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It is proved that, for classes of functions % satisfying some measurabil-
ity, the empirical processes indexed by % and based on P € £(S) satisfy
the central limit theorem uniformly in P € &(8S) if and only if the
P-Brownian bridges Gp indexed by % are sample bounded and p, uni-
formly continuous uniformly in P € $(S). Uniform exponential bounds
for empirical processes indexed by universal bounded Donsker and uniform
Donsker classes of functions are also obtained.

1. Introduction, notation, definitions. Let (S,.”) be a measurable
space, let #(8S) be the set of all probability measures on (S, .”) and let &
denote a collection of real-valued measurable functions on S such that
Supsc &1 f(8) — ¢f| < o for all s €S and some c;<w, fe F. Fe CLT(P)
or & is P-Donsker for P € #(8) if the empirical processes based on P and
indexed by # satisfy the central limit theorem as random elements in (%),
the Banach space of all the bounded real-valued functions on %= {f—c¢ £
f e F}, with the supnorm ([7], [9], [10]). & is universal Donsker if Fe<
CLT(P) for all P € (S) ([8]). Many universal Donsker classes of functions
satisfy a stronger property, namely, that the CLT holds not only for all P but
also uniformly in P, as we prove in Section 3 below (definitions follow
shortly). In this paper we characterize this property in terms of Gaussian
processes (Section 2). The equivalent Gaussian property is much easier to
check than the original definition (see Section 3 for examples). Gaussian
characterizations of CLT-related properties in finite dimensions can be traced
back to the CLT in type 2 spaces of Hoffmann-Jgrgensen and Pisier [13] (type
2 is a Gaussian property) and to the Jain-Marcus CLT (which can be viewed
as a consequence of a certain map being type 2; see [14], [22]); Pisier’s type 2
characterization of Vapnik—-éervonenkis classes [17] and Zinn’s Gaussian char-
acterization of universal bounded Donsker classes [23] are examples of results
of this type for empirical processes.

The classes of functions we study in this article might in fact provide an
adequate framework for the parametric bootstrap as well as for more sophisti-
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UNIFORM DONSKER CLASSES 759

cated stochastic procedures as in Beran and Millar (3] and [4]. The two crucial
properties of Vapnik-Cervonenkis classes of sets that these authors use,
namely an empirical triangular array central limit theorem and an exponential
bound for the empirical process that holds uniformly in P € £(S) also hold
for the classes considered in this paper (and the latter only holds for these
classes); see Corollaries 2.7 and 2.11.

We proved some of the results in this paper [the equivalence (a) < (b) in
Theorem 2.6] in 1987, in connection with our work [11] on the bootstrap, but
this turned out to be irrelevant for our research at the time. A year later we
became aware of the work of Sheehy and Wellner [21], where a similar (but
more general) concept is introduced, and noticed that our previous work
essentially contained the solution to one of their problems (in particular
disproving their conjecture in Remark 8, Section 1 of [21]). The scope of their
work, together with the other possible applications mentioned in the previous
paragraph, convinced us of the interest of these results, that we then devel-
oped in the present form (which has been influenced by [21]).

Given % as above and P € &(8S), we let, as in [9] and [10],

e2(f,8) =[S(f—g)2dP,
(1.1) " 2
i f.0) = (- P ([(f-e)aP|, fige 5,
S S
(12) F={f-g fgeF}), (F)V={(f-8)"fgeF}
If d is a pseudo-distance on % (usually d = ep or d = pp) and § > 0, we let

(1.3) F(8,dy=(f-g: f, g€ F,d(f,g) <)
" and if ® is a real-valued function on Z,
(1.4) l1®@lls= sup|®(f)l, [®Pllses,a) = sup I®(f) — ®(g)l-
fe s f,8€F, f-g€F'(5,d)

For probability measures v on (S, .) and measurable functions f we often
write E, f or v(f) for [g fdv, butif v = PN we will use E, instead of Epn. To
every P in Z(S) such that & c _£,(P), we associate two centered Gaussian
processes Gp and Zp indexed by % [or more generally by £,(P), but we only
consider their restrictions to %, or at most to %'l: those given by the
covariances

(1.5) EGp(f)Gp(8) = Ep(f8) — (Epf)(Epg), f.8€ %,
(1.6)  EZp(f)Zp(g8) = Ep(f8), f.8€ 7.

Note that if g is N(0,1) independent of Gp, then a version of Z is
(1) Zo(f) = Go(f) + gBpf, fe &

If Gp (or Zp) has a version with bounded p, uniformly continuous (ep
uniformly continuous) sample paths, then Gy (or Z,) will always denote such
a version; and if P = Y a,8,, has finite or countable support, then the versions
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we always take are
(18) GP = Z a%/zgi(asi - P)’ ZP = Z a}/zgiasi’

where {g;} are i.i.d. N(0,1) and §,, is point mass at s; € S.
Given a function X: SN — [*(%), its outer law under P is the set function

(19) L8 5 (X) = (PV)*ox 1,

If no confusion may arise, we write .Zz° or even .Z* for .3 5. Following
Hoffmann-Jgrgensen ([12]), a sequence X,, of [*(# )-valued functions defined
on SN converges in law or weakly to a Radon probability measure y on (%),
and we write

‘“/I;k,?(xn) —)w Y
if

(1.10) jS*H(xn)dPN - [Hdy

for all functions H: [*(¥) — R bounded and continuous, where [* denotes
upper integral.

Let X;: SN — S be the coordinate functions, i € N. The variables {X,}"_,
are independent with respect to PN for every P € £#(S). The normalized
empirical measure based on P € #(8), vt is

(1.11) vP=n"12% (8%, — P),

i=1
where 8y, is point mass at X,(w) € I(F), w € S™. We consider v} as a
1°(% )-valued random element defined on the probability space (SN, ~N, PN)
[or, if needed, on the product of this space with ([0, 1], %, A), A Lebesgue
measure]. & is P-Donsker or % € CLT(P) if both the law Z,(Gp) of Gp is
Radon in (%) (i.e., & is P pregaussian) and

(1.12) /I;E,y(”f) -, Z#(Gp).

We recall that .Z;(Gp) is Radon in (%) if and only if G, admits a version
with bounded uniformly continuous trajectories in (%, pp) ([1]; see also [10]).
& is universal Donsker if # € CLT(P) for all P ([8]). When no confusion is
possible, we write #(Gp) for .Z5(Gp), and £*@}) for £ 5(wD).

Let

BLY = BL,(I*(F)) = {H: I(F) - R, | Hll'< 1,
(1.13) _ ~
sup |H(x) — H(y)l/lIx — yllg< 1}.
x,yEI™(F)

For measures u, v defined on subsigma algebras of the Borel sets of (%), in
analogy with the corresponding definition for Polish spaces (e.g., [2], Section
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1.2), we let

(1.14) dpps(p,v) = sup f*Hdp,—f*Hdv

HeBLY
The proof of Theorem 1.3, Chapter 1, in [10] (together with the well-known
fact that d p;» metrizes weak convergence in R?) with minor changes gives the
following. (For sufficiency the changes are indicated in the proof of Claim 5,
Theorem 2.3; for necessity one proceeds as in [10], using the Kirszbraun—
McShane theorem—Proposition 1.3, page 2 in [2].)

1.1. THEOREM. Fe CLT(P) if and only if both F is P pregaussian and
(1.15) ’}i_I)I:OdBL’;(j;, y(Vf), fy(Gp)) =0.

In applications (e.g., Corollary 1.7 in [21]) uniformity in P € H(S) of the
limit (1.15) is not useful unless it can be combined with some kind of
uniformity of Gp such as d g;(-£(Gp), £(Gy)) being small if @ is close to P
in some weak sense (e.g., in the sense of the Hellinger distance in [21D. If &
satisfies the following definition, then this type of behavior for Gp is assured
(see Corollary 2.7).

1.2. DEFINITION. & is uniformly pregaussian, & € UPG for short, if for
all P € #(8), Gp has a version with bounded pp uniformly continuous paths,
and for these versions, both

(1.16) sup E|Gpllg<

PeA(S)
and
(1.17) lim sup ElGpllss, o = 0.

-0 peg(s) '

F is finitely uniformly pregaussian, & € UPG, for short, if both
(1.16)' sup E|Gpllg< ©

PeZ«(S)
and
(1.17) lim sup ElGpllss,ep =0,

30 pez(S)

where #(8) ={P € P(8): P has finite support}, and Gp are as in (1.8).

In the course of the proof of the main theorem we show that & UPG if
and only if € UPGy. .
It is convenient to remark that the statements (1.16) and (1.17) are equi-
valent to SUpp c sy EllGpll% <  and lim,; _, o SuPp c 5(s) ElGpl'5s,pp = 0 for
any r >0, as well as to lim, . suppcgs) PrillGplls> A} =0 and
lim,_, o SUPp < w5y Pr{lGpll 55, oy > €} = 0 for all & > 0. (Hence, Definition 1.2
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coincides with Definition 1.4 in [21].) This is a (well-known) consequence of
Borell’s inequality ([5]; see [18], Theorem 2.1, for its version for expectations):
If G is a sample bounded centered Gaussian process, || - || denotes sup norm
and M := median of |G|, then for all ¢ > 0, Pr{ |Gl — M| > ¢} <
exp(—t2/20?%), where o2 = sup EG*(¢). Then, since o < ¢;M and E|||G|l —
MIP = (3 PG — M| > ¢/P1dt < [5 exp{—t?/P/202} dt < c,0P for suitable
constants c;, c, < « independent of G, it follows that E|G||” < K,M? for
some K, independent of G. This observation takes care of the nonobvious
parts of the above equivalences. A similar remark applies to (1.16) and (1.17).
Theorem 1.1 and the observation following it suggest:

1.3. DeFINITION. & € CLT(P) uniformly in P, or ¥ CLT,, or & is a
uniform Donsker class if both

€ UPG

and

(1.18) ].inl sup dBL*("/P g—(VP) jg—(GP))
n=® pe(S)

In [21], (1.18) is replaced by a uniform invariance principle in probability for
adequate versions of I and Gp. The above definition seems more natural and
it also seems to be all that is needed in most applications. It would be
surprising if Definition 1.3 were not equivalent to Definition 1.5 in [21] for
F = P(8S). We are not interested in this question here.

Sometimes the processes Z, and the distances e, are easier to work with
than G, and pp. In some sense, replacing them in Definition 1.2 if & is
uniformly bounded gives a more adequate definition of UPG and UPG/ (see
the last part of Section 2).

In Section 2 we prove our main result, which is that, under measurability,
&€ UPG;= ¥ & CLT,. (The converse implication is trivial.) We also obtain
a slight improvement of a theorem of Sheehy and Wellner [21] on uniformity of
the CLT over subsets of probability measures. We also prove exponential
bounds that hold uniformly in P € £(S), both for universal bounded Donsker
classes ([22]) and for uniform Donsker classes.

In Section 3 we show that many interesting classes of functions are in
CLT,, but that there are universal Donsker classes which are not CLT,,.

For the results in Section 2, we need & to satlsfy enough measurability so
that, for each P, I[L}_ (8%, — P)/n'?ll g, pp is completlon measurable and
Fubini’s theorem can be applied to [T7_, £ 8% /Nl g, pp), Where {¢;} are
i.i.d. real-valued symmetric-(usually normal or Bernoulli) independent of {X},
actually defined on ([0, 1], &, A). In other words, we need % to be nearly
linearly deviation measurable (NLDM(P)) for each P, in the notation of [9]
and [10]. When this holds, we say that & is measurable. For example, & is
measurable if it is countable, or if the empirical processes v are stochastically
separable or if % is image admissible Suslin ([7]).
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2. Results and proofs. In some instances in the proof of the main result
we will use finite dimensional approximation. We will then require two lemmas
for R%valued random variables. We only sketch their proofs since they are
standard (and the lemmas themselves are well known).

2.1. LemMa. Let P& ={P on R% supp P c{llxll < M}} for M < w, For
P e P&, let {¢F)7_, be i.i.d. random variables with law P, and let ®p =
Cov(P). Then

(2.1) lim sup dBI;;[-/( Y (¢F - Eff)/nl/z)aN(O,‘DP)] =0,
T pesy i=1

where N(0, @) is the centered Gaussian law of R? with covariance ®p.
ProOF (Sketch). This follows from standard results on speed of conver-
gence in the multidimensional CLT ([20]). An elementary proof can be ob-

tained combining the following two observations: (i) The usual Lindeberg proof
of the CLT (e.g., [2], pages 37 and 67) readily gives

d3[_/( Zn', (&8 - Efip)/nl/z), N(oO, <I>P)] < KM (trace ®p) /n'/?,
i=1

where K is a universal constant and

dy(p,v) = sup{‘ffd(p. -v)|: Y 1Dl < 1},
lal<3

a=(a,...,a) € NU{OD? lal=L¢ a;, and D*f= M f/o%x, ... 0%xy.

And (i), f€ BL,R?%) can be uniformly approximated by C% functions

whose partial derivatives have not too large |l - [l.-norms [specifically, if

I fllaz < 1, where | fllsz = | fllo + sup, ., f(x) = f)I/1x — y|, and if f(x) =

[f(x — ey)eWP/2 dy /(2m)3/2 == (f % @ Nx), x € R<, then

If = Fille < (27) "42((2 A ellyl)e WP /2 dy < e(d)e = hy(e) = 0
as ¢ — 0 and | D*f.ll. < &7'!/|D%| dy, ¢ being the density of N(0, I)]. O

The same principles apply to give the following inequality (for which we do
not claim optimality).

2.2. LEmMA. Let ® and ® be two covariances on R? X R? and let N(0, ),
N(0, @) be the corresponding centered Gaussian laws in R%. Let ||® — ®|l. =
max; ;g 196G, j) — BG, ), where @G, j) = P(e;, €;) and {e;} is the canoni-
cal’ basis of R%. Then

(2.2) dprz(N(0,®), N(0,®)) < c(d)ll® — Bl

where c(d) is an absolute constant that depends on d.



764 E. GINE AND J. ZINN

ProoF (Sketch). By the previous proof it is enough to show
d4(N(0, @), N(0,®)) < c(d)|® — Dll.
To prove this inequality one proceeds as in Lindeberg’s proof of the CLT
with the random variables ©7_, X;/n'/% and £7_, ¥;/n'/?, X, Y, all indepen-
dent, .Z(X,) = N(0, ®), -Z(Y;) = N(0, ®), and let n — . Details are omitted
since they are routine. O

The following is our main result.

2.3. THEOREM. Let F be a measurable class of functions. Then
e UPG;= € CLT,.

Proor. Assume & € UPG,. We divide the proof into several steps.

CramM 1. It suffices to prove the theorem for classes % which are uni-
formly bounded by 1, i.e., such that F(s) < 1forall s € S.

Proor oF Crav 1. First note that &€ UPG; if and only if € UPGy,
where = {(f=c(f—c;): f€ F)} for some ¢ # 0 and arbitrary finite con-
stants c;, and the same is true of CLT,. Now,

e CLT, = ¥ is universal Donsker = sup diam( f) <,
fes

where diam(f) = sup, c g f(s) — inf, c 5 f(s) ([8]); moreover,

&€ UPG; = supdiam( f) <,
fesF

as observed in [22] [if P(sy, s5) = 3(3,, + 8,), then sup, ,c s EllGp, 5plls<
o implies sup;. s (diam(f))?/4 = supsc s SUP, s,es EG3},, s,(f) < =l
Therefore, if in the definition of &, we take c ;=inf(f) and ¢ =
[sup; ¢ o(diam( f N~ & is a class of functions uniformly bounded by 1. By
the first remark it suffices to prove the theorem for &. We assume F <1 in
the rest of this proof.

CramM 2. Let £= U 92U %' U(F)% Then

sup EplP, — Pllo=0(n"'?),
Pe#(S)

— pn—1lyn
where P, =n""L}_ 0%,

ProoF oF CrLam 2. We prove it only for &= (¥ "2, since subsets of this
proof give the rest. By Claim 1, for f, g, f,& € ¥ we have

(23)  Epl(f-g)’ - (f-8) P <16E,)(f-g) - (Ff-3)"

Let {g;} be an i.i.d. N(0,1) sequence independent of {X,} [actually defined on
([0, 11, &, A): for each P we take (Q, 3, Prp) = (SN, AN, PY) x (0,1], &, A) to
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be our general probability space]. For each w € SN fixed and n €N, the
process (h(X (), ..., (X (o) > L' g;h(X(w))/n'/? h € (), attains
the value 0 for one h and has a separable index set, so (2.3) and the
Slepian-Fernique lemma (as stated in [10], Theorem 4.4, Chapter 1) give

n
> e‘:?i‘sx,-/nl/2
i=1

(24) E, <8E,

(F)?

n

Y g:8x,/n" 2
i=1 ' F
where E, denotes integration only with respect to the variables g; (or A).
Therefore, if {¢;} is a Rademacher sequence also defined on ([0, 1], &, A) and
independent of {g;}, we obtain

n og;0x, N
EpllP, — Pligy < 2Eyp,, Y aed (by symmetrization)
i=1 (72
2 n g.8x.
= _——EPrP E g—ﬁ
Elgil i=1 " i
(by Jensen’s inequality after replacing g; by ¢;18;l)
16 " g;0x,
< —=—EpE — by (2.4
n'/2E|g,| pPtg l§1 nl/? - [by ( )]
32 n g8y
(25) < <z ErE 2 by the triangle i alit;
< W%Eg] pE, El iz . (by the triangle inequ y)

<

32 "~ g0x,
< ———— sup ElZyls (sinceZ =Y '——l')
n'Elgl gesns) - =t

32y/7/2 2\1/2

< —5;z Ssup (E”GQlly+ (—)
n Qng(S) ™

[by (1.7) and Claim 1]

= O(n~'/2) uniformly in P € #(S) (since &€ UPGy).

CLaiM 3. (F,ep) is totally bounded for all P € H(S) and

(2.6) lim limsup sup PM{lv7lls,ep > &} =0 foralle >0,
8§20 n—ox PeP(S)

in particular, & is universal Donsker.
Proor oF CLAIM 3. Since F€ UPGy, we have
sup{ElGp(0)ls:P € P(8),w €S, ne N} < ce.

Hence the covering numbers N(e, 7, ep(w)) [:= smallest number of ep(w)
balls of radius less than or equal to & and centers in .% needed to cover F lare
uniformly bounded by Sudakov’s minorization theorem (e.g., [10], Theorem
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4.3, Chapter 1), concretely there is ¢ < « such that for all w € S N neN,
Pe#(S)and € > 0,

(2.7) log N(&, #, ep (w)) < c/e®.

A well-known consequence of Claim 2 ([19]) is that [|P, — Plisy = 0 as.
Since

|e2 w( f-8) — €2(f,8)| =|P.(F—2)" - P(f- &),
we have

(2.8) sup |ed .(f.8) —ek(f.8)| >0 PVas. foral PeP(S).
f,8€F

This and (2.7) give

(2.9) sup log N(e, #,ep) <c/e?, &> 0.
Pe#(S)

Hence, (Z, ep) is totally bounded (uniformly in P). In order to prove (2.6), we
first symmetrize: Using Lemma 2.5 and the proof of Lemma 2.7(b) in [9] we
have, for {¢;}, a Rademacher sequence independent of {X,}, [i.e., defined on
(0,1), #, V]

n
-1
PM[[vf || 55, ep > 46} < 2(1 — 67 /4¢?) PrP{ Y £;8x/n'/? > g}.
i=1 F3, ep)
Then
n
PrP Z 8i5Xi/n1/2 > &€
i=1 F(8,ep)
n
< PI‘P Z Siaxi/nl/z > &€

i=1 F(21/%5,ep )

+ PN{ sup |e,2>"(w)( f,g) — e3( f,g)| > 82}
f,8€SF

= (D)p+ (ADs.
Now Claim 2, concretely (2.5), implies

lim sup (II)p=0 foralls > 0.
no® pe(8)

Next, noting that by (1.7),

EllZgll 55, e < EllGqllss,e0) + (2/7)"? 6 < EllGgllss,pqp + (2/7)"* 8,
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we can proceed as in (2.5) and obtain

n

L £;0y,/n'/"
i=1

EPI‘P

< (1/Elg,)ExE,

n
> e‘:’i‘sxi/nl/2
y’(s,ep") i=1

.7'(5,61:")

< (1/Elgl) sup ElZgll 5s,cq

<ym/2 sup ElGyllse, o + Vr/28?

for all P € #(8S). Hence, since & € UPGy/,

lim sup (I)»=0 foralle >0,
80 peg(s)

thus proving (2.6). Finally, % is a universal Donsker class by, e.g., Theorem
1.3, Chapter 1 in [10].

Cram 4. e UPG.

Proor oF Cramm 4. If # is as in Claim 2, it follows from uniform
boundedness of % (hence of ¢) that
(2.10) P, — Plls—0 PN as. forall P e #(89),

(see, e.g., [19]). Given P, fix w € SN so that convergence in (2.10) takes place.
Then, because of (2.10), for any finite number f;,..., f, of functions in .7,

j(GPn(w)( fl)"“’GP,,(w)( fr)) “w j(GP( fl)"--’GP( fr))

So, if we show that {_£5(Gp (,)} is Cauchy in dp;+, we will have proved both
that the law of G, is Radon and that

(2.11) Z(Gp ) =w £(Gp) in I*(F).

Let H € BLY. Since pp < ep, by (2.8) and (2.9) in the proof of Claim 3, given
7> 0 there is n > 0, there are f},..., fy € & with N < », and a partition of
F, Ay, ..., Ay with f; € A; such that A, is contained in the pp_(,, ball about
f; of radius = for all m >n. Let =, f=f, if f€A;, i=1,...,N. Let
Gp, ), f )= Gpn(w)(’”} f) and write

|EH (GPn(w)) - EH (GPm«u))' .
<|EH(Gp () = EH(Gp ), .)| + |EH(Gp,0),,) = EH(Gp,0)r)
+ E|H(Gp,w),) - EH(Gp,w)!
=Drn+ (Mrnm+ Drm-

(2.12)

3

We have
(I) o S E”GPn(m)lly"(T,Ppn(m))’ (I)‘r,m < E”GPm(w)”-?"(T,PP,,,(m))’
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hence

(2.13) Drm < sup ElGgllse,pp, m=n.
Qe.@f(S)

As for (I), ,, ,, we will apply Lemma 2.2. Note that, by polarity,
I@p, = Bp lu < 3 max |P(fi = ;)" = Pul £ = ;)"

+4 max (Po(f = £))" = (Pal i~ £))"

+max|Pnfi2 _mei2i+ max|(Pnfi)2 - (mei)2|’
i<N i<N

so that, by (2.10) (recall & is uniformly bounded), we have

].lm sup "‘I)P (@) apm(w)“w =0

n=% m>n
Lemma 2.2 then gives
(2.14) lim sup sup (II), , . =0.

"7®mzn HeBL{
Hence, by (2.13), # € UPGy, and (2.14), we obtain from (2.12) that
lim sup dBL*(/(GP @) Z(Gp (w)))

"= m>n

Therefore, the sequence {-Z»(Gp ()} is Cauchy in dp;+ and (2.11) is proved.
A consequence of (2.11) is that E|Gp (s~ EIIGPII 7 (unlform integrability
follows since ¥ € UPG, implies supqc 5, ElG % < «, as remarked after
Definition 1.2). Similarly, ElGp (,ll5s,0p) = EllGpllss,ppy; but for n large
enough, again by (2.10), [IGp ()5, 0p) < IGp (ol 5212, ppwp and therefore,
since ¥ € UPGy, it follows that lim _, , SUPp e z(s) EllGpll 5, pp) = 0. S0, F €
UPG.

CraM 5.

lim sup dBL*(/*(VP) /(GP))
n=% pe@(S)

Proor oF CrLaiM 5. By Claim 4 we have

(2.15) sup ElGpllg<w, lim sup ElGpllss,ep = 0.
Pe#(S) §—>o PeP(S)

We show that (2.15) and (2.6) prove our claim by following the steps in the
proof of (ii) = (i) (Theorem 1.3, Chapter 1, [10]), with some simplifications.
Given 7 > 0, let fy,..., fNP(T) be the centers of a minimal covering of & by e °p
balls of radius 7 and centers in %, Np(7) := N(r, &, eP) < [by (2.9)]. Let mF
F — & be a mapping satisfying wPf f; for some j, and ep(m, Prf) <. Let
YP(f)—f(X)—Pf, YP(f)—YP(WPf) fe# j=1,.... Let Gp be its
version w1th bounded pp (hence ep) uniformly contlnuous paths, and let
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Gp, () = Gp(nFf) as before, f € 7. Let H € BLY. Then, as in (1.13), in the
place cited, we have

|E*H(vF) — EH(Gp)| <

Jj=1

E*H( Y YjP/nl/z) - EH( Y, Yj{’,/nl/z)
j=1

(2.16) + EH( Y, Yj{’,/nl/Z) — EH(Gp,,)
J=1

+ |EH(Gp,,) — EH(Gp)I
= (I) + (II) + (III).
By Lemma 2.1, since supp Np(1) <  [(2.9)],

(2.17) lim sup sup (II) =0 forall 7> 0.
n=® pe(S) HeBLY

For every ¢ > 0 and H € BLY, since |H(x) — H(y)| < 2 A llx — yll., we have

(I) <e+ 2PN{|IV5".9"(1-,ep) > 8}.

Hence (2.6) gives

(2.18) lim limsup sup sup (I) =0.
720 n>o Pe(S) HeBLY

Similarly,

(I) <& + 2Pr{lGpll5r,ep) > €}
so that by (2.15),

(2.19) lim limsup sup sup (III) =0.
™0 now Peg(S) HeBLY

(2.16)-(2.19) prove the claim. O

Sometimes it is easier to deal with Z, and ep than with Gp and pp. This
suggests the following modification of Definition 1.2.

2.4. DEFINITION. % € UPG’f if

(2.20) sup EllZplls< =
PE-@/‘(S) R
and
< (2.21) lim" sup ElZpllss,ep = 0.

-0 PE.@/‘(S)

If these properties hold with £(S) replaced by Z(S), then we write
Fe UPG.
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To compare UPG/, with UPGy, let us note first that if &€ UPGy, then &
is uniformly bounded Since P(s) = 8, € F(S), we have

sin  ElZpls=> ElZp,(f)l = V2/7f(s), s€8.

Peyf(s)

But if & is uniformly bounded and &% € UPG,, then ¥ € UPG.
By (L7), EllZpls< ElGyll>+ IPflls and ElGplsmp = ElGpls.ep =
E|Zpllg,epy — (2/m)/25. It also follows from (1.7) that, for uniformly
bounded classes, Z, can be replaced by Gp in Definition 2.4.

We could ask what kind of uniform CLT does & satisfy if &€ UPGY,
where & is as in the proof of Claim 1, Theorem 2.3. For the purpose of
Theorem 2.6, let us make a change in the definition of Z.

2.5. DEFINITION. Let c¢,:=inf,c g f(s). Assume |c;| < for all fe& Z.
Then we define F= % if F is umformly bounded and F={f-c ¢} other-
wise. Analogously /= f in the first case and f=rf- ¢y in the second For
every P € 2(S), we let ép(f, g) = ep(f, &). :

2.6. THEOREM. Let & be a measurable class of functions with |c;| < « for
all f € F. The following are equivalent:

(a) Fe UPG.

(b) (#,ép) is totally bounded for all P and

lim limsup sup PN{"Vn | 55, 62 > 8} =0
850 pw pe(S)

for all & > 0.
(C) (76 UPG' and limn_,msupPeg(s) dBLT["/;j.?(Vf)’ jy(GP)] = 0

Proor. The proof is analogous to (and essentially contained in) the proof
of Theorem 2.3 except for (b) = %€ UPG'. So, this is the only part we prove.
By Theorem 1.3, Chapter 1 in [10], (b) implies that % is universal Donsker.
Therefore, by [22], Theorem 2.3,

sup E|Gpllg< o
PeA(S)

and  is uniformly bounded. Since E||Z,lls< EllGplls+ | Pfllg= EllGpll&+
I|Pf|l &, it follows that

(2.22) sup ElZpl|ls< .
PeA(S)

By Theorem 2.8, Chapter 1 in [10],

n

/Frp,y{ X 8i5x,./n1/2} -, Z#(Zp) in lw(y)'
i=1

Hence, by the Portmanteau theorem, which is still valid for this type of
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convergence, as is easy to check, we have

lim inf (Prp) *{ Y &8X,/n? e G} > Pr{Z, € G}
n—ow i=1
for open subsets G of (). This, the symmetrization Lemma 2.7(a) of [9]
and (b) give

n

2
)y Eiaxl/nl/
i=1

> }
j’(&ep)

i }
F(5,ep)

0 = lim limsup sup PrP{
-0 n—o PEQ(S)

n

Z ~’5i5x,4/77f1/2

i=1

(2.23)

I\

lim sup limsup PrP{

-0 pep(s) n-w .

> lim sup Pr{llZplls,ep > €}
-0 pegx(S)

Borell’s inequality or its Maurey—Pisier formulation ([18], Theorem 2.1), com-
bined with (2.23) shows, as mentioned after Definition 1.2,

(2.24) lim sup ElZpllss,ep = 0.
8=0 pes(s)

(2.22) and (2.24) mean ¥ < UPG'. O

Compared with Theorem 2.3 and its proof, Theorem 2.6 is more complete in
the sense that (b) < (a) means that a uniformity condition in the CLT not
containing a priori a Gaussian uniformity condition is indeed equivalent to a
Gaussian uniformity condition. The problem in Theorem 2.3 is that we do not
know how to obtain %€ UPG from only (2.6) plus (F, pp) or (¥, ep) totally
bounded for all P € Z(S): that only seems to give ¥ € UPG'.

Condition (c) in Theorem 2.6 is slightly weaker than # € CLT,: the differ-
ence is that in (c), Gaussian uniformity is with respect to #(5, éz) € F'(8, pp).
However, this weaker uniformity suffices in many instances.

Corollary 2.7 provides a framework for the application of the above theo-
rems in statistics. It is similar to Corollaries 1.4 and 1.7 in [21].

2.7. COROLLARY. Let & be a measurable UPG; class and let &= % U
F2U F' U(F). Let {R,):_, be probability measures on (S, .”) such that
IR, — Rolls— 0. Then ,./*(V ") -, Z(Gg) in 1(F).

Proor. The hypothesis .;.md Lemma 2.2 imply, as in the proofs of (2.13)
and (2.14) above, that

dpr3(-£(Gr,), £(Gg,)) = 0.
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Now, this and Theorem 2.3 give, by the triangle inequality,
dppi(ZL*(vE), £(Gg,)) < dpis(L(vF), £(Gr,))
+ dBLT("/(GRn)’ ,/(GRO))—)O. O

For instance if R, is taken to be P,(w), then Corollary 2.7 gives an easy
proof of the bootstrap CLT in [11] for these classes #. This is not too
interesting in view of the general results in [11], but P(w) is not the only
possible choice of R, [e.g., one could take R, =P, and R, 0 () for a
suitable estimator 6, (co) of #]. Another application of Corollary 2 7 is to show
that its conclusion holds if H(R,, R,) — 0, where H is Hellinger distance (see
the proof of Corollary 1.7 in [21]).

In [21], Sheehy and Wellner consider uniformty of the CLT over subsets II
of #(S). This is a more versatile concept than that of CLT, considered here
(see [21] for applications to the regularity of P, as an estimator of P). It seems
however too general to allow for a description as complete as that just obtained
for CLT,. These authors prove (Theorem 1.2, [21]) that if & satisfies Pollard’s
metric entropy condition, then % verifies the CLT uniformly in P € II for
any class II such that

(2.25) lim sup EpF2I(F > \A) = 0.

A—> Pell
Not surprisingly, the method of proof of Theorem 2.3 above allows replace-
ment of the metric entropy condition by a weaker intrinsically Gaussian
condition:

2.8. THEOREM. Let I1 ¢ P(8S) be a set of probability measures on (S, ”)
and let F be a class of measurable real functions on S, NLDM(P) for all
Pell Let F=F Vv 1, where F is the envelope of . Assume

(2.26) sup EIIZQIIy/(E'QFz)l/2 < o,
1/2
(2.27) hm sup E||ZQ”.9'(8(EQF2)1/2 eQ)/(EQFz) / =0
QE«@[(S)
and
(2.28) lim sup E,F2I(F > \) = 0.
A-® pell

Then %< CLT(P) forall P €11 and

(2:29) sup E||Z,|l &< o (hence sup ElGpll#< °°),
Pell Pell

(2.30) hm sup EllZpll 5s,epy = 0 (hence lim sup El|Gpllss,ep) = O)
-0 penn -0 penn
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and
(2.31) ’}1_120 sup dBL*(“/P #(vs), Z#(Gp)) =
Proor (Sketch). (2.28) implies both
(2.32) l1<c=supEpF?2<w
Pell
and '
(2.33) lim sup EpF2I(F > 1) = 0.
A—© peqn

This and the usual truncation technique give
_2
-1

(2.34) lim sup P

n—x pell

> =

EPF2 s} 0

for all £ > 0. Truncation and symmetrization reduce the proof of

(2.35) lim sup (PV)*{|IP, — Pl >¢e} =0 foralle >0
n—x pell

to proving

Y eif (X)) I(F(X,)

hm lim sup sup (Prp)* { sup
i=1

n—o Pell fe(g")2

(2.36)
< (8n)"*)/n

Proceeding as in (2.5), this probability can be bounded from above by

8(sme)'/? wup ElZgll s N{ EpF*
€ QeZH(S) (EQﬁz)l/2 EpF?

and this gives (2.36), hence (2.35) by the hypothesis (2.26) and by (2.34).

As in the proof of Claim 3 in Theorem 2.3,
PN{””f"f’(&,eP) > 48}

52 n 3'8X~
ST N L
4e” oy n? F(5,ep)
52 ) nog,8x
<2(1 - — |[(Prp)*{|| X ;
( P { ic1 n1/2 y’(21/23(EpnF2)1/2,eP")
2\? —o\1/2
= 2
>(3c) ¢(Ep,F?)
E, F?
+(PY)*{IP, = Plisy > 82} + PN{ | —*=5 — 1

>£}=O.

773
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and by Jensen’s inequality,

n

L &8x,/n'/*(Ep F*?)
i=1

1/2
E, /

F2V/2%5(Ep F'/2,ep )

1/2
7/2  sup ElZgll 5@ 25meF2yir2,eq,)/ ( )

Therefore, (2.34), (2.35) and hypothesis (2.27) give
(2.37) hn%) lim sup sup PN{”V | 55, ep > e} =0 forall e > 0.

This is the key step in the proof of (2.31). _

Sudakov’s theorem and (2.26) imply log N(¢(Ep (,,F*)'?, &, ep () < C/&?
for all ¢ > 0 and some C < «; on the other hand (2.35) and (2.32) imply that
for P €11, sup; ,c +le3(f,8)/Ep F* — e3(f,8)/EpF? —» 0 P as. These
two observations then yield
(2.38) sup log N(e, #,ep) < K/&?

Pell
for all ¢ > 0 and some K < . Now (2.38) gives, as in the proof of Claim 4,
that both (2.29) and (2.30) hold. Finally, the limit (2.31) follows from (2.29),
(2.30) and (2.37) as in Claim 5, by a finite dimensional result analogous to
Lemma 2.1, easy to prove using that lemma together with a classical trunca-
tion argument [based on (2.28)], which we omit. O

2.9. ExaMPLE. In Section 3 we show that many interesting universal
Donsker classes are UPG; and/or UPG/. Suppose that -#'€ UPG/; and that
. its envelope H is a bounded function. Let F' be any measurable function and
assume for simplicity that F(s) > 1, s € S. Then the class %= (Fh: h € #’}
satisfies hypotheses (2.26) and (2.27) of Theorem 2.8, and therefore it satisfies
the conclusion of that theorem for any class II for which supp . Ep F2I(F >
A) = 0 as A = «, To verify (2.26) and (2.27), let @ = X «a;8, with Xa; =1,
a;> 0, and let R = £B,;5,, with B, = o, F*(s,)/La;F*(s,). Then

Zo(Fh) /(EqF?)"* = Lal/%g,F(s,)h(s,) /(L e;F*(5,))"" = Zx(h)
and
e3(Fhy, Fhy) = o, F2(s;)(hy(s;) — ho(s:))’ = (EqF?)ed(hy, hy).

Hence (2.26) and (2.27) follow from (2.20) and (2.21) in the definition of UPG/.

Corollary 1.7 of [21] and Corollary 2.7 extend to thé classes of functions %
that satisfy the hypotheses of Theorem 2.8 (with a proof similar to that of
Corollary 2.7).

Fmally, we consider exponentlal bounds that work uniformly in P for
empirical processes indexed by universal bounded Donsker classes ([23]) and by
UPG/ classes. We recall that & is a universal bounded Donsker class if the
sequence {llvFll #) - is stochastically bonded for all P € Z(S). Several equiv-
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alent definitions are given in [23] for these classes. In particular, a measurable
class F is universal bounded Donsker if and only if |c| <  for all f& ¥ and
SUPp e g5y EllZpllo < o, where ¢, and & are as in Definition 2.5.

For real random varlables &, we define

(€)= 1nf{c: Eexp(|§|2/c2) < 2}.
¥ is the Orlicz pseudonorm corresponding to the Young function e’ — 1.
2.10. THEOREM. Let & be a measurable universal bounded Donsker class

of functions, & be as in Definition 2.5, M = sup{medzan of IZpllg: P € 2(8S)}
and let F = supse o fl. Then

(2.39) sup supy([|vf ) < (2m)*(21F . + (log2)~*M).
Pe(8) neN

ProoF. As mentioned above, the results in [23] show that both | F|l. and
2 _

M are finite. Let, for P € %(S), Mp=median of [IZpls and op =
sup; e s E(Zp(f))?. Borell’s 1nequa11ty ((5]), namely
Pr{ll1Zplls-— Mp| > ¢} < exp{—t%/208}, te€R,,

implies that for a < 1/(402),

Eexp{a(“Zp”?— Mp)z} =1+ -[1 Pr{IIZP||3=,_ M| > (a"'log u)1/2> du

<1+ /;mu—1/2aag du=1+ [(2010',?)_1 - 1]_1 <2

Therefore,
¥(1Zpll#) < ¥ (1Zpls— Mp) + (Mp) < 20p + (10g2)_1/2MP,
Then, since supp c z4s) op = | F |\, we obtain

(2.40) sup ¥(1Zpl5) < 22 Fl. + (log2) "/’ M
PePAS)

If P! is an independent copy of P, and {¢;},{g;} are as in previous proofs, the
umformlty of the bound (2.40), the norm properties of ¢ and the convexity of
the function elels readily give (via the usual tools, namely, Jensen and Fubini)

(vl #) < w(n/?|P, - Pyl ) < 2¢( ,;,)

n

Y &;8x,/n'?

i=1

.
< (2m)"*(2Fll. + (log2) "> M)

for all n and P. [Note the crucial role of uniformity for the estimate (2.40) in
the last inequality of (2.41).] O

2.41 r
( ) )y giéxi/nl/z
i=1

< (217)1/2%//(
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REMARK. A similar result (and proof) also holds for an arbitrary type 2
operator between two Banach spaces.

2.11. CoroLLARY. (a) If & is a measurable, universal bounded Donsker
class then for all t > 0,

sup sup PN{||vF| &> t}
PeP(S) neN

< 2exp{ —t2/2m (2l Fll + (log2) _1/2M)2}.

(b) Let & be such that |c;| < « forall f € F and Z is a measurable UPG}
class. Let for each >0, M(r) = sup{median of |Zplls¢,ecp: P € Pp(S)}
(which by definition tends to 0 at  — 0) and let M = sup{median of ||Zpll sy
P € Z(8)} [which is finite by (2.3) and the Slepian—Fernique lemmal. Then
inequality (2.42) holds and moreover, for all > 0,t>8/2 and n €N,

sup PM{[vF [l 5,ep > 4¢)
Pe(8S)

(2.42)

(2.43) <4(1- 82/4t2)_1[exp{—t2/27r(482 + (log2)_1/2M(21/26))}
+exp{—84n/2w(8||17'||§ + (log2)_1/21l7)2}l.

REMARK. M can be bounded in terms of M and ||F|l.. A possible way to
proceed is as follows: By Borell’s inequality,
M <272+ sup ElZplsye,
PeF(S)
where & = suppc 5,5, SUP h € (F)2Ph® < 4IIFII§, so that by (2.4) and the
Slepian-Fernique lemma, M < 2F|I2 + 16/ F|2 SUPp c 2,5, E|lZplls# and
E|lZpll$< cM,, for a universal constant ¢ (again by Borell’s inequality).

ProoF OF COROLLARY 2.11. Inequality (2.42) follows directly from (2.39)
and Markov’s inequality applied to the random variable exp{|lv, 1%/v2(lvEll &)}
To prove (2.43), we proceed in analogy with the proof of (2.6), which gives

PN{”Vrf"F(a,e,,) > 4t}

<2(1- 52/4t2)‘1[Pr{

n

Z *‘J"i‘sx,»/nl/2

>t
i=1 F2'/%, ep,)

(2.44)

+PN{”V,€”(‘¢)2 > 82n1/2}].

Then we note that Sup; gi/2, ., ) E(Zp(f))? < 25 and that the median
of |Zp |l 52/2,ep ) is bounded above by M(21/25), so that we obtain, as in the
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proof of Theorem 2.10 and part (a) of this corollary,

n

)y *‘3;'51(,/’11/2
i=1

>t
F(21/%, ep,)

sup sup Pr{
(2.45) Pe#(S) neN

< 2eXp{—t2/21T(2 . 252 + (10g2)_1/2M(21/28))2}- .

Since (%")? is universal bounded Donsker by (2.4), direct application of
inequality (2.42) gives

(2.46)  PM{||vP|l(gyz > 620172} < 2eXp{—54n/2w(8|IF||§ + (log2)_1/2A_l)2}.

Now, (2.43) follows from (2.44)-(2.46). O

The constants in the above inequality are not the best possible: the extrane-
ous coefficient 27 is due to the randomization procedure, which conceivably
could be made more efficient; the factor 2 of ||F|.. can be decreased at the
expense of the coefficient 2 in front of the exponential. An advantage of these
inequalities is that they apply in situations which are not covered by entropy
conditions. Also (given, of course, the right ingredient from Gaussian
theory—in this case, the deep Borell’s inequality) it is difficult to think of a
simpler proof of a Kiefer type inequality for general empirical processes.

3. Some uniform Donsker classes of functions. Let N(¢, 7, ¢p), £ >
0, denote the covering numbers of (%, ep) (as defined in Claim 3 above). We
then have:

3.1. PROPOSITION. Let & be measurable and such that sup; . s(diam f) <
o, Then the conditions

o . 172
3.1 log N(e, &, d
N N
and
(3.2) lim sup s(logN(s,?,eQ))l/2d8=O

320 gez,(8)70

imply &€ UPG; (hence also % € UPG/,). Therefore, & CLT,.

ProoF. Since N(e, %, eq) = N(e, 7, pg) for all , Proposition 3.1 follows
just from Dudley’s theorem on sample continuity of Gaussian processes ([6];
see also the version in [15] in terms of expected values) and from Theorem 2.3.

0O
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As a consequence of Proposition 3.1, if & satisfies Pollard’s entropy condi-
tion

o ~ 1/2
(3.3) sup (log N(e, e de < o,
then &€ UPGy. In particular, this is true if & is the class of indicators of a
Vapnik-Cervonenkis family of sets ((7].

3.2. PROPOSITION. Let F={f);_, with | fill = 0(1/(og k)'/?). Then
F € UPG (hence ¥ € UPG). Therefore ¥ € CLT,.

Proor. Let a;, = (log £)?|| fulle = 0, @ = sup; ., @, @y = SUP; > N ¥y =
0. A classical computation shows that if g, are N(0,1) (not necessarily
independent), then

(34) Esupla,g,l/(log k)? < ca
k

for some c¢ < . Since Gp(f,) = (Varp(f,)'/%g, and (Epf2Y? <
a,,/(log k)'/2, (3.4) gives

(3.5) sup E|Gplls< .
Pe#(8)

Moreover, these observations also imply

ElGpll 5, ppy < 2E sup|Gp( )| + Ep sup IGp(f2) — Gp( )]
k=N k,l<N, f,—f,€ F5, pp)

< 2cay + ON2.
- So, for all N,

(3.6) limsup sup ElGpllss,,p < 2cay — 0.
6-0 PeH(S)

(3.5) and (3.6) imply ¥ UPG. O

Propositions 3.1 and 3.2 show that all the classes of functions considered in
Figure 1 of [8] are uniform Donsker except perhaps (1.4)* (although it is
obvious that if % is universal Donsker, then so is its convex hull, we do not
know if this property holds for uniform Donsker classes). So, there is a wide
variety of classes & for which CLT(P) holds uniformly in P. We may ask
whether there are any uniformly bounded, universal Donsker classes of func-
tions which are not UPG’; (hence, not UPG/). The answer is positive, as the
following example shows. '

3,3. ExaMPLE. Let H be a geparable infinite dimensional Hilbert space
and let H, be its unit ball with center 0 € H. Take S = H;, . equals the
Borel sets of H, and &= H, acting on S by inner product. Then 5 is
universal Donsker since bounded random variables with values in H satisfy
the central limit theorem (e.g., [2], Section 3.7 and [10], Lemma 5.4 and
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Chapter 4). We show that % ¢ UPG/. Let {e;} be an orthonormal basis for H
and for each N € N,

N
QN = N_l Z Bei‘
i=1

Then, for 82N > 2 and for some ¢ > 0 independent of § and N, if x;, - (x,e,),
x € H, we have

N
E”any'(a,eQN) =E sup Y gx;|/NV?
llxll <2 i=1
LN, x2<82N

N 1/2
=(2A \/62N)E( Y g,.z) /NV2 > ¢(2 A V8°N).
i=1

Hence,

liminf sup ElZgll5,eq = 2¢,

that is, & UPG}. (And, since # is uniformly bounded, % is not in UPG;
either.)

So we have uniform Donsker = universal Donsker. The situation is
different for the bounded Donsker property. In fact we have from [23] that

sup sup Ep|vl|s<®oe sup ElGplls<
n Pe(S) Pe#(S)

& supEp|vP|s<  forall P,
n

that is, uniform bounded Donsker < universal bounded Donsker. Note also
that universal bounded Donsker = universal Donsker: take || f,|| = 1/(log k),
k > 3, in Proposition 3.2 to obtain a class that is universal bounded Donsker
but not universal Donsker.

Obviously in Example 3.3 it is enough to take S = {¢;}7_,. In this case it
becomes the example of Proposition 6.3 of Dudley [8] [replacing I, ;, by e; in
Dudley’s example constitutes only a reformulation of the same example].

Proposition 3.2 provides the natural candidates for classes % which are
CLT, and yet do not satisfy the entropy conditions (3.1) and (3.2) (after all, ¢,
is the counterexample space!). It could be argued that this is an extreme type
of classes % and therefore that (3.1) and (3.2) (or even the slightly stronger
condition in [21]) do give all the CLT, classes that will ever be needed. In fact
we can even produce such classes in Hilbert space, which, from many points of
view, is as far from ¢, as it can be. For this we use a result of Mityagin [16] on
metric entropy of ellipsoids together with the following simple lemma.

3.4. LEeMMA. Let H and H, be as in Example 3.3, let S = {x,: k € N} c H
with |lx,ll > 0 and let = H,, acting on S by inner product. Then ¥ UPG/.
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Proor. To see this, let @ = L a,8, with o, =1, a;, 20. Then Z, =
T a}/%g;8,,, (g, iid. N(0,1). We have
(3.7) E|Zglls= Bl al/?g,x,ll < (Zagllxyl®)”” < sup x|
and
ElZylss,e = E sup | ab/?(xy, 2) 8]

Tayxy,, 22 <82, |lzll<2

n
2: ai/2<xk:z>gk
k=1

<E sup

T2 ap(xy, 202 <82

Z alle/2<xka z>gk

k=n+1
1/2

+ 2K

+ 2E sup

llzll<1

< BE( Y g2
k=1

(3.8)

0
1/2
Z ay/ %8y %y,
k=n+1

- 1/2
<&n'/? + 2( Yy ak||xk||2)

k=n+1
1/2 + 2supla,ll.
k>n

Now, (3.7) gives supg e sy EllZgll#<  and (3.8) gives

< én

—0 §—>0 k>n

;in}) sup EllZgll5s,eq) < lim lim (6n1/2 + 2sup||xk||) =0.
- Q n
Hence ¥ € UPG;. O

It would be interesting to know exactly what compact subsets S of H verify
the property that the CLT holds uniformly on all P with supports in S.
Lemma 3.4 gives a class of compact sets for which this is true and shows that
this property may be unrelated to S being a GC set since the sets in the
lemma if we take x, =b,e, with b, » 0 are GC if and only if b, =
o(1/(log k)'/?) (Dudley [6], Proposition 6.7).

3.5. ExampLe. Let S and % be as in Lemma 3.4 with x;, = b,e;, and
b, = (log k)~°/2 for some 8 € (0,1) and k& > 3. Although % € UPG/ by Lemma
3.4, we will show that & verifies

(3.9) sup [ (log N(e, F,eq))" de =,
QeZ(S)"0

that is, & does not verify (3.1). To see this, we let P = X%_; a;8;,,, with

a,, = c/k(log k)**°, and (3.9) will follow for the subset {P,(w)} of F(S ) for

some € Q. The distance ep is defined by the norm |[lz]l 2 =

¢X%_,22/k(log k)'*?. The metric entropy of the unit ball &= H; with
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respect to ep is the same as the metric entropy of the ellipsoid

K= {u eH: ¥ k(logk) " ®u? < c}
k=1

with respect to the Hilbert space norm [as is easily seen by the -change
of variables u, = (ck(log k)'*%)~1/?z,]. By Mityagin [16], Section 2, Theor-
em 3, this entropy is bounded by (/% ¢ 'm(t)dt with m(t) = sup(k:
E2%(log £)°*1/% < ¢}, that is,

~1-25

log N(e, &,ep) =log N(&, K, Il ) 2 e %(loge™)

But the square root of this function is not integrable at zero, that is,

172 4e = o.

(3.10) J; (og N(e, 5 e5))

Now we notice that if P(@) =n"'L"_; 8x,» n € N, is the empirical measure
corresponding to P,

sup{|ed . f.8) — €3(f.8)|:f,8 = F)

oo X \? 2
< 2 sup , 2 —< de,z>
lzll<1 n
E?= Xi - EXl i
<4 i n )H -0 a.s.

by the law of large numbers in H. Therefore, for all w in a set of probability 1,
liminf N(e/2, &, ep (y) = N(&, 7, ep).
n—o

Then, Fatou’s lemma and (3.10) yield

® o . @ 1/2
o = [0 (log N(&, F, ep))*de < lim inf [0 (log N(¢/2, F, ep ) de

<2 sup fw(log N(e, &, eQ))l/2 de,
Qe FH(8) 0

that is, & does not satisfy (3.1).
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