;) and we denote by §(v), the function of v, obtained
from @(v) by setting v; = 0 for all j & A. In this notation we can rewrite (1.7)
and (1.8) as

(1.15) Ti(N ) = Tht! [ doy#(0)aT7 (N, 00),
A
where A runs over all subsets of the set {1,..., 2} which contain 1 and / = |A| is
the cardinality of A.
1.6. We shall see in Section 3 that if ¢ vanishes near the boundary of D,,
then there exists

(116) Tk(A’ (P) = P{%Tl:(}H ‘P)

and
'Pu[Tkl(Al’ q)l) e Tk,,(An, (pn)]

(1.17) - f“(dzo))\l(dzl) v A(dz,) X @y(8) - @ (t7) dEt - dt”
kal ,,,kn(ZO,..., 2, tl,“., tn).

The moment functions my, ... can be described as follows. If t* = (¢7,..., tk.)
and if

(1.18) 0<tfr< --- <tgn
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(here N =k, + -+ +k,), then

N
(119) mkl ~--k,,(z0""’ 253 tl’“ L¥) tn) = l_.[lpui(zai - za,_l)’
i=

with a, = 0, and
(1.20) Uy =18, Uy =tP— i, uy =gy — Nl

N-1

If a; = a;_,, then the corresponding factor

(1.21) p,(0) = 27u,)™"

is not integrable near the origin and this is the source of the trouble. However,
the formula

o (u;) — e "ip(0)
du;
2mu;

(1.22) ), p(u) = [

defines a generalized function which can be interpreted as a regularization of
(1.21). ‘

It turns out that (1.17) remains true with T}, (A, ¢,) replaced by 7, (A, ;) if
we replace in (1.19) every function (1.21) with its regularization (1.22).

1.7. We formulate this statement in a more precise way by using the concept
of the direct (tensor) product of generalized functions.

A generalized function F of positive variables u,, ..., u, is a continuous linear
functional on 2(R*) where R, = [0, c0). Writing ( F(«), p(u)) means the same
as F(o).

Formula (1.22) defines a generalized function of one positive variable u;.
Another example is the delta function {8(u;), (u;)) = ¢(0). The formula

(1.23) (F(u), 9(u)y = [f(w)o(u)du, ¢ <2(RE),

defines a generalized function of u = (u,,...,u;) if f is a Borel function with
the property

(1.24) f|f(u)|e"9"‘I du < oo, foreveryp > 0.
Suppose that F, is a generalized function of positive variables u = (4, ..., u;)
and F, is a generalized function of positive variables v = (v,,..., v;). Then there

exists a unique generalized function F(u,v) such that

(F(u,v), p(u,v)) = (Fi(u), (F(v), p(u,v))),

for all p € P(R**!). 1t is called the direct product of F, and F, and it is denoted
by Fi(u) X Fy(v). [See, e.g., Yosida (1980), Chapter 1, Section 14.] Analogously,
we define the direct product F(u) X T(v) of a generalized function F(u) and a
g.r.f. T(v) and the direct product of two g.r.f.’s.
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Suppose that the set {1,..., N} is partitioned into disjoint subsets I,..., I,
and let u; = {u;, i € I}}. If F, is generalized function of u,, then '

TTFi(ug) = Fiug) X -+ XEu)

is a generalized function of u = (u,,..., uy).
Formula (1.15) can be interpreted as
(1.25) e\, v) = LRt 8(vp) X TA(A, 0y),
A

where B is the complement of A in {1,..., £} and 8(v,) = I, c 0(v;). Heuristi-
cally, we can rewrite the sum on the right-hand side as a product

k
(1.26) o(X,,) 1:[2 [qe(xvl+ voy = Kot v ) hﬁ(vi)].

[In general, the product of generalized functions with the same argument is not
defined. In our case it can be defined as the sum in (1.25).]

1.8. To prove the results stated in Sections 1.3 and 1.6, first, we investigate
the moment functions

(1.27) Mi(p, N, g; t) = &lleii(Ai,qi; t')

of the random field (1.5). (We deal here simultaneously with several density
functions ¢ and, to avoid confusion, we write ¢ as an extra argument.) Then we
study the moments

(1.28) NN, q; ) = RL[II%‘Z(M,qi; ®;).

Consider the set S of pairs (a, b) which is the union of the disjoint ordered
sets

(1.29) S, = {(a,1),(a,2),...,(a, k,)}.
Denote by T the set of all orderings
(1.30) Y= {(al’bl)""’(aN’ bN)}’

of S which are compatible with the order within each subset S,. To every y € T’
there corresponds a set D, in RY described by (1.18). The union of these sets
coincides with D = D), X --- XD, . Formula (1.20) defines a 1-1 linear mapping
C, from D, onto RY. Put

(1.31) I ={1} U {i: a; # a,_,},
(1.32) Py(!-" A; uz,) = /ﬂ(dzo))\l(dzl) o A(dz,) ig pu,(za,« - Za,«_l),
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THEOREM 1.2. Suppose that we are given, for everyi=1,...,n, a pair of
measures ., \; subject to conditions (a), (b), Section 1.2, and a density q; which
satisfies (1.3). Let J;; be random fields defined by (1.8). Then for every ¢, €
D(D,), i=1,...,n,

(1.33) Ni(p, N, q; ) = ery(#,k)(qﬁy),
YeE
where
(1.34) (w) = ¢(C; M),
with @(t',..., t") = @) -+ @, (") and
(1.35) m(p, A;u) = p(p, A; 1y ) X [1&(w).
JEL

Theorem 1.2 will be proved in Section 3 with tools developed in Section 2. We
also prove that .

(136)  lim EmB7(A, ¢)7¢(, 9) = ImB.TEN, 0)Ti(A, ).
10 ¢} £
Theorem 1.1 follows easily from Theorem 1.2 and (1.36).

1.9. Let u = C(t), where C is a unimodular matrix. For every generalized
function F(u), the formula

(F(t), 9(t)) = (F(u), p(C~(u)))

determines a generalized function F‘(t). We put F = C(F) and we say that it is
obtained from F by the change of variables u = C(t).
Using this notation, we get from (1.33) and (1.34) the formula

(1.37) Pﬂﬁ@l(xi,ti) -y cy{py(u,x,u,y) X 11;11 g(u,.)},

'yEF

which is the promised precise version of the recipe described in Section 1.6.

1.10. Interest in the self-intersections of the Brownian motion has increased
considerably in connection with Symanzik’s ideas in quantum field theory.

The functionals Z,(A, ©) mentioned in Section 1.4 have been introduced in a
pioneering work by Varadhan (1969) published as an appendix to a Symanzik
article. They also have been studied by Dynkin (1985, 1987), Le Gall (1985),
Rosen (1986a) and Yor (1985a, b, 1986). The functionals J,(A, u) for & > 2 first
appeared in Dynkin (1984a,b) as a tool for a probabilistic representation of
P(o), fields. In Dynkin (1986b) various families of functionals which converge to
T (A, u) have been investigated and the moment functions of J,(A, u) have
been evaluated. Theorems 1.1 and 1.2 were, first, announced in Dynkin (1986a).



SELF-INTERSECTION LOCAL TIMES 65

A different renormalization of the self-intersection local times was proposed in
Rosen (1986b) where the existence of an L2 limit

k
(1.38) I*(B) = leiﬁ}fBi:I’Il[[pf(th - X,.)]

was proved for every bounded Borel set B C D,. [For k& = 3 this is also done in
Yor (1985c) by a different method.] Heuristically,

I(v) = %(—l)k'lﬂvs) X Ty (X, vp),

1
- 27T(tk - tk—l + 5)

dt,,...,dt,

where I*(t) = I*(v), A is Lebesgue measure, A and B have the same meaning as
in (1.25) and g(VB) = l—IieBg(Di).
We refer to Dynkin (1988) for more bibliographical information.

2. Preliminaries.

2.1. Suppose that a generalized function F* is given for every & € (0, ¢,). We
say that F° is bounded if, for every test function ¢, F%¢) is a bounded
real-valued function of & Let F¢= F¢ X Ff. Standard arguments [see, e.g.,
Gel’'fand and Shilov (1968), Chapter 1, Section 4.4] show that, if F¢ and Fy are
bounded, then so is F.

Let a* be an arbitrary real-valued function. We write F* = O(a®) if F¢/a® is
bounded. We write Fy = Fy if Ff — Ff = O(¢*) for some a > 0. (If F* is a
real-valued function of ¢, this is consistent with the notation introduced in
Section 1.2.)

2.2. We need some estimates for Green’s function,
(2.1) gy(x) = [O e Fip,(x) dt.
(We drop the subscript B if it is equal to 1.)

LEmMA 2.1.  For every B > 0 and every integer k > 0,
(2.2) /dzg[,(z)k < 0.

Suppose that a random variable Y has a probability density q which satisfies
condition (1.3). Then there exist constants B, such that

(2.3) E[g(eY)*] < Byin et
for all sufficiently small e. We also have
(2.4) Eg(eY) = —h,.

Proor. It is well known [see, e.g., Itd and McKean (1965), page 233] that

(2.5) gs(x) = %Ko(‘/z—ﬁ 1%1),
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where K, is a modified Bessel function which can be described [see Watson
(1952), 3.71.14 and 3.7.2] by the formula

(2.6) K(r) = — o(r)ln% + B(r).
Here
(2.7) I(r) = %amrz"‘/(Zm)!, an = [2m]22m,

(28)  B(r)= —C+ Ya,(l+1/2+ - +1/m= C)r*"/(2m).

Formula (2.2) follows from (2.5), (2.6) and (1.3).
Formula (2.6) also implies that

(29) —Ky(2er) = hig(r) + 4.(7),

with

€

. 1 1
h,=— ;lna, o(r) =I(2er), Y (r)= ;[B(2er) — I(2er)inr]

and A, given by (1.9).
Since @¢,, > 0and a,1 +1/2+ --- +1/m — C) — 0 as m — oo, there exist
constants y;, v,, v; such that

(2.10)  or) <me®,  Wr) < (v, + vllnr))e*, forall r>0.
Put N = |Y|/ V2. By (255), (2.6) and (2.9),
(211)  g(e¥) = hg(N) + ¥(N) < (n:h, + v, + 5lIn N|)e2eV.

The estimate (2.3) follows from (2.11) and (1.3).
By (2.11)

(2.12) Eg(eY) = a(e)h, + b(e),  ale) = Eq(N),  b(e) = Ey(N).

The functions a(e) and b(e) are even and analytic in a neighborhood of 0.
Since a(0) =1, b(0) = —h, — h, [cf. (1.9)], we have a(e) = 1 + O(e?), b(e) =
—h, — h, + O(&?) which implies (2.4). O

REMARK. Using Hoélder’s inequality, we conclude from (2.2) that, if A has a
bounded density, then

(2.13) sup f)\(dz)iillg/,(xi —-2z) < o,

X1y

for every 8 > 0.
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2.3.

LEMMA 2.2. For every Y described in Lemma 2.1 and for every ¢ > 0,

(214) (K*(u),9(u)) = E[" dug(u)p,(e¥)

is a continuous linear functional on (R ) and

(2.15) : K¥(u) = —hd(u) + £(u),

where h,_ is defined by (1.9) and

(2.16) (), o)) = [“lo(x) - e 9(0)] /2mudu.
Proor. We note that

(2.17) R(¢) = K«(p) + hp(0) — £(9) = r'p(0) — Ri(e),

where

(2.18) re=Eg(eY) + h,

and

(2.19) Rito) = Ef 1= ] fw) au,

with

(2.20) f(u) = [p(x) — e *p(0)] /270

Since 1 — e~ ® < Va for every a > 0, we have R(¢p) < c,& where

¢p= [TI(w)I(2u) ™ duElY] < co.
b :
Obviously, this implies (2.15). O

2.4.

LEMMA 2.3. Let Y be the random variable introduced in Lemma 2.1 and let

(2.21) gi(x) = fo “e~Bip (x) dt.
Then
(2.22) Ef[g;;(z) ~gi(z—Y)|"dz=0

uniformly in u.
Proor. The left-hand side in (2.22) is equal to 2E[Q(0) — Q(&Y)], where

Q(») = [g4(2)gi(z ) dz.
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We have
0<Q(0) — Q(y) < (27) ™" foo(l - e‘y2/2‘)e_/”dt
0

< (@m) [

0

[e¢]

(2t) e Pt dt,
which implies (2.22). O
2.5.

LEmMMA 2.4. Let h,,..., h, be positive Borel functions and let
(2.23) HB(u) = [ Ph,(t) dt.
0

Suppose that Hf(c0) < oo for all B > 0 and all r. Then for every ¢ € 9(D,),
there exists a B > 0 such that

[ (@) Ro(ts = 1) -+ Bty = b, )(2)
(2.24) ’ ]
= [ ) - HEu,)(w) du,

where

(2.25) Y(u) =Dy,...,D, [P +u) o(uy, uy + u,, ..., U tu, + - tu,)l.

ProOOF. We start with n = 1. Let ¢ € DA(R*) and let 0 < 8 < B’. Integra-
tion by parts yields

(226)  [‘o(e)hy(t) dt = ePp(c) HE(c) - [ (ePo(t) BE(e) at.

Since ePp(c) — 0as ¢ — oo, we get (2.24). Now using (2.26) we prove that (2.24)
holds for n + 1 if it holds for n. O

3. Proofs of Theorems 1.1 and 1.2.

3.1. To evaluate the moment functions #§(p, A, g; ) we consider N inde-
pendent random variables Y7, (a, b) € S, where Y has the distribution A, and
Yy, ..., Yy are distributed with the density g,. Let

(3.1) Vi(e) = Ye,  Vi(e) = V& (e) + Y2, forb> 1.
Assuming that A;(dz;) = p,(2;) dz;, we have the following expression for the
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joint density of V{(e),
n
(32) q°(A;0) = Hlpa(v‘f)qz(vé‘ —0f) - qi(of, —of ).
a=
By substituting X,. for vj we get
n
(3.3) HIT;;(M, g; t') = ¢°(A; X,).
i
If B{X, € dx} = p(t, x) dx, then
(34) 3w, A, 4 t) = Bg“(\, X,) = (N, )p,(¢, %) dx = Ep,(t, V(e)).
Note that
N
(3.5) Pt %) = [ildxo) TT puff = x520),
where y = {(a,, b,),...,(ay, by)} is the ordering of S defined by (1.18),

u,...,uy are given by (1.20) and x5° = x,.
It follows from (3.4) that

(3.6) Jp#im A @ 9(e) dt = T Filo),
where
(3.7) Fi(9) = [ Ep(t, V(9)o(2) dt.

3.2. Now we investigate the limit behavior of F*(¢) as ¢ — 0. Note that

N
(3.8) Pt V() = [u(dzo) ITpu(n,),
where
(3.9) .= Vir(e) = Vori(e),
with Vio = 0. Put
(3.10) i, = Y — Yo
and compare F(¢) with
(3.11) Fi(o) = [ B(1)o(t)
D‘I
where

(3.12) Bi(t) = E [u(dz,) [T Pu(ii) T po(1,)
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and I, is defined by (1.31). By Lemma 2.4

N
(313)  Fi(o) = E [u(dz,) [  duy(u) [T (n,),

(3:14)  Fi(9) = E [u(dso) [ dup(u) [T (i) [T g(n,),

with gz and ¢ given by (2.21) and (2.25).

For the sake of brevity we denote by M the product of the measure P with
respect to which the mathematical expectations are taken in (3.13) and (3.14)
and the measure p(dx,)|y(u)| du. We put A; = ggi(n;), A; = gg(7,) and A, =
|A; — A,|. Note that

IF(9) - FA(§)l < //HA 14, T1 4;dm,

leL iel\L

where the sum is taken over all nonempty L C I,. By Holder’s inequality each
integral does not exceed a product of powers of the integrals

[Abam,  [Atam,  [Medm
and we can choose k; = 2 for one I. Using estimates (2.3) and (2.22) we prove that

(3.15) Fi() = Fi(p).

By B.1), 9, = aY,jj/ for j & I,. Since the random variables #;, i € I, and the
family {n,, j & I,} are mutually independent, we have from (3.6), (3.9), (3.10),
(3.12) and (3.15) that

f/fi(u, N, q;t)o(t)dt

(3.16)
A dtqo(t)E[ Julaxo) 1 pu (7 = i) | T1 B, (e¥2),
yeI‘

where according to (1.20)

(3.17) u; =t — tgen

3.3. The limit behavior of
(3.18) M, As 8) = PTE(A, 1) TE(N,, £2),

as ¢|0 and B is fixed can be investigated in a similar way. We repeat the
arguments in Sections 3.1 and 3.2 with random variables V}*(¢) replaced by
V2(B) and the set I, replaced by <J, defined by the condition: i & oJ, if and only
if i=1or a;_, = a; = 1. In this way we get that

(3.19) Mi(p, A5 t) = 32 ¢P(@) + R(B, ¢).

yel“
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Here e “R(B, ¢) — 0 (with some a > 0) as £} 0 and B is fixed, and
(320)  ¢f(¢)=E [ f w(dxo) [T p (Vi — Ver) | T1 Ep, (e¥3),
L€, JEJ,
where V} = Y} and V2 = V().
3.4. We use (1.25) to express S F(p, A, q; @) through the moment functions
My N, g; t). To use (1.25) as it is stated we need to introduce a new set of

variables v§ = t§ — t§_, besides two sets {u;} and {¢7} we deal with. To avoid
cumbersome notation we prefer to return in (1.25) to original variables ¢; =

v; + -+ +v; and to use the following rules in manipulating with the §’s:
(3.21) f(v)8(v) = f(0)8(v),
(3.22) F(s)8(t—s)=F(t)é(t—s)

For instance,
8(02)q(Xv,+1>3 - Xv,) = 8(02)q(Xul+vz+va - le+oz)‘

= 8(t2 - tl)q(Xt3 - th)‘

Following these rules, we rewrite (1.25) in the form

(3.23) T\, )= % Ii[hﬁ(t,- =t )ITE(N, ty).

A i=
This implies

n kg
(324) AN g;9)=Y - LE Hl{nz(ka,txa)ﬁzlhﬁ(tz - t;:,_l)]},
A, A, @= =

where A, runs over all subsets of the set {1,..., k2,} which contain 1.

3.5. To simplify the presentation we say that the elements of S, =
{(a,1),...,(a, k,)} have color a. By identifying b € A, with the pair (a, b) we
imbed A, into S,. The terms on the right-hand side of (3.24) are in a 1-1
correspondence with subsets A = A, U --- UA, of S which contain the first
elements of each color. Denote the collection of all such sets by .# and consider,
for every A € 2, the set T, of all orderings of A which agree with the given order
within each set S,. Define the characteristic set for a pair (A,y), A €2,
y € T, as the set of all s € A whose color is different from the color of the left
neighbor (in A relative to y). We say that an ordering ¥ € I' = Iy is the
standard continuation of y € T, if both orderings agree on A and if the
characteristic sets for (S, ¥) and (A, v) coincide.

We claim that every y € T, has a unique standard continuation. Indeed,
suppose that the characteristic set of (A, y)is I and that ¢; < -+ < a, are all
red elements of I. The set of all red elements in A is the union of disjoint
intervals [«a,, d],...,[a,, &,]. The right neighbor B; of &, in A, obviously, belongs
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to I. Since the first red elements of S belongs to A, each red element s of S
satisfies the relation «; < s < a;,, for some i or the relation «, < s. The only
way to avoid expanding the characteristic set is to put s between a; and B;,, in
the first case or after a, in the second case. The exact place for s in now uniquely
determined by the ordering of red elements.

3.6. It follows from (3.24) and (3.16) that

(3.25) A A ge)= T L [ (6)e(t)de,

AeL yeT, D-,

where
(3.26) Ver(t) = A(2)C(2) El‘IA [R8(e2y, )],
with
A(t) = fﬂ(dx)Pt(al,b,)(Yf - x) n~pt(a,i)—t(d,j)(Yld - Yla)’
(3.27) a*a .

C«(t) = l_LEpt(a, iy—ra, y( £Ys")
a=a

[for typographical reasons we write #(a, i) instead of ). In (3.26) and (3.27)
(d, j) is the left neighbor of (a, i) in A relative to y. By the rule (3.22) we can
replace #(d, j) by t(d, j), where (d, j) is the left neighbor of (a, i) in S relative
to the standard continuation ¥ of y. [Note that the left neighbors of (a, i) in A
and S have the same color.]

The set of variables {t(a,i) — #(d, 7, a# a} coincides with the set
{u;, 1€ 1)} and the set {(¥a,i) — &4, 7), a = @) coincides with {u,, i & L}.
Thus the sum of terms in (3.25) corresponding to the pairs (A, y) with a given
characteristic set is equal to

(3.28) P Xy ) TTE [ p (%) = ha(w))],

where the first factor is defined by (1.32). By the criterion (1.24), this factor can
be interpreted as a generalized function in u,,. Indeed it follows from Hélder’s
inequality and (2.13) that under the conditions of Theorem 1.2,

/P(dzo)kl(dzl) e >‘n(d"zn)il;; gﬁ(za, - 2a,_1) < 00,

for every 8 > 0.
Formulas (3.25) and (3.28) and Lemma 1.2 imply Theorem 1.2.

3.7. Using the expression for B, T (A, 9,)T; (A, ¢;) given in Section 3.3, we
prove that

I':uq—ke,(}\v ‘Pl)T)f2(>\2’ @) = Z /fy(l" A; uJy) !;[1 é(”j)‘i’y(u) du + R/,
JESy

yel
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where R’ = o(&) for some a > 0 and

(3.29) f (R s uy,) = E[ Juldx,) 11 P (Vi - V:;:;)}-
L€y

Using this formula we prove (1.36).

3.8.

ProOF OoF THEOREM 1.1. Note that
(3.30) T(A,9) = Ty(A, ) = fo p(X,)o(t) dt

do not depend on ¢ and q. Consider the set « of all products A = 7 (A}, ;) -
T\, @), where n=1,2,..., ¢, € D(D,) and \; are finite measures with con-
tlguous densities. It is easy to check that the span of &7 is everywhere dense in
L*(B).

Let F, = T, q; @) with A, p, g subject to the conditions of Theorem 1.1. By
Theorem 1.2, for every A € o/, P,AF, converges to a finite limit as £ 0; besides
B.F; % is bounded. Hence F, converges weakly to an element F of L2(P) By
( 1. 36)

lim P,F? = lim lim P, F,Fj = limP FF, = P,F?.
el BL0 el0 gLo ¥ k

Hence B(F, — F)* - 0. By Theorem 1.2, P(F — F,)? is bounded for every

p=1, and by the Schwarz inequality

1/2

P|F - F|" < const[]-'jJF ~ F£|2]

for every m > 2, which proves (1.11). For every A € &/, P,FA does not depend
on q. Therefore the same is true for F. O
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