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STOCHASTIC DISCRETE FLOW NETWORKS: DIFFUSION
APPROXIMATIONS AND BOTTLENECKS

By HoNG CHEN! AND Avi MANDELBAUM 2

University of British Columbia and New Jersey Institute of Technology,
and Stanford University and Technion-Israel Institute of Technology

Diffusion approximations for stochastic congested networks, both open
and closed, are described in terms of the networks’ bottlenecks. The
approximations arise as limits of functional central limit theorems. The
limits are driven by reflected Brownian motions on the nonnegative orthant
(for open networks) and on the simplex (for closed ones). The results
provide, in particular, invariance principles for Jackson’s open queueing
networks, Gordon and Newell’s closed networks and some of Spitzer’s finite
particle systems with zero-range interaction.
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1. Introduction. The present paper is concerned with diffusion approxi-
mations for congested discrete-flow networks in a stochastic environment. The
network is represented by a graph and the discrete-flow is the motion of
indistinguishable particles that individually traverse arcs and locally interact
at nodes. One distinguishes between closed networks, in which the number of
circulating particles is constant in time, and open networks, in which the
number fluctuates due to the flow of particles in and out of the system.
Congestion in a closed network increases with the number of circulating
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particles, while congestion in an open network increases with the rate at which
particles arrive. Our main results, stated formally as functional central limit
theorems (FCLT’s), provide diffusion approximations for congested discrete-
flow networks, both open and closed. Our findings quantify the common belief
that bottlenecks, loosely described as the heavily congested nodes, dominate
the performance of the network.

1.1. For an historical account and further references on the diffusion
approximations considered here, readers are referred to Whitt (1974), Lemoine
(1978), Flores (1985) and Harrison (1988). They all discuss diffusion approxi-
mations in the context of queueing networks, which we also do starting at
Section 2. The present work directly extends, streamlines or supports the
studies by Iglehart and Whitt (1970), Johnson (1983), Reiman (1984), Kelly
(1984), Goodman and Massey (1984), Harrison and Williams (1987) and
Harrison, Williams and Chen (1990).

A salient feature of diffusion approximations is that they require no infor-
mation about the model’s stochastic primitives beyond the first and second
moments of their distributions. This consequence of the invariance principle
enables one to approximate non-Markovian nonparametric extensions of the
Markovian exponential models considered, among others, by Jackson (1963)
(who modelled job shop systems in manufacturing), Gordon and Newell (1967)
(probably motivated by transportation systems in engineering), Whittle (1967,
1968) (whose terminology is suggestive of population models in biology),
Spitzer (1970) (Section 2a, inspired by statistical mechanics models in physics)
and Moore (1971) (whose domain of application is large-scale time-sharing
systems in computer science). These references, all of which constitute pio-
neering treatments or seminal contributions in their corresponding areas,
amply demonstrate the scope and potential applicability of the results reported
in this paper. Thus, nodes and particles could have been replaced respectively
by machines and production units, highways and vehicles, colonies and mem-
bers, sites and particles, terminals and computer programs, economies and
commodities, service stations and customers and more.

1.2. The stochastic processes that arise here as diffusion approximations
are closely related to, or are themselves, multidimensional diffusions of a type
known as reflected Brownian motions (RBM’s). Our representation of RBM’s
originates in the work of Skorohod (1961) and is due to Harrison and Reiman
(1981). For closed networks, RBM’s approximate the temporal behaviour of
the number of particles present at each node as a fraction of the total, hence
their state space is the nonnegative unit simplex. For open networks, RBM’s
approximate absolute numbers, hence their state space is the nonnegative
orthant. In both cases the state space is a polyhedron. The RBM evolves in the
relative interior of this polyhedron as a Brownian motion, and from each of the
facets of the polyhedron it is reflected instantaneously in a direction pointing
into its relative interior.
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In our context, RBM’s arise only as diffusion approximations. However,
RBM’s have intrinsic interest both as challenging mathematical objects and as
building blocks for continuous-flow networks. For example, Harrison (1985),
Chapter 2, represents some simple continuous flow models in terms of RBM’s.
Varadhan and Williams (1985) and Williams (1987) address existence and
uniqueness of RBM’s within the framework of Stroock and Varadhan (1979);
the first paper analyzes a two-dimensional general driftless RBM, while the
second allows arbitrary dimension but imposes a certain skew-symmetry con-
dition on the data. Harrison and Reiman (1981a) and Chen and Mandelbaum
(1991b) are concerned with the sample-path construction of RBM’s; the latter
also relates them to continuous-time Leontief-substitution systems in eco-
nomics. Harrison and Williams (1987) and Harrison, Williams and Chen (1990)
analyze the stationary distribution of RBM’s (see Subsection 8.7) and propose
a procedure of actually fitting RBM’s to open and closed networks, respec-
tively. A last example is Reiman and Williams (1988) who focus on the
behaviour of RBM’s on the boundary of their state space.

1.3. The network model will be discussed within a framework that distin-
guishes three aggregation levels of time and state space. At a microscopic
(lowest) level, full disclosure of details is required in order to represent the
flow of individual particles. This is the level at which we set up our model of a
stochastic discrete flow network in Section 2. In contrast, minimum data
suffices at the macroscopic (highest) level, where the network is adequately
approximated by a deterministic fluid model that captures its long-run average
behaviour. Fluid models are described in Section 3, following Chen and
Mandelbaum (1991a), hereafter abbreviated to CMa. Because the microscopic
and macroscopic levels are far apart, it is natural to interpolate a meso-
scopic (intermediate) level between them. To this end, deviations of the
microscopic model from its fluid approximation are quantified by stochastic
diffusion approximations for congested closed networks in Section 4, and for
arbitrary open networks in Section 6. All our diffusion approximations are
driven by RBM’s which, for reasons that will become clear, are conveniently
introduced as early as Section 3. The results stated in Section 4 are proved in
Section 5. In Section 7 we extend the scope of Sections 4 and 6 to cover
networks with several prioritized types of particles circulating in them. We
conclude in Section 8 with some commentary, extensions and directions for
future research.

The complexity of stochastic networks renders any comprehensive treatise
of them somewhat cumbersome. An attempt has been made, therefore, to
facilitate both the exposition and the access to main ideas (perhaps at the cost
of not pursuing the most efficient presentation.) We hope to have facilitated
the exposition by basing most arguments on Skorohod’s (1956) representation
theorem, thus reducing proofs of weak convergence for stochastic processes to
the analysis of individual sample paths, as in Johnson (1983). In regard to
main ideas, they are exposited in Sections 1-4 and are accessible without the
prerequisite to delve into the proofs given later.
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1.4. Formally described, diffusion approximations arise from a rescaling
procedure that accelerates the time and aggregates the states of the micro-
scopic model. The procedure amounts to a FCLT (Theorems 4.1, 6.1, 7.1),
which accounts for the stochastic Gaussian nature of its outcome. A different
rescaling procedure, that amounts to a functional strong law of large numbers
(FSLLN), leads in CMa to the deterministic fluid approximations described in
Subsections 3.1-3.2.

Speaking less formally, one uses microscopic, diffusion or fluid scales in
order to highlight the dominating phenomena at each of the three levels of
aggregation. This hierarchy of levels at which mathematical modelling is
exercised has been fundamental, of course, across scientific disciplines [cf.
Woods (1975)]. It has also contributed to the understanding and the design of
managerial decision support systems. For example, a widely used hierarchy
due to Anthony (1965) suggests that models at the microscopic, mesoscopic
and macroscopic levels ought to support decision making over the operational
short run, the tactical medium run and the strategic long run, respectively.

1.5. Let us describe an example which substantiates the discussion in
Subsections 1.3-1.4 in the context of closed networks. [The example is a
version of what Spitzer (1970) calls an interacting particle system with zero-
range interaction, but we impose no assumptions of exponentiality.] Consider
n identical particles circulating among J nodes of a graph. The nodes are
indexed by j = 1,...,J, and each is equipped with a clock. Clock j at node j
freezes when the node is empty and it rings at i.i.d. intervals with unit mean
when one or more particles occupy the node. Suppose that the initial configu-
ration of the n particles is drawn from a uniform distribution over all possible
configurations. Independently thereafter, at each ring of clock j, a particle
leaves node j and is placed immediately at node & with probability p;,. The
description thus far has been at the microscopic level. To illustrate the
macroscopic and diffusion levels, let us assume for simplicity that the matrix
P =[p;,] is irreducible doubly stochastic. We shall single out the J-dimen-
sional stochastic process @" = {@"(¢), ¢ > 0} whose jth coordinate at time ¢,
QJ'(2), represents the number of particles present at node j at time ¢.

The fluid approximation to the example, formally introduced in Section 3, is
described in terms of J buffers. The buffers are connected by pipes to form a
network within which fluid circulates. The transition of fluid between buffers
is assumed to be instantaneous. There is a total of one unit of fluid and the
initial configuration of fluid in the buffers is uniformly distributed on the
J-dimensional unit simplex. Deterministically thereafter, each buffer releases
fluid at a constant unit rate and a fraction p;, of the fluid released from buffer
J flows into the pipe leading directly to buffer 2. Such dynamics turn out to
maintain a constant fluid level at all the buffers at all times. This constant
fluid configuration is the almost sure limit of @"(nt)/n as n — «. Generally,
one arrives at the fluid approximation by increasing the number of particles
to infinity, while simultaneously accelerating time and aggregating space both
by a factor of n (See the “bar’ representation in Subsection 4.7.)
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The diffusion approximation, described in Section 4, is obtained via rescal-
ing time by a factor of n? and space by a factor of n (see the “hat”
representation in Subsection 4.7.) In particular, when the J clocks are inde-
pendent and the i.i.d. times between their successive rings have unit variance,
as n —  the process @"(n%t)/n converges weakly to an RBM supported on
the J-dimensional unit simplex. This RBM is stationary with initial state that
is uniformly distributed on the simplex. It evolves inside the simplex like some
J-dimensional Brownian motion. Upon reaching the facet of the simplex where
the jth coordinate vanishes, j =1,...,J, the RBM is reflected instanta-
neously towards the interior of the simplex with a direction of reflection that
equals the jth row of the matrix I — P.

1.6. We now group, for convenience, the notations and conventions used
throughout the paper.

VECTORS AND MATRICES. Vectors are understood to be column vectors. The
transpose of a vector or a matrix is obtained by adding to it a prime. The
J-dimensional Euclidean space is denoted by R?, its nonnegative orthant by
RY and the unit vectors in RY by e/, j=1,...,J. When the letter e
represents a vector, it is the vector of ones.

Let x = (x,,...,%;Y € RY and a c({1,...,J}. Then the scalar |a| denotes
the cardinality of a and the vector x, € R'*! is the restriction of x to its
coordinates with indices in a. Similarly, the matrix P,; is the submatrix of a
matrix P, obtained by choosing the elements with row-indices in a and
column-indices in 8; P, will be abbreviated to P,. The vector |x| € R7 stands
for |x| = (lx4l,..., lx 1), while ||x|| = maxlsjleij. Vector (in)equalities are to
be interpreted componentwise. In particular, x > y means that each coordi-
nate of x is strictly greater than the corresponding y coordinate.

The spectral radius of a square matrix A is denoted by o(A). For a vector
w= (..., ), the matrices diag(n) and diag(y~') are the J X J diagonal
matrices with diagonal elements (u,,...,u;) and (1/uq,...,1/u,), respec-
tively.

ScaLar FUNCTIONS. The positive part of a scalar r is denoted by r*=
max{0, r} and the integer part, namely the largest integer not exceeding r, by
| 7 ]. The indicator function of a set S is the function 1[S] that equals 1 when
S prevails and 0 otherwise. The delta function §;, stands for 5, = 1 when
J =k and §;, = 0 otherwise. A real-valued nondecreasing function y(¢) has a
point of increase (or simply increases) at ¢ > 0 if y(¢ + &) > y(¢-) for all £ > 0,
with the convention y(0-) = y(0).

VECTOR FUNCTIONS. An operation of a scalar function on a vector is to be
interpreted coordinatewise. A vector-valued function is nondecreasing (nonin-
creasing) when all its components are nondecreasing (nonincreasing). The
composition {x(y(t)), t > 0} of x: [0,0) > RY with y: [0,0) > RY is the
function from [0,x) to RY whose jth coordinate is the real-valued function
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{x;(y,(), t=0}, j=1,...,J. In particular, the jth coordinate of {x(ut),
t>0}, p=C(uy,...,n,) €RY{ is {x;(u;t), t > O}

FuNcTION SPACES. Denote by DY the space of J-dimensional RCLL (right-
continuous with left limits) functions, namely the R7-valued functions on
[0, ) that are right-continuous on [0, ) with finite left limits on (0, »). We
distinguish in DY the following subsets: D = {x € D’: x(0) > 0}; DI = {x
DJ: e'x(t) > 0 for all ¢ > 0}; C’,Cy,CJ stand for the subset of continuous
functions in the respective D’-sets; BY, By, BY consist of the corresponding
DZ-functions which have bounded variation over finite intervals (locally of
bounded variation). Finally, D’[0,T) denotes the restrictions to [0,T) of
functions in D?; C7[0, T') and BY[0, T) are to be interpreted similarly.

For any x € DY and ¢ > s > 0, the uniform norm of x on the interval [s, ¢]
is the (necessarily finite) quantity

lxligs,e; = sup [lx(w)l,

s<u<t

with [|x[lo,;; abbreviated to [lx/l;.

CONVERGENCE. A sequence of functions in DY converges u.o.c. if it con-
verges uniformly on compact subsets of the semiclosed interval [0, »). The
sequence converges u.o.c. in ¢ > 0 if the convergence is uniform on compact
subsets of the open interval (0, «).

Convergence in probability is denoted by —, . Convergence in distribution
and weak convergence are used interchangeably and both are denoted by — .
Let {X,} be a sequence of stochastic processes with sample paths in D”.
Billingsley (1968) is the standard reference for results on the weak conver-
gence of {X,}, when J = 1 and time is restricted to [0, 1]. Extensions to J > 1
and to the time set [0, ©) have also become standard [see, e.g., Whitt (1980) or
Chapter 3 in Ethier and Kurtz (1986)]. We further use weak convergence on
¢ > 0 to denote weak convergence in D7(0,), (¢ = 0 excluded). Whitt (1980)
provides the modifications required to account for the exclusion of the origin
[Resnick (1987) is an alternative textbook source].

A final comment is that, in this paper, weak convergence and convergence in
probability are exclusively in DY. However, all the stochastic processes that
arise as weak limits have continuous sample paths, at least on (0, ). Conse-
quently, u.o.c. convergence of RCLL functions suffices for our purposes and
there is no need to either introduce, discuss or use convergence with respect to
any of Skorohod’s topologies [see, e.g., Pollard (1984) who considers [0, «)].
Similarly, all the limits in probability that arise here are continuous on [0, ).
In this case, X, —, X with X continuous is equivalent to || X,, — X||; -, 0 for
all t > 0.

2. The network model. From now on we find it convenient to switch to
the terminology of queueing networks and talk in terms of service stations and
customers rather than nodes and particles, respectively. (This is, of course,



DIFFUSION APPROXIMATIONS 1469

only one out of many options, as examplified by the wealth of applications
outlined in Subsection 1.1.) Our network, hereafter, consists of J intercon-
nected service stations indexed by j = 1,...,J. Each station j constitutes a
server, called server j, who is dedicated to serve customers present at station j
on a first-come—first-served basis. Customers are indistinguishable and they
arrive at a station either exogenously or from other stations. Upon completion
of service at a station, a customer either leaves the network or transfers to
another station in anticipation of additional service.

2.1. We take as primitive a probability space (Q, F, P) on which the
following random elements are defined: For j = 1,...,dJ, @,;(0) is a nonnega-
tive integer-valued random variable, u; = {u (n), n > 1} a sequence of iid.
nonnegative random variables with un1t mean and variance a?, v; = {v,(n),
n > 1} a sequence of ii.d. nonnegative random variables with unlt mean
and variance b2 and r/ ={r/(n), n>1} a sequence of ii.d. random vec-
tors with d1str1but10n supported on the set {0, e, e’} and spec1ﬁed by
Pr(ri(n) = e*} = pj, k = ,J, and Pr{ri(n) = 0} =1-Xy_ 1ka The
random elements Q(0) = (QI(O) ,Q,00), u;, v; and ri, j=1,...,d, are
assumed to be mutually independent

The jth component @;(0) of @(0) models the initial queue length at station
J. The exogenous interarrival times to station j are constructed from the
sequence u; as follows: a nonnegative vector A =(Q9,...,A%) is assumed
given and the time between the (n — 1)th and nth exogenous arrival to station
J is taken to be u (n)/ )«(J’ Thus, the exogenous interarrival times to station j
are iid. with mean 1/A% and coefficient of variation (standard deviation
divided by mean) that equals a;. (When A‘J’ = 0, the convention is that there
are no exogenous arrivals to station j.) The service times are constructed
similarly from the v;’s and a given positive vector u = (uy,...,n ). Specifi-
cally, the duration of the nth service performed by server j is v;(n)/u ;. Thus,
the service durations at station j are i.i.d. with mean 1/u; and coefficient of
variation b;. Finally, the random sequence r/ models the routing mechanism
enforced at station j as follows: the customer who completes the nth service
at station j joins immediately station % if r/(n) = e*, k = 1,..., J, and leaves
the network if r/(n) =0

2.2. Forj=1,...,d, introduce
22A U(n)=u;(1)+ - +u;(n), n=z=1, U;(0) =0
A%(t) = max{n > 0: Uj(n) <t};  A%={A%¢),t=>0};
22B V(n)=vi(1)+ - +vi(n), n=1; Vy(0)=0;
S)(t) =max{n > 0:V(n) <t}; 8P ={S)(¢),t=>0};

22.C R/(n)=ri(1)+ - +ri(n), n=1; R/={R/(n),n=1}.
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Then let
22D A°= (A .,A?,)’; S°=(S{’,...,S§)’; R=[RY...,RY].

(A° and S° are J-dimensional vector-valued processes, the coordinates of
which are independent renewal processes; R is a J X J-dimensional matrix-
valued sequence, the columns of which are independent multinomial se-
quences.) Now recall the convention of composition between vector-valued
functions, introduced in Subsection 1.6, and define the exogenous arrival
process by A = {A(t) = A°(A\%), t > 0} and the service process by S = {S(¢) =

S%ut), t = 0}. The jth coordinate A i(#) of A at time ¢ represents the total
number of exogenous arrivals to station j during the time interval (0, ¢].
Similarly, S;(z) models the total number of services performed by server ;j
during its ﬁrst v units of busy time. The (j, k)th coordinate Rk(n) of the nth
element in the routing sequence R indicates the number of customers among
the first n served at station k, which are routed directly to station j.

2.3. An application of the strong law of large numbers to 4;, S; and R/
reveals, respectively, that )«0 represents the long-run exogenous a.rrlva.l rate of
customers to station j, u; 1s the service rate of server j and pj, the long-run
fraction of customers that switch directly to station % after being served by
server j. In accordance with these interpretations, A° will be called the
exogenous arrival-rate vector, u the service-rate vector and the matrix P =
[p;.] the switching matrix. The triplet (A°, P, u) determines long-run average
performance. Indeed, the inflow capacity vector of the network is the maxi-
mum solution A = (A,,...,A ;) to the traffic equations

J
A =25+ X (A A pg) Py,
E=1

which reads in vector form
(2.1) A=A+ P(XAp).

The traffic equations (2.1) first appeared in Massey (1981) in the context of
open networks. A maximum solution A exists by Theorem 3.1 in CMa, where
A; is interpreted as a least upper bound to the long-run actual arrival rate

J
that can be realized at station j. Define the traffic intensity of station j to be

p_]=Aj/"LJ7 j=1’--',J7

and call station j a bottleneck station if p; > 1, strict bottleneck if p; > 1,
nonbottleneck if p; < 1 and a balanced station if p; = 1. Hereafter,

2.3.A The set of nonbottleneck, balanced and strict bottleneck stations will be
denoted by a, B and v, respectively.

Bottlenecks, traffic intensities and other related concepts are discussed in
CMa, especially Section 4 which is devoted to an exposition of network
properties that are solely determined by the triplet (A°, P, ). There are several
important such properties, and when discussing them it will be convenient to
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identify the network with its corresponding triplet. In particular, a network
(A P, u) is called open if the spectral radius o(P) of the switching matrix P
is strictly less than unity. A network is closed if P is stochastic and A° = 0
and irreducible closed if, furthermore, P is an irreducible matrix. The popula-
tion of customers in an open network fluctuates in time and each customer
eventually leaves after having visited a finite number of stations on its route.
(In fact, the average number of stations visited by a customer is finite.) In
contrast, the population that circulates within a closed network is unchanging
and each customer eventually visits all stations when the network is irre-
ducible. Another distinction between open and closed networks is that in a
closed network A < u must prevail. Consequently, there are no strict bottle-
necks in a closed network and all the bottlenecks are balanced.

2.4. We are about to construct the busy time process B = {B(¢), ¢ > 0},
which is a J-dimensional stochastic process whose jth coordinate at time ¢,
B (#), measures the cumulative amount of time that server j has been busy
durlng the time interval (0, £]. In terms of B, the total number of arrivals to
station j up to time ¢ (either exogenously or from the other stations) equals
A®) + LJ_RHS,[B,(®D, t>0. Consequently, the queue-length process
Q={Q® = (Ql(t) ..,Q,@®)), t = 0}, whose jth coordinate @;(¢) represents
the number of customers queued in station j at time ¢, must be

J
(22) Q1) = QO + A0 + ¥ RHSIBOI) - S[B,(0)].  t20.
=1

To completely specify the dynamics of the network, we assume that servers
work at full rate whenever their queues are not empty. [In the queueing
literature this is referred to as a work-conserving or non-idling service disci-
pline; see, e.g., Wolff (1970).] The non-idling constraint on server j takes the
form

(2.3) B,(¢) = fotl[Qj(u) >0 du, t=0.

The existence of the queue-length process @ and the busy-time process B is
established in Section 7 of CMa, where it is verified that there exists a unique
nonnegative pair (@, B) that satisfies simultaneously (2.2) and (2.3) for all
j=1,...,Jand t = 0.

It turns out that the fluid and diffusion approximations of the queue length
process are supported on the set of bottleneck stations. This is demonstrated
for fluids in CMa, for diffusions associated with closed models in (4.2) and with
open models in (6.2). The phenomenon, first established for acyclic networks in
Theorem 1c of Iglehart and Whitt (1970), quantifies the negligible effect of
nonbottlenecks, relative to bottlenecks, on queue buildups and it might pro-
vide a potentially useful reduction in the complexity of the model. Our results
for open networks supplement Reiman (1984) and Johnson (1983). Both
employ the representation (2.2)—-(2.3) due to Harrison.
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2.5. Important performance measures, in addition to queue lengths and
busy times, are workloads and sojourn times which will now be defined. The
workload process W = (W,,...,W,) is the J-dimensional stochastic process
whose jth coordinate at time ¢, W;(¢), models the amount of work, measured
in units of service time, that awaits server j at his station at time ¢. Recalling
that the duration of the nth service performed by server j is vi(n)/u;, one
deduces from (2.2) and 2.2.B that

(2.4) Wi(t) = V;[Q;(¢) + S;(B;(t))]/n; — By(t), ¢=0,

for j=1,...,J. The representation (2.4) gives rise to a notable relation
between the approximations (both fluid and diffusion) of the queue-length and
the workload processes: as demonstrated by Theorem 7.1 in CMa for fluids and
by (4.5) and (6.3) for diffusions, one process is a linear function of the other.
We shall further comment on this phenomenon in the next subsection.

2.6. Let h=(hy,...,h;) have nonnegative integer-valued coordinates
and fix a station j. Suppose the switching matrix P is such that it is possible
for a customer, upon entering j and before returning to it, to follow a route of
length e’k in which station % is visited h, times, 2 = 1,...,J. Then h will be
called a visit vector that is accessible from j, or j-accessible for short; a
customer who follows such a route is said to follow h upon entering j. (Note
“that A ;=1 for j-accessible vectors h because the route starts at j and it
terminates before returning to j.) The time it takes a specific customer to
follow A is called his sojourn time along h. For a j-accessible h, let D;,
denote the stochastic process whose state at time ¢, D; ,(t), is the sojourn time
along h of the first customer who follows % upon entering j after time ¢. We
now proceed with the formal definition of D, ,.

A route that is associated with a j-accessible visit vector h = (hy,..., h Y
constitutes a sequence of indices ig,i;,...,1,, such that i, =j, i, #j for
n=1,..,eh—-1p;, , >0for n=1,...,e'h, and the cardinality of the
set {n: i, =k, n=0,1,...,e'h — 1) equals h,, k=1,...,J. Consider the
first customer who follows A upon entering j after time ¢. Denote by i nk, i)
the time this customer starts the ith visit to station 2 while following the
route associated with %. A consequence of the first-come—first-served service
discipline is that for a j-accessible 2 we have

J hy
(2.5) Diw(t)y =X X Wi n1:®)]
k=1i=1
where the W,’s are the workloads defined in (2.4). For closed networks, we
shall analyze the sojourn time process D = {D, ,}, whose components consti-
tute the set of D; ,, where h is j-accessible, j = 1,...,J. The sojourn time
process for open networks is modified in two ways. First, the A’s are restricted
to satisfy h, = 0 for i € y (h, = 0 for short), which means that their associ-
ated routes do not encounter strict bottlenecks. Second, one allows 0-accessible
h’s, where “station” 0 stands for the world external to the network and
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arrivals to station 0 are arrivals to the network. (The obvious interpretation of
the condition p, ; > 0, required when a route is associated with a 0-accessible
h, is that A% > 0.)

The diffusion limits of sojourn times are formulated in (6.13) for open
networks [overlapping Reiman (1982, 1984), who attributes a key observation
to Foschini] and in (4.9) for closed networks [as anticipated in Section 3 of
Kelly (1984)]. From their derivation (see Subsection 5.6), the following remark-
able facts emerge. Consider, for example, a route in a closed network which
does not return to the station it started from. Such a route is associated with
some j-accessible A with h; = 1. It turns out that a diffusion approximation
for the time to traverse this route is provided by the diffusion limit of D, ,
which, in turn, equals the scalar product of 2 with the diffusion limit of the
workload process. It is as if, in the diffusion scale, queues and workloads seen
by a customer upon arriving at j freeze while the customer follows 4. With
nonbottleneck queues being empty in the diffusion limit, it follows that there
is no delay while passing through nonbottlenecks [see (4.9)]. Also the order in
which stations are visited along a route does not affect the diffusion approxi-
mation of the route’s travel time. (For open networks this prevails as long as
the route does not encounter strict bottlenecks, but it fails otherwise.) Fur-
thermore, the diffusion limit of D, ,, h, = 0, is independent of j in the sense
that the limits of D; , and D, , coincide when A is both j-accessible and
k-accessible, j # k. Finally, the dependence between the diffusion limits of
sojourn times and queue lengths at stations is also linear, which is a manifes-
tation of Little’s law in the present setup [see Glynn and Whitt (1986)].

A comment on our use of the term sojourn time is in order. In the queueing
literature, the sojourn time of a customer in an open network stands for the
elapsed time between its arrival and eventual departure epochs. Natural
standard analogs for closed networks are first passage times between or return
times to stations. As observed by Reiman (1984), however, these standard
concepts lead to stochastic processes whose limiting behaviour differs from
that encountered here. For example, consider the first customer that arrives
after time ¢ to station j of an irreducible closed network. Define D; to be the
stochastic process whose state at ¢ is the return-time to j of that customer
(namely, the elapsed time between instants of successive arrivals to j). Then
the standard rescaling of D; (as in Section 4.2) typically fails to converge
weakly to a continuous-path process, because customers who arrive close in
time may have rather different routes, hence substantially different return
times. In contrast, rescaled sojourn times along a specific route do converge to
a continuous limit. (Generally, our results still apply to standard sojourn times
and their analogs if and only if the entries of the switching matrix P are 0 or
1’s; when P is irreducible, such a network must consist of stations in series if
it is open and stations in a cycle if closed.)

2.7. A major intermediate step in the derivation of our results is the
centering of the network’s components around what might be called their
asymptotic mean functions. Centering highlights the mathematical link among
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the three levels of aggregation discussed in Subsection 1.3. This link consti-
tutes the oblique reflection mapping, to be introduced in Subsection 3.2 and a
representation alternative to (2.2)-(2.3), which will now be presented. Define

(2.6) 0=A+Pu—pn
and let

J
(2.7) &) = [A;(2) — %] + kE {RE[S4(Bu(1))] = Pa;Sk(Bi(2)))

-1
J
+ kglpkj[sk(Bk(t)) — wyBo(8)] = [S;(B;(#)) - w;B;(2)]

Xj(t) = Qj(O) + 6;¢ + fj(t),
Yj(t) = #j[t - Bj(t)] >

for j=1,...,J and ¢ > 0. Then the pair (@, B) uniquely satisfies (2.2) and
(2.3) if and only if the pair (@, Y) uniquely satisfies the three relations

27TA Q=X+[I-PIY=>0,
2.7.B Y is nondecreasing with Y(0) = 0 and
2.7.C Y, increases only at times ¢ when @;(t) =0, j=1,...,d.

The representation 2.7.A-2.7.C plays a key role in our analysis. Its importance
stems from the fact that both the fluid models [see the “bar” representation
4.7.A] and the diffusion models [see the ‘“hat” representation 4.7.B] are its
direct descendants.

3. Fluid models, reflection mappings and RBM’s. As already men-
tioned in Subsection 2.7, the oblique reflection mapping mathematically links
the microscopic specification of the network in Section 2 with its macroscopic
and diffusion approximations. The mapping was introduced for open models in
Harrison and Reiman (1981a) and Reiman (1984). Chen and Mandelbaum
(1991b) (CMb) extend its scope to cover closed models. Readers are referred to
these works if they need proofs of the facts that will be outlined later. At the
microscopic level, the mapping is implicit in 2.7.A-2.7.C. We shall now ani-
mate it by a linear fluid model which is, in fact, the macroscopic approximation
alluded to before. Then the mapping will be used to construct diffusion
approximations, namely open and closed reflected Brownian motions (RBM’s).
Open RBM'’s, which approximate open networks, are the subject of Harrison
and Reiman (1981a) and Harrison and Williams (1987). Closed RBM’s approxi-
mate closed networks and are treated in Harrison, Williams and Chen (1990)
and CMb.

3.1. Consider a collection of J buffers indexed by j = 1, ..., J. The buffers
have infinite storage capacity and they are interconnected by frictionless pipes
to form a network within which a homogeneous fluid is circulating. Initially at
time ¢ = 0, the fluid level at buffer j is Z;(0) >0, j=1,...,J. Then fluid

-
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flows to each buffer either exogenously from the outside world or internally
from other buffers. Exogenous inflow to buffer j is at a constant rate /\‘} >0
and the release capacity of buffer j is given by u; > 0. We postulate that fluid
is released from all the buffers at the maximum rate possible. Thus, the
release rate at buffer j is u; when the buffer is not empty and it coincides with
the smaller of u; and the actual (exogenous plus internal) inflow rate when
buffer j is empty. (Note that this description is not complete in that the
internal, hence the actual, inflow rates are not known in advance. The
mathematical formulation that will be given momentarily circumvents this
difficulty). Finally, a fraction p;, > 0 of the total outflow from buffer j is
routed directly to buffer 2, k =1,...,J, and a fraction 1 — L K_ 1P leaves
the network. To summarize, a nonnegative J/-dimensional vector Z(0) and a
triplet (A%, P, 1), as in Subsection 2.3, constitute all the data required to
specify the fluid network. It is natural to call such a network opern when
o(P) < 1 and irreducible closed when both P is irreducible stochastic and
A0 =0.

3.2. If buffer j is never empty during the time period [0, ¢], then its
cumulative outflow up to time ¢ amounts to ;. If the buffer does get empty,
then some of its potential outflow is lost. Define Y;(#) to be the cumulative
outflow from buffer j that may get lost due to its emptiness during [0, ¢]. Then
the actual cumulative outflow from j up to ¢ equals u ;¢ — Y;(¢) and the fluid
level in buffer j = 1,...,J at time ¢ > 0 must be

J
(3.1) Z;(t) =Z;(0) + A% + kz (it = Yi()] P4 — [,,th - Yj(t)].
=1

In vector notation, (8.1) reads
3.2.A Z(t) =X(t) + [I - PY (), t>0.
Here, the fluid level process Z = {Z(t), t > 0} is J-dimensional with coordi-

nates Z;(¢) as in (3.1), the loss process Y = {Y(#), ¢t > 0} has coordinates Y(¢)
and the linear netflow process X = {X(¢), t > 0} is defined to be

(3.2) X(t) =Z(0) + (A° + P'u)t —ut =Z(0) + 6t, t=>0,

with 6 =A% + [P’ — Ilp as in (2.6). [The terminology ‘“netflow” has been
chosen because X is the difference between the vector of cumulative potential
inflows (A° + P'u)t and potential outflows w#; ‘“linear” signifies the linear
dependence of the netflow on time and distinguishes it from the more general
X’s that will arise later.] The dynamics of the network are mathematically
expressed by the following three constraints:

3.2.B Z is nonnegative,
3.2.C Y is nondecreasing with Y(0) = 0 and
3.2.D Y, increases only at time ¢ > 0 when Z,(t) =0, j=1,...,d.

The roles of 3.2.B and 3.2.C are obvious. The constraint 3.2.D forces potential
outflow to be lost only due to emptiness of buffers. It follows from the results
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in CMb that this is, in fact, equivalent to the release mechanism postulated
previously, namely maximizing the outflow rates at all buffers at all times
without exceeding w. One can further show that there exists a unique pair
(Y, Z) satisfying 3.2.A-3.2.D, thus providing a model representation of the
linear fluid network. Let us remark for future reference that (Y, Z) depends
on the data of the network only through X and P.

It turns out (Theorem 5.2 in CMa; see also Subsection 4.6) that a linear
fluid network reaches equilibrium in the following sense. There exists a finite
time 7 after which the nonbottlenecks are always empty; actual inflow rates to
the buffers then coincide with the inflow capacities that arise from the traffic
equations (2.1), with (A%, P, u) being the fluid network’s parameters; (up to
time 7, flow rates change in a piecewise linear fashion). In Theorem 7.1 of CMa
(which is a FSLLN), the linear fluid network emerges as the almost-sure limit
of a rescaling procedure that successively accelerates the time and aggregates
the states of the discrete flow network. This justifies its use as a fluid
approximation. (The rescaling is formalized by the ‘“bar” convention intro-
duced in Subsection 4.7.)

3.3. Consider the mapping by means of which (Y, Z) is obtained from X
through 3.2.A-3.2.D (P is assumed fixed). The linearity of the netflow plays
no role here and the mapping is indeed extendable to nonlinear X’s. For some
such X'’s the mapping can be still animated by a nonlinear fluid network (as
in the introduction to CMa). For other X’s, however, mainly its mathematical
significance is retained. When so extended, the mapping will be referred to as
the oblique reflection mapping. We now proceed with its formal definition and
then outline some of its properties that will be used later on.

Let P be a J X J nonnegative matrix. A regulator of an x € D is an
element y € DJ such that

33A z=x+[I-Ply=>0,
3.3.B y is nondecreasing with y(0) = 0 and
3.3.C y; increases only at time ¢ > 0 when 2;(¢) =0, j =1,...,d.

The oblique reflection mapping ¥, is defined on x € Dy for which a regulator
y exists and is unique. We summarize such state of affairs by writing ¥p(x) = y
and saying either that x is in the domain of ¥, or that ¥, is well-defined at
x. Now recall the u.o.c. conventions in Subsection 1.6, and let x belong to the
domain of ¥p. Then ¥, is continuous at x if for any sequence {x,} in its
domain that converges u.o.c. to x, the sequence {¥,(x,)} converges u.o.c. to
Vp(x). Harrison and Reiman (1981a) showed that

3.3.D If o(P) < 1, then ¥} is well-defined and continuous on Dy,
which is useful for open networks. An analog for closed models reads
3.3.E If P is irreducible stochastic, then ¥}, is well-defined on BY UC?Y and is
continuous on CY .
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[3.8.E is Theorem 2.6 in CMb.]

3.3.F Suppose that 0(P) < 1 and x € DY, or that P is irreducible stochastic
and x € B UCY. Then y = ¥,(x) if and only if for all j=1,...,J
and ¢t > 0,

y;i(t) = min{y}(t): yeD),x+[I-Ply =0,
y' is nondecreasing with y'(0) = 0}.

Alternatively, y is the least among all the elements in DY which satisfy
3.3.A-3.3.B.

[3.3.F combines the Appendix in Reiman (1984), Proposition 2.4 and Theorem
2.5 in CMb.]

Properties 3.3.A-3.3.C and facts 3.3.E-3.3.F can all be restated for ele-
ments in DY[0,T), T > 0 arbitrary. Doing so will be a necessity when unique-
ness of a regulator can be guaranteed only up to some T < . [An example is
(5.18) where P is irreducible stochastic and x € By is guaranteed to satisfy
e'x(t) > 0 only in ¢ € [0, T), for some T > 0.] We shall then write ¥p(x) =y
on [0, T') and say that ¥, is well-defined at x up to T'.

3.3.G Let P be irreducible stochastic. Consider a sequence {x,} that converges
u.o.c. to x € C . Suppose that y, = ¥5(x,) on [0, T,), where T, —» « as
n — «. Then {y,} converges u.o.c. to y = ¥p(x).

[3.3.G is Lemma 2.8 in CMb.]

3.4. Let X ={X(¢), t > 0} be a J-dimensional Brownian motion starting
at X(0) > 0. We shall write X = BM(5, A) to indicate that X has a drift vector
8 and covariance matrix A. When o(P) < 1, one relies on 3.3.D to define the
sample paths of Z = {Z(¢), ¢t > 0}, the open RBM, by

34.A Z=X+[I-P'lY, whereY = V,(X).

When P is irreducible stochastic, one defines the closed RBM also as Z in
3.4.A. Here, however, the definition is based on 3.3.E supplemented by the
requirement that

34.B e'X(0)=1, €e6=0 and e'A=0.

The conditions in 3.4.B are necessary and sufficient for X to have essentially
all sample paths in C;. We shall write Z = RBM(§, A, P) to denote an RBM,
either open or closed, which arises from a Brownian motion X = BM(8, A) via
W¥p. The main distinction between open and closed RBM’s is their state space:
For an open RBM it is the J-dimensional nonnegative orthant when A is of
rank J. For a closed RBM, A is of rank J — 1 at the most and the state space
is the unit simplex in R” when the rank is J — 1.
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3.5. A geometric interpretation of an RBM is the following: Z behaves like
X in the relative interior of its state space; when it hits the relative interior of
the boundary face {z; = 0}, Z is reflected instantaneously back into its state
space; the direction of reflection is the jth column of I — P’ and reflection is
accomplished by the minimal increase in the jth coordinate Y; of Y that
maintains the nonnegativity of Z intact. Reflection from an intersection of
faces is carried out along a nonnegatively weighted sum of directions by
increasing several coordinates of Y simultaneously. For example, the jth and
kth columns of I — P’ are used upon hitting the relative interior of the face
{z; =0} N {z; = 0}. The above geometric interpretation is rather loose. A
tighter description is provided in Section 2 of Mandelbaum (1990).

An RBM has continuous sample paths, it is adapted to the Brownian motion
X which generates it and is a Markov process with stationary transition
probabilities. These facts are, respectively, a consequence of the following
properties of the oblique reflection mapping: Assume that either o(P) < 1 and
x € Cg, or that P is irreducible stochastic and x € C{; let (x,y, z) satisfy
3.3.A-3.3.C. Then:

3.5.A Both y and z are continuous functions of x.

3.5.B For every ¢ > 0, the restrictions of ¥ and z to [0, ¢] depend only on the
restriction of x to [0, ¢].

3.5.C Let T >0. Define x(¢) = 2(T) + x(T + ¢) — x(T), y@&) =y(T +¢t) —
¥(T) and 2(t) =2(T +t) for ¢>0. Then y=V¥,(¥) and Z=%+
[I- Ply.

4. Diffusion approximations for irreducible closed networks. We
are now ready to formulate the limit theorem for irreducible closed queueing
networks. Closed RBM’s emerge from the theorem as diffusion approximations
when congestion is heavy. Congestion in a closed network increases with the
number of customers circulating in it. Thus, we analyze a sequence of closed
networks indexed by their population size n and obtain a closed RBM in the
limit as n increases indefinitely. While the number of stations is held fixed,
other network specifications, such as p and P, can vary with n. To simplify
the presentation, however, only variations in u will be analyzed here and
extensions are relegated to Section 8.

4.1. The sequence of irreducible closed networks is indexed by n = 1,... .
The nth network has an initial queue length vector @"(0) and a triplet
(0, P, u*) so that e'Q"(0) = n, the matrix P is irreducible stochastic and u" is
a positive vector. As in Subsection 2.2, the service process S” of the nth
network is constructed from S° by S™(¢) = S°%u"¢), the routing sequence is
R and, of course, there are no exogenous arrivals. Finally, the queue length
process Q" and the busy-time process B"™ are uniquely determined by
(2.2)-(2.3), @™*(0), S™ and R. To summarize, in the nth network the popula-
tion size equals n, the mean service time at station j is 1/u%, the standard
deviation of the service time distribution equals b;/u7 and its coefficient of
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variation is still ;. The convention of appending a superscript n to perfor-
mance measures associated with the nth network will be maintained through-
out.

4.2. In our theorem we assume that for some vector c,u > 0 and a
random vector Q(0) > 0, all of which are J-dimensional, the following limits
exist as n — «:

4.2.A n(u® —u) - ¢, hence u* - u;

1
42B ~Q"(0) ~q €(0).

In the formulation of the theorem we use a J-dimensional driftless Brownian
motion

4.2.C £ =BM(0,A)
which starts at £(0) = 0. The covariance matrix A = [A ;»]1s given by

J
=1

where A = (Ay,...,A;) is the inflow capacity vector of the closed network
(0, P, n), as defined via (2.1). The limit theorem is a functional central limit
theorem jointly for the sequences

1 R 1
QU(t) = Q(n*),  Wr(t) = —W"(n),

. 1 . 1
D"(t) = ;D”(n2t), B"(t) = ;[B”(nzt) — p"n?t].

Here p” is the traffic intensity vector of the network (0, P, u*) as defined in
Subsection 2.3; @™ is the queue length and B”" the busy-time processes
associated with the nth network, W” is its workload process given in Subsec-
tion 2.5 and D" ={D?,} is its sojourn time process from Subsection 2.6.
(Recall that D" is indexed by all j-accessible &’s, j = 1,...,dJ, along which no
returns to j are allowed, or formally, ~; = 1.) The time scale of the nth
network is accelerated by a factor of n? while states are aggregated by a factor
of n. In particular, Q}‘ is an accelerated version of the queue length at station
J as a fraction of the total n.

THEOREM 4.1. Consider the sequence of closed networks in Subsection 4.1.
Assume 4.2.A-4.2.B hold and let ¢ be the Brownian motion 4.2.C. Then the
weak convergence

(4.1) (@7, W, B, ") >, (,W,B,D) int>o0,



1480 H. CHEN AND A. MANDELBAUM

holds as n — ». The limit is described for t > 0 by

(42) €Q.=0,
(43) @ =X+[I-P1y,

(4.4) X(t) = X(0) + £5(t) + PoglI — PL1 Y6,(¢) + [P = Ilcgt,
(4.5) X(0) = G(0) + P[I - P;]7'Q,(0),

(4.6) BP=P,+ P, [I-P,] 'P,,,

(4.7) Y = ¥5(X),

(48) W= diag(n™")Q,

A h N
(4-9) Dj,h = Z le=hW,

kep Mk
(4.10) B, = diag(u;")[1 - P,]7'[Qu(0) + £, — PoY + P dgt],
C;
do=co = mip 3t

(4.11) By = —diag(u;')Y.

4.3. Remarks.

REMARK 1. In addition to the parameters u, ¢, P and §(0), the Brownian
motion £ is the only data required to determine uniquely the left-hand sides of
the equalities (4.2)-(4.11). The diffusion limits associated with the bottleneck
subnetwork B are functions merely of X, which is identified in (4.4) as a
|B|-dimensional Brownian motion starting at X(0) with drift

8 =[P —Ilc,,
and covariance
A=A+ A [I-P 'P,+ P [I-P] A,
+P,B[I P’] a[I_Pa] Paﬂ
Here, X(0) is defined in (4.5), P in (4.6), cg in 4.2.A and A in 4.2.D.
REMARK 2. Lemmas 4.4 and 4.3 in CMa guarantee, respectively, that

[I — P)] is invertible and that P in (4.5) is irreducible stochastic. One can
check that 3.4.B also holds, thus identifying Qﬁ in (4.3) as the closed RBM

Qs = RBM(5, A, P).

REMARK 3. The random variable Q (0) represents the limiting fraction of
customers initially at the nonbottlenecks. If Q (0) # 0, then (4.1) does not
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hold for ¢ > 0 because the processes involved are not right-continuous at
t = 0. Indeed, substituting ¢ = 0 in (4.3) then contradicts (4.5) (Y(0) = 0) and
(4.10) with ¢ = 0 disagrees with B"(0) = 0. [Weak convergence at ¢ = 0 sepa-
rately does hold with the following limits: @(0) is given in 4.1.B, (4.8)-(4.9)
determine W(0) and D(0), and B(0) = 0.]

ReEMARK 4. The weak convergence of B” to B is actually in the functional
space C'#!. In fact, if @,(0) = 0, then (4.1)- (4 11) all hold for ¢ > 0.

REMARK 5. The set vy is lacking from the statement of the theorem because
closed networks have no strict bottlenecks. The congestion measures of the set
of nonbottlenecks a vanish in the limit. An important consequence is that the
set of balanced stations B can be approximated, for large n, by the au-
tonomous irreducible closed network (0, P, up). [A more formal description is
provided in Subsection 4.8.]

REMARK 6. The covariance matrices A in 4.2.D and A in Remark 1 depend
on the service time distributions only through the coefficients of variation b,
(rather than through means and variances separately).

REMARK 7. In matrix form
A=T[I+A]-TAP - P'AT - P[I - A]TP,
where
I' = diag(A) and A = diag(d3,...,b3).

In concert with the approximation suggested in Remark 5, A has that same
representation with P replacing P.

Remark 8. If service rates at the bottleneck stations do not vary with n
(1 = wp), then X is driftless.

REMARK 9. A consequence of 4.2.A is that
c
n(A" —A) - (mm——)/\ asn - o,
iep A

This convergence, which partially accounts for the form of d, in (4.10), is
verified in Subsection 5.7.

REMARK 10. We believe that the convergence of ljj'f 5 still holds without the
restriction A ; = 1.

4.4. Let us now set up the framework within which Theorem 4.1 is proved.
Then some major steps in the proof will be outlined, postponing the full details
to Section 5. First we formalize three space-time rescalings that will be
employed. One rescaling, which has already appeared, yields diffusion limits
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and is denoted by a ‘‘hat”. Examples are the sequences in (4.1) as well as

S (¢t) = ;Ll-[sn(n%) - n?|, R"(t) = —[R([nztj) — P'n],

Vr(t) =

J

2t]) — n%],

where S” is the service process of the nth network, R is defined in 2.2.D and
V, in 2.2.B. The second rescaling yields fluid approximations (as in CMa; see
also Subsection 4.6) and is denoted by a ‘“bar”. Specifically, consider a

sequence F" ={F™(u), u > 0}, n = 1,2,... . Then, depending on the nature
of the parameter u, we write F*={F"™(t), t>0}, n=1,2,..., to denote
either

- 1
F(t) = —F™(nt
(t) = —F"(nt)
when u varies continuously in [0, ») or
- 1
Fr(t) = —F"(|nt])
when u is integer-valued, for example u = 1,2,.... The third rescaling,
denoted by double bars, has no qualitative significance and is introduced
purely for notational convenience. It stands for
= 1_
Fr(t) = —F~ (),
being either F™(n%t)/n? or F™(|n%t|)/n?® as before.
4.5. The framework for proving Theorem 4.1 is built around the following
two functional central limit theorems (FCLT’s):
(4.12) S(t) = §*(nt) — u*nt >, S(t) in D7,
(4.13) R~(t) = R*(nt) — P'nt >4 R(t) in D"
In (4.12) which, by independence, is an immediate multivariate extension of
Billingsley’s (1968) FCLT for renewal processes,
S =BM(0,Ag) with S(0)=0 and (Ag);, = 8;,u;b%

In (4. 13) which is a consequence of Donsker’s multivariate FCLT for partial
sums, R = (RY,. RJ) has 1ndependent columns that satisfy

The random sequences {Q™(0)}, {S"} and {R"} are mutua.lly independent. This
ensures that the Brownian motions S, R/, j = 1,..., J, are mutually indepen-
dent and that 4.2.B, (4.12) and (4.13) actually hold jointly. By Skorohod’s
representation theorem [Skorohod (1956)], there exists a single probability
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space supporting versions of
45.A (@"(0),5",R*), n=1,2,...

in which the convergence 4.2.B is almost sure and the convergence in both
(4.12) and (4.13) is almost surely uniform on compact subsets of [0, ).
Consequently, we may and shall assume in the sequel that with probability 1,
asn - o,

45.B Q"(0) = @"(0) - Q(0),

4.5.C S*(t) = §'"‘(nt) —w'nt > S(t) uw.o.c,
45D R™(t) = R*(nt) — P'nt > R(¢) u.o.c.
and that the limits

45E @(0), S and R are independent.

Furthermore, 4.5.C and 4.5.D, respectively, imply that, as n — o,
(4.14) S™(¢) > ut u.o.c.,

(4.15) R™"(t) » Pt u.o.c,

hold pathwise. These last two facts follow from the following.

LemMA 4.2. Let F(t) and F™(t), n = 1,2,..., be functions in D! and let r
andr,,n=1,2,..., be real numbers. Assume that F(0) = 0 and that r is the
limit of {r,} as n — . If

. 1 .
(4.16) F"(t) = ;[F"(nzt) — r,n%] > F(t) u..c. asn -,
then

— 1
Fr(t) = ;F"(nt) —rt u.o.c. asn — ®,

Lemma 4.2 is proved in Subsection 5.7.

4.6. As already mentioned at the end of Subsection 3.2, CMa provide
FSLLN’s from which fluid approximations emerge. More precisely, with only
4.5.B and (4.14)-(4.15) as assumptions, CMa show that ‘bar-rescaling”’ the
queueing network by n —  results in convergence to the linear closed fluid
network in Subsections 3.1-3.2, with initial fluid Z(0) = @(0) = @(0), release
capacity vector 4 = (u;) and P = [p;,]. In particular, the fluid level Z, which
here will be denoted by Q, is derlved from the almost sure limit

(4.17) Q"(¢t) = ;Q"(nt) - Q(t) u.o.c.,

and the cumulative fraction of utilized capacity B, expressed in terms of the
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loss process Y by B () = (p;t = Y () /u j» t = 0, is obtained from
- 1 —

(4.18) B"(t) = ;B"(nt) — B(¢) wu.o.c.

Further analysis in CMa reveals that (@, B) are piecewise-linear and that
there exists a finite time 7 such that

(4.19) Q.(t) =0 fort>r,
(4.20) B(t) =B(7) +p(t—1), t=r1.

The time 7 is the equilibrium time mentioned at the end of Subsection 3.2. It
actually equals 0 when @,(0) = 0

4.7. The elements in 4.5.A-4.5.D will now be used as the building blocks
for two representations, “bar” and ‘“hat” that, respectively, link the fluid and
diffusion approximations to the microscopic representation 2.7.A-2.7.C.

One uses first the elements in 4.5.A to construct (§", B") via (2.2)-(2.3),
namely .

GO =GO+ LE wn(Se[Br(o)]) - 8r[Byn)],  t=0,

[

By (t) fl[Q"(u)>o]du t>0.

The bar representation is then

4.7.A Q"=X"+[I-P]Y",
where
(4.21) X"(¢) = Q"(0) + 0"t + £"(¢),
(4.22) 0" =[P —I]u",
J
(4.23) Er(t) = ,El{Rfk [8(Br(1))] - pi,Se(Br (1))}

J
g P SP(BR(2)) — w3 By(t)]
- [8r(Bp (1)) - wiB2 (1)),

(4.24) Yr(e) = wrft - E;‘(t)],
(4.25) Br(¢) = j0t1[é;l(u) > 0] du.

The processes X", Y and Q" uniquely satisfy 2.7.A-2.7.C (playing the roles
of X, Y and @ there, respectively). From 3.3.A-3.3.C, it follows that Y =
¥,(X™), namely the image of X" under oblique reflection. This allows for an
easy explanation of the methodology underlying CMa: First prove the u.o.c.
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convergence of X" to some X; then use the continuity 3.3.E to deduce the
convergence of Y" to ¥ = ¥,(X); finally, conclude the convergence of Q" in
4.7A to @ =X + ¥p(X) in (4.17); the convergence of other sequences of
interest readily follows. In the present paper we follow this same approach, but
with “hats’’ instead of “bars”. To this end, observe that

G7(¢t) = @"(nt) and B"(t) = B*(nt) - p"nt.
Then define
Yn(t) =Y"(nt) and £"(2) = £"(nt),

to get the hat representation

47B Q=X+ [I-P]Y"
Here
(4.26)  X"(¢) = Q"(0) + 0™nt + £"(2),

J = =
(4.27) HORN A EAEHO)

J _ —
+ ¥ peiSE(BE() - Sp(Br(0),

k=1

(428)  Y7(2) = (wf - A3)t — w3 BR(D),
B 1 t 1A
(4.29) B}(t) = —Bj(nt) = fol[Q;(u) > 0] du,

where A" is the inflow capacity of the network (0, P, u"). Like their “bar”
analogs, the processes Q" and Y™ uniquely satisfy 2.7.A-2.7.C, hence Y" =
Wo(X") [see, however, (4.33) for the reflection mapping that will actually be
used].

Skorohod’s representation 4.5.B—4.5.D will enable us to prove FCLT’s for
queue lengths and busy times by sample-path analysis. The workload process
will be analyzed similarly, guided by (2.4) and the representations

_ 1_ _ _
4.1.C Wr(t) = Ev;n[Q;l(t) +87(Br(t))| - Br(#)

and

47D Wr(t) = %{Q;‘(t) + Vj"[@‘(t) + §J."(§J'-‘(t))] + é;(f?;‘(t))}.

Indeed, we shall show that the sample paths of (Q", W, B™), obtained from
Skorohod’s representation and viewed as a sequence of functions, converge
w.o.c. to the appropriate limits. (Sojourn times will be analyzed probabilisti-
cally, however.) This strong convergence implies, of course, weak convergence
of the original processes, as elaborated on in the introduction to Whitt (1980).
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4.8. Two major steps in the proof of Theorem 4.1 are formulated as:

PrROPOSITION 4.3. Let 7 be the equilibrium time for the fluid approxima-
tion, as described in (4.19)—(4.20). Then

T — 1
Q;‘(t + ;) =Qr(nt+71)= ;Q;‘(nzt +nt) >0 u.o.c.asn — .

ProprosITION 4.4.

= 1_ 1
B™(t) = —’;B"(nt) = —’-l-z—B"(nzt) —>pt u.0.c.asn - »,

The convergence

(4.30) Q>0 wuoc.int>0,

which justifies (4.2), is then a consequence of Proposition 4.3 and:

LEMMA 4.5. Let F(t) be a function in C!' and F™(t), n =‘1, 2,..., @
sequence in D. If for some 7 > 0,

r
F"(t + ;) - F(t) u.o.c.asn — »,

then
F*" > F u.oc.int>0asn — .

Lemma 4.5 is proved in Section 5.7. [Note the difference between (4.2) and
(4.19) and the difference between Proposition 4.4 and (4.20); these are rooted
in the different rescalings employed.]

The convergence of Qg is obtained after isolating the bottleneck subnet-
work. Formally, this entails writing 4.7.B in blocks a and g, then solving for
?a” in the a block and substituting the result into the 8 block. These simple
calculations suggest the representation

(4.31) Qp =X"+[I- Py,

where

(4.32) Xr=Xr+ P [I-P] 'Xr-P,I-P]'qr,
(4.33) Yo = ws(X),

with P given in (4.6) and X in (4.26). By analogy to the ““bar” convergence in
4.7.A, one would now anticipate u.o.c. convergence of X" to X in (4.4), thus
implying (4.8)-(4.7) in view of the continuity of ¥5. But two obstacles arise:
first, the sequence X" need not converge u.o.c. and second, X" does not
necessarily belong to the domain of ¥s. The first obstacle prevails when a
nonnegligible fraction of customers initially occupy the nonbottlenecks:
@2(0) - @,(0) # 0, or equivalently, the u.o.c. convergence in (4.30) does not
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extend to ¢ > 0 (see also Remarks 3 and 4 in Subsection 4.3). The second
obstacle is encountered when all the customers happen to accumulate at the
nonbottleneck stations for a long enough period: Qg = 0 during some time
interval. The two obstacles will be circumvented as follows.

First we shift, via 3.5.C, the time origin of the nth network from ¢ = 0 to
time nr [see (5.1)-(5.3)]. As apparent from Proposition 4.3, such a shift is
negligible in the diffusion time scale and the shifted networks do satisfy (4.30)
w.o.c. In other words, at the end of the negligible period [0, n7], n large,
essentially all the customers will occupy only the bottlenecks. Next we verify
that only a negligible fraction of the customers actually returns to the nonbot-
tlenecks during the time period [n7,n7 + n2T),), for some specified sequence
T, —» © as n - « [see (5.18)]. This renders (4.33) valid for the nth shifted
network at least over ¢ €[0,T,), T, —» ». From 3.3.G, it will then follow that
?” - Y in (4.7), Qﬁ Qﬁ in > 0 will then be deduced and (4.3)-(4.7) will
ﬁnally be established.

Propositions 4.3 and 4.4, which constitute the main hurdle in establishing
Theorem 4.1, are verified in Subsections 5.1-5.3. The convergence of QB and
B" is deduced in Subsection 5.4 [the latter follows from the convergence of
Y", in view of (4.28)]. The limits (4.8) and (4.9) for workloads and sojourn
times are established in Subsections 5.5 and 5.6, respectively, and their proofs
are self-contained.

4.9. Readers may wonder why the valid relation Y" =¥, (X" ') is not
pursued directly. The reason is that the drift of X" in (4.26), hence X" itself,
need not converge, which is manifested by the divergence of Y" to infinity.
Indeed, from Proposition 4.4 and (4.24) follows that Y @) - (;u At and
consequently Y" =nY” blows up.

A related observatlon is that, while X" need not converge, the sum of the
first two terms on the rlght-hand side of (4.32) does converge u.o.c. This will
follow from 5.3.A and the convergence

n{0p + P[1 - Pi] 'z} - [P — e,

as n — o, which is established prior to (5.19). [The third term in (4.32) can be
guaranteed to converge u.o.c. only in ¢ > 0.]

5. Proofs of the limit theorems for irreducible closed networks.
The present section is entirely devoted to proving the results exposited in
Section 4. Many arguments are based on facts established in CMa, so readers
interested in details probably will find it necessary to consult it frequently.

5.1. Proofs of Propositions 4.3 and 4.4. We shall prove below the follow-
ing two implications:

5.1.A If B*(¢) = B*(nt) /n converges u.o.c. along a subsequence, then Q" (¢ +
7/n) also converges u.o.c. to 0 along this subsequence, or in other words,
Proposition 4.3 holds for that subsequence as well.
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5.1.B If along a subsequence both Proposition 4.3 holds and B" converges
u.o.c., then the latter convergence is to pt, or in other words, Proposi-
tion 4.4 holds for that subsequence as well.

A consequence of 5.1.A and 5.1.B is that any u.o.c_ convergent subsequence of
B™ must converge to pt. Now (4.29) implies that_B" is uniformly Lipshitz. By
Arzela—Ascoli’s theorem, any subsequence of B™ has a convergent subse-
quence which, in turn, converges to p¢ u.o.c. This establishes Proposition 4.4
and then Proposition 4.3 [the latter in view of 5.1.A].

In obtaining both 5.1.A and 5.1.B, one uses the fact that for £" in (4.27):

5.1.C If B" converges u.o.c. along a subsequence, then én converges u.o.c.
along that subsequence to a continuous limit which vanishes at ¢ = 0.

To prove 5.1.C, first observe that Sn(¢) - ut u.o.c. by 4.2.A and 4.5.C, and
that the u.o.c. limit pomts of B"” must be continuous. Then note that the
w.o.c. limits of $™ and R" in 4.5.C-4.5.D are also continuous, being Brownian
sample paths. Finally, apply the deterministic time-change theorem [Whitt
(1980), Theorem 3.1] which, for convenience and future reference, is stated
here as:

5.1.D Let {F,, n > 1} and {c,, n > 1} be sequences in D”. Assume that c, is
nondecreasing with c¢,(0) = 0. If (F,(¢), c,(¢)) converges u.o.c. to a con-
tinuous pair (F(2), c(¢)), then F,(c,(¢)) converges u.o.c. to F(c(2)).

The verifications of 5.1.A and 5.1.B remain the missing link in the proofs of
Propositions 4.3—-4.4. We establish the first in the next subsection and the
second in Subsection 5.3. For both proofs, the subsequence in question is
taken to be the sequence itself for ease of notation.

5.2 Proor oF 5.1.A. The proof will be carried out as though QS(O) -
Qa(O) = 0, hence 7 = 0 [see the comment following (4.20)]. For otherwise, we
start the nth network at time nr by letting

(5.1) Xn(t) = Q*(v/n) + X*(¢ + v/n) — X"(7/n),
(5.2) Yr(t) = Y*(¢ + v/n) = Y"(7/n).
Then property 3.5.C reads
(5.3)  Q"(t) = Q"(t +1/n) =X"(¢) + [I-PY™(t), ¢t=0.
Now the process X" has the form
Xn(t) = @(0) + £*(¢) + 6"nt with

En(t) = E7(t + 1/n) — £"(7/n).

By (4.17) and (4.19), Q7(0) = Q*(r/n) = @(r) > 0 and 5.1.C implies that
£™(t) converges u.o.c. to a continuous limit. These last two facts will be seen to

(5.4)
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guarantee the u.o.c. convergence Q_Z‘ — 0, thus reducing 5.1.A to the case
7 = 0 as claimed.

Consider the subset of stations G = {j: 6; < 0}, where 6 = [P’ — I'lu is the
limit of 0™ in (4.22). Stations in G are the subcritical stations in CMa. It is
shown there, in Lemma 4.1, that G = & implies @ = &, in which case there is
nothing to prove. Let us assume, therefore, that G # & and verify that:

5.2.A For j € G, @"(¢) > O woc.
To this end, set &, = max; . ,{@7(0)} and note that &, — 0. Then introduce for
t>0,
vi(t) = sup{s <t Q;‘(s) < z—:n},
[abbreviated as v}

7 when convenient and well defined because the set over
which the supremum is taken always contains s = 0: Q"(O) = Q"(O) <e,l
Now Q is an RCLL step function. It follows from the deﬁmtlon of vI(t) that
Q"( —) <e¢,. Furthermore, if v'(¢) <t, then Qj‘(s) >g,20 for s e
[v"(tS tl. Us1ng the complementarlty condition 2.7.C, applied to the hat repre-
sentatlon 4.7.B, implies that Y"(v"(t)) = "(t) which also holds when

v'(t) = t. One utlhzes all this in

(5.5) —e, < QMt) — Qr(vF )
J
= é;‘(t) - ‘f}}t(vjp _) + nG;‘(t - VJ(L) - kglpkj[?kn(t) - I'}lc*fn(vjn)]

= ‘-é;”(t) - ‘fA}L(VJn _) + nG;‘(t - an)'

Consequently, for ¢ > 0,

£, 1. 1.
(5.6) 0<(—07)[t—v(t)] < =+ —&(1) - —& (v} -).

The convergence of £ in 5.1.C guarantees that both & £n(¢) and 3 "(v"(t) -)
are uniformly bounded on any compact subset of [0, oo) One concludes from
(5.6) and -0 - —6; > 0, j € G, that

vi'(t) > ¢t u.o.c.
Going back to (5.5), we have
0< ij(t) = é}b(t) - é}‘(v}‘ _) + QJ{‘(VJ(L _)’

for all ¢ > 0. Finally, 0 < Q}‘(v}‘ — ) <¢,, combined with 5.1.C-5.1.D, estab-
lishes 5.1.A for stations in G.

The extension to all j € a is achieved through an elimination procedure
similar to the one used to prove Theorem 5.2 in CMa. Indeed, recall (4.26) to
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rewrite 4.7.B in block form as

(5.7) Qi(t) = QE(0) + nogt + £5(t) — PugYh(t)
+[I - PL1Y2(¢), t=0,
(5.8) Qr(t) = QE(0) + nojt + £(t) — Phy Y4 (2)

+[I - PL1Y2(¢), ¢=0,

where H is the complement of G. Stations in G are nonbottlenecks, hence
[I — P;] is invertible by Lemma 4.4 in CMa. Isolating ?” in (5.7) and
substituting the outcome, together with (4.26), in (5.8) gives

(5.9) Q= Xp + [1- By|¥y,
where
(5.10) Xj(2) = @f(0) + nbjt + £5(2),
(5.11) Q7 (0) = @5 (0) + Psu[1 — P51 'Q4(0),
(5.12) 0% = 0% + Phy[I — P,]'602
= [Py - 1],
(5.13) E1(2) = €5(2) + PoylI — P61 €5(2)
~Pgyll - P5]17'Q4(1),
(5.14) Py =Py + Pyg[I — Py 'Pyy.

The representation (5.9), like its predecessor 4.7.B, conforms to 2.7.A-2.7.C,
but with a switching matrix P,. The triplet (0, Py, ny) is the image of
(0, P, n) through the transformation (4.4) in Subsection 4.6 of CMa. Since this
transformation leaves all the network’s characteristics derived from (0, P, u)
intact (CMa, Lemmas 4.3 and 4.5), we can now define G = {j € H: 0 < 0},

where 65 = (P}; — Iy, then restart the process, but confined to the statlons
in H. Formally, this entails proving 5.2.A for j € G, through (5.9)-(5.14),

after substituting B, for P, X} for X", 6}, for 6" and 6, for 9. We have now
established 5.2.B, or equlva.lently 5.1.A, for stations in G and G. Repeating the
process if necessary, each time 5.2.B is reproved verifies 5.1.A for at least one
more station in a. By Lemmas 4.5 and 4.1, both in CMa, within |a| steps at the
most only bottlenecks remain and the proof of 5.1.A then ends. O

5.3 Proor oF 5.1.B. The conclusions in both 5.1.A and 5.1.C prevail. In
particular, 5.1.C can be written as:
5.3.A £" converges u.o.c. to a limit £ which is continuous with £(0) = 0

As a first step we verify that Yﬁ" converges u.0.c., then identify its limit [in
5.3.C]. Consider the shifted network in (5.3), write it in a« and B8 blocks as in
(5.7)-(5.8), then derive the analog of (5.9)-(5.14) in the form

(5.15) Qy =Xy + [1-B]¥y,
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where
(5.16)  Xr(t) = Qr(0) + nbpt + £2(t)
Q7(0) = @2(0) + P [I— P,]7'Q(0)

= [B —1]u;
(5.17) £n(t) = (t) + Pl - P17 &8 (0) - Qr(v)]
(5.18) Yy =¥ (Xz) onl0,T,),

T, = min{t > 0: ¢’ X} (t) = 0}.

[The matrix I5B coincides with P in (4.6).] We now verify the u.o.c. conver-
gence of X' in (5.16) and then justify, via T, > «, an application of 3.3.G to
(5.18). —

The convergence of @z(0) holds because @7(0) = @7(r) — 0 by (4.19) and
also .

@5(0) = @(7) = @u(0) + Pig[ 1 — P;]7'Q,(0),
from Theorem 7.1 in CMa. Now Corollary 4.6 in CMa says that [155 —Ilug =0,
)
ndy = [ By~ 1][n(uh = )] = [B —1]ep asn >,
in view of 4.2.A. As already noted after (5.4), 5.3.A implies that JL Ny u.o.c.

Together with Proposition 4.3, this guarantees the u.o.c. convergence of §ﬁ in
(5.17), as well as

Xé‘(t) - X(t) u.o.c,

where
(5.19) X(t) = X(0) + [By — I]ey + £4(2) + Pl I = PL1T6,(2),
(5.20) X(0) = Q4(0) + Pig[I — P.]7'Q,(0).

Since the matrix P'ﬁ is stochastic, multiplying (5.15) by e’ yields

e'Xp(t) = e'Qr(t) = e@"(t) — e'Qr(t) =1 -eQr(t), 20,
which converges u.o.c. to 1 — e'Q;(t) =1 in view of Proposition 4.3. This
convergence implies that T, - » for T, in (5.18) and that e'X(¢) = 1 for all

t > 0,thus X € C#. Letting n — » in (5.18), one concludes from the continu-
ity 8.3.G of the oblique reflection mapping that:

5.3B Y - Y wo.c, where Y = ¥;5(X) and X is given by (5.19)-(5.20).

It is also demonstrated in Theorem 7.1 of CMa that Y"(T/n) =Y 7) >
Y(T) = 0. From (5. 2) and 5.3.B it follows that Y (t + T/n) - Y(¢) u.o.c.,
hence Y"(t) - Y(¢) for all ¢ > 0 by Lemma 4.5. The latter convergence also
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holds at ¢ = 0, since the sequence and its limit vanish there. We now notice
that Y'ﬁ" and Y(¢) are both nondecreasing and continuous, and pointwise
convergence in ¢ > 0 of such functions implies u.o.c. convergence [Resnick
(1987), Chapter 1, or the remark after the proof of Theorem 6.1 in Whitt
(1980)]. Thus, in general:

5.3.C ¥;(¢) - Y(¢) wo.c., where Y = ¥5(X) and X is given by (5.19)-(5.20).
_ Finally, we are ready to prove 5.1.B, aided by (4.24). From 5.3.C we have
Y, - Ou.oc,or

= 1_

Bg(t) = ;B[;(nt) — et =pgt u.o.c.,

since A; = u; for bottlenecks j € B. This establishes the B part of 5.1.B. For
the a part, note first that £"(¢) — 0, because ¢" converges [see 5.3.A]. The

coordinates of @"(n2t) are nonnegative and sum up to 7, hence also @ — 0
u.o.c. Substituting (4.22) into 4.7.B, writing it in blocks « and B and rearrang-
ing terms yields for ¢ > 0,

Yr(t) - wint = [1- P17 [Qa(0) — Q(0) - £2(¢) + Pp¥y' ()]
—[I- P, ' P uiint,
which becomes
(5:21) Y1) = (wo - Xt
= [1- B [Q@2() - Qu(0) — E2(1) + P T3 (0)]
+[1 = P17 PN — Ag)t — [I = PL1 ' Ph(wh — mp)t,

due to pz = Ay and A7, = [I — P,]7'P;, A} (the latter in view of A" = P'A").
Now recall the u.o.c. convergence to 0 of @7, I_';;" and £ and the convergence
of (\® —A) and (u* — u) [by Remark (9) in Subsection 4.3 and by 4.2.A,

respectively]. These guarantee that Y,"(¢) converges to (u, — A, )¢t u.o.c. Equiv-
alently,

= 1_
BX(¢t) = ;B[:(nt) - p,l uwo.c,
which completes the proof of 5.1.B. O

5.4. Finalizing the convergence of Q" and B". The arguments in Subsec-
tions 5.2-5.3 were actually carried out along a subsequence. This is of no
concern now, since Propositions 4.3—-4.4 have been verified. Aided by the time
change theorem 5.1.D, we first identify the u.o.c. limit £ of £” [in (4.27); see
also 5.3.A] as

J J
(5.22) £ = X Bj(ut) + L pasSiloat) = Si(es0):
=1 =1

The convergence

Q.f"Qa=0 u.0.c.int>0 asn > »
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was justified in (4.30). Replaymg Subsection 5.3 now proves 5.3.C along the
whole sequence, thus Q"(t) - Q (¢) u.o.c. and the limit is identified from
(5.15), (5.19) and (5.20) as Q‘B X +[I- P’ 1Y, ¢ = 0. Now observe that the
limit is continuous, so Lemma 4.5 guarantees that

QA;?(t) QAﬁ(t) u.0.c.int >0 asn — c.

Since P Pin(4.6)and Y = ¥5(X), we have established (4.3)-(4.7).
Now multlply (5.21) by n and *conclude from Remark 9 in Subsection 4.3
that [Y*(#) — (u, — A )nt] converges u.o.c. in ¢ > 0 to

—[1 - P17 @u(0) + £,(¢) — P Yu(t) + Ph dpgt],
where
C;
dg=cz— (millsl—)Aﬁ.
The relation
Br(t) = —diag[(u) 7| [Y"(¢) — (w» — X")nt].

finalizes the analysis of queue lengths and busy times.

5.5. The convergence of W". Consider the right-hand side of 4.7.D. Its first

term converges u.o.c. to Qj(t) /i ;. The third term converges u.o.c. to S(p /1
in view of Proposition 4.4, the convergence in 4.2.A and 4.5.C, and the
time-change theorem 5.1.D. To identify the limit of the second term notice, as
in Theorem 3 and Remark (3.3) in Glynn and Whitt (1986), that the conver-
gence 4.5.C is pathwise equivalent to

A 1. 5
55.A Vir(¢) = ——;[Vj"(nt) - nt] - V,(t) u.o.c.asn — o,
Kj
where
Vi(t =——§ i=1,...,d.
0= MJ) !

Proposition 4.4, 4.5.C and 5.1.D now imply that
@”(t) + §J"(§J”(t)) =0+ pu;pjt=A;t uo.casn -

Finally, use 5.5.A and 5.1.D to verify that the second term in 4.7.D converges
to —.§(pjt)/p ; which, in turn, cancels out the limit of the third term. This
establishes (4.8).

5.6. The convergence of D™. The proof is probabilistic and is based on
Section 5 in Reiman (1984). Fix a station j and j-accessible A throughout the
discussion and recall the representation (2.5):

J hy

(5.23) Dry(t) = X X Wi (7] h,8i(2))

k=1i=1
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By the weak convergence of W" and the random time-change theorem
[Billingsley (1968), page 143], it suffices to prove that as n — o,

(5.24) Tl hri(t) =174 4 i(n%t) /0% > ¢,

(Before proceeding, readers may find it helpful to review our conventions for
—, and —, convergence of stochastic processes; they are introduced in the
Convergence part of Subsection 1.6.) From the definition of 777, , (),

(5.25) t <70 0(8) <TRA(E) + D2 (2),

where 77 ,(u) = 77, . (u) is the arrival time to station j of the first customer
to follow A upon entering j after time u. Thus, (5.25) will imply (5.24) once
we show that, as n — o,

5.6.A W(8) =, t,

7,
5.6.B D7 () -, O.
Proor oF 5.6.A. Denote by
J
Ly(t) = kZ Rpr{Sp[ By ()]}
=1

the total number of (endogenous) arrivals to station j up to time ¢. First, we
claim that

(5.26) L7 (t) =4 Ajt.

Indeed, Proposition 4.4 guarantees the weak convergence B™(¢) >, pt and
(4.12)-(4.13) imply that S™(t) >, ut and R™(¢) >, P't. Thrice using the
time-change theorem, one deduces (5.26) from the relation ©¢_,A,p, J=A
Let us remark that the event 77 ,(n%) > n®(¢ + ¢) indicates that none of the
customers who arrive at j during [n?t, n%(¢ + ¢)) actually follows A upon

entering j. We now have

P{ sup |7/,(u) —u|>e
(5'27) {Osust[ " ] }

<P{Tz(t+1) 2 22,(t + 1)}

(5.28) +P{ inf [Z2(u+e) - Ii(w)] < %Ajs}

O<uc<t
(5.29) +P{E}),
where E* is the intersection of the following two events: (i) the total number
of arrivals to j during [0, n%(¢ + 1)] is less than 2A ;(t + Dn?; (i) for some
u € [0, ¢], the number of arrivals to j during [n®u, n?(u + ¢)) exceeds 3A,en®

and none of the customers who perform these arrivals follows - upon entering
J. In view of (5.26), the terms in (5.27)—(5.28) converge to zero for every ¢ > 0
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as n — . Following (44) in Reiman (1984), we now majorize (5.29) by a
sequence that also converges to zero. To this end, let H, stand for the event
that the customer who performs the ith arrival to j (starting the count at
time ¢ = 0) does follow % upon entering j. Then there exists some p > 0 such
that P{H;} =p for all i > 1, because h is j-accessible. Now recall that a
return to j is allowed only as the last visit on the route associated with A
(h; = 1). This guarantees that H,, H,,... are independent. Simplifying nota-
tions with ¢; = 2A;(¢ + 1) and ¢, = 3A,¢, we now have

lein®]  1+]cyn?|
P{E"} <P{ U N Hf
i=1

=1
L ein?) 1+|con?|
< ) P H?
-1 i=1

13
= lewn?|(1 = p)l=*1*1 5 0 as n > .

The proof of 5.6.A is now complete. O

ProoF oF 5.6.B. The event DJ(n?t) > n’ implies that there exists a
station along A at which our customer experiences a wait no less than
n’¢ /(e’'h). Formally, W7, , (n?t)] > n% /(e'h) for some pair k,i. Suppose
this happens for the first time at the ith visit to station k. Then this visit
starts at time 77, , (n”t) which must satisfy 77;, , (n%f) < 77 ,(n%) + n%.
Consequently, for 0 < a < b, we have

P{ sup D7 ,(¢) > e}

a<t<b

sP{ sup maka"[T}fh’k’i(n%)] ane/(e’h)}

a<t<b ki

J —
(5.30) < P{ sup [F74(t) =t >} + ¥ P{ sup  Wr(u) > e/e'h}.
a<t<b

k=1 a<u<b+2¢

The first term in (5.30) converges to zero by 5.6.A. The limit of the second
term vanishes because of the weak convergence of W". The proof is now
complete. O

5.7. We conclude Section 5 with proofs of Lemma 4.2, Lemma 4.5 and
Remark 9 from Subsection 4.3.

ProoF oF LEMMA 4.2. Use (4.16) and the time-change theorem 5.1.D with
elements F, = Fr,F=F, 7,.(¢) = t/n and 7(¢) = 0 to conclude that

. 1 .
Fr(t/n) = —F"(nt) = r,t = F(0).

Lemma 4.2 now follows from the assumptions that F(0) =0 and r, — r.
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(Whitt suggested this proof of Lemma 4.2, thus trivializing our original
version.) O

Proor oF LEMMA 4.5. Choose an interval [a, b] with a > 0. Then for all
n > N, N large enough, we have

sup |F"(u) — F(u)| < sup  |F"(u) — F(u)]

a<u=<b T/n<u<N+71/n
= sup |F"(¢t+7/n) —F(¢t+1/n)|
0<t<N
(5.31) < sup |F*(¢t+1/n) —F(t)|+ sup |F(¢t+7/n)—F(t)|.
0<t<N 0<t<N

Now the first summand in (5.31) converges to 0 by assumption and the second
by the continuity of F. O

PROOF OF REMARK 9 FROM SUBSECTION 4.3. Since P is irreducible and A"
and A are both positive eigenvectors of P’, there exist positive constants r,, for
which A* = r, A (Lemma 3.3 in CMa). From 4.2.A, u* = u + ¢"/n with ¢” = c.
Now recall the definitions of A", A and B and deduce that

A%
max — = 1,
A
Mi - . M .
" =1 foriep and /\—>1 fori & B.
Consequently, for n large enough,
M i ¢ 1 <
r,= min— = min{ — + —— ) =1+ —min—.
i A i A n Ai

i i

One concludes that

ci ¢;
n(A* —A)=n(r, — DA =|min— |A - [ min — |A
( ) (7 ) (ieB /\i) (ieﬂ )ti)

asn — o [

6. Diffusion approximations for open networks. The present section
is devoted to a presentation of a FCLT which is the analog for open networks
of Theorem 4.1. The key ideas behind the analysis of both closed and open
networks are similar, hence many details are omitted. Concerning the mechan-
ics of proofs and representation of results, the main difference between the
models stems from the possible existence of strict bottlenecks in open net-
works.

As in Section 4, we consider a sequence of open networks with triplets
(%", P, u™) and initial queue-length vectors @"(0), n = 1,2, ... . Here 2%" >
0, P is substochastic with o(P) < 1, u” > 0 and @"(0) > 0. In contrast to



DIFFUSION APPROXIMATIONS 1497

closed networks, where n parametrizes the population size, now n is merely a
rescaling parameter which bears little physical significance. We shall use n in
a way that conforms with standard Brownian FCLT’s and which differs from
the rescaling scheme employed in Theorem 4.1. Such standard rescaling helps
clarify the relation between our results and those that already exist [mainly
Reiman (1984), Johnson (1983) and Harrison and Williams (1987)].

6.1. For the nth network, the exogenous arrival process is given by
A" = {A™(t) = A°(\%"¢), t > 0}, the service process by S™ = {S™(¢) = S%(u"t),
t > 0} and the routing sequence R by 2.2.C-2.2.D. The queue lengths @™ and
busy-times B™ are constructed via (2.2)-(2.3). We assume that for some
J-dimensional vector ¢*’,c* and a random vector @(0) > 0, the following
limits exist as n — oo:

6.1.A Vn (%" — A%) - ¢*,
6.1.B @(m—u) - cH,
6.1.C VE—Q"(O) -, Q(0).

In the formulation of the theorem we use a J-dimensional driftless Brownian
motion

6.1.D £ = BM(0,A)
which starts at £(0) = 0. The covariance matrix A = [A x] is given by
6.1.E A =[2%(a% = 1) + A, + (A; A uy)b2]05

—(A; A /"‘j)bjgpjk — (A A Mk)bfpkj

J
- IZI(M A :“'l)pljplk[l - b?],
where A is the inflow capacity vector of the open network (A°, P, pu), as
determined by (2.1). We maintain the ‘“bar’ convention that was introduced
for closed networks in Subsection 4.4. The ‘“hat” convention changes, how-
ever, because we rescale open networks differently. Indeed, our diffusion limits
for open networks arise as time is accelerated by a factor of n while space is
aggregated by a factor of Vn . In accordance with this rescaling, let

@ (1) =Vr[Q@ (1) — (A - w)"t], W) = VR [W"(e) ~ (b~ )" t],

Dy () = Vn D2 4(2), Br(t) = Vn [B"(t) - (p" A e)t],
Sn(t) = Vn[8"(¢) - wrt], Vr(e) = Ve [V - ¢] /un,
An(8) = Vn [ A (¢) - A7), R~(t) = Vn [R™(¢) - P1].

Here p is the traffic intensity vector of the network (A°, P, u). Recalling that
the sets a, B and vy stand for nonbottleneck, balanced and strict bottleneck
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stations, respectively, we now have:
THEOREM 6.1. Consider the above sequence of open networks. Assume that

6.1.A-6.1.C hold and let £ be the Brownian motion 6.1.D. Then the weak
convergence

(6.1) (@, w~, B", D) -,(@,W,B,D) int>0,
holds as n — . The limit is described for t > 0 by
(62) Q,=0,
(63) Q=X+ [I-Pyy,
(6.4) X(t) = X(0) + &5(¢) + PLlI - P17, (¢)

+{c';° +[By - I]es + P;Bc¢}t,
(6.5) X(0) = Qp(O) + Pl I - P,]7'Q,(0),
(6.6) & =c) + PL[I- Pyl "X,
(6.7) Py=P,+P,I-P]'P,,
(6.8) B,=P,+P,[I-P] 'P,,
(6.9) Y = ¥5(X),
(6.10) @, =[Q,0) +&] + P, [1-P]7'[Q.0) +£] - BY,
(6.11) B, =P, +P[I-P]'P,,
(6.12) W= diag(u-l)[é — diag(p — €) "],
(6.13) D, =% P —+4, = h,=0,

kep Ky

(6.14) B, = diag(n;")[I - P;]‘l[Q (0) + £, — BpY + Py [t —c3] "¢,
(6.15) ch = {ci’ + Pigll = PL17"ck + Bigeth + By(ch A ch),

(6.16) B, = —diag(n;")Y,
(6.17) B, =o.

6.2. Remarks.

REMARK 1. An obvious modification of Remark 1 that follows Theorem 4.1
applies here as well. The drift vector of X is now

(6.18) 8=+ [By—1I|ck + Pyger.

REMARK 2. Theorem 6.1 again demonstrates that the diffusion limits of
queue lengths and workloads vanish at the nonbottlenecks «. The diffusion
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approximation of the balanced subnetwork B is a |B|-dimensional open RMB
[0(P,) < 1 by Part (c) of Lemma 4.3 in CMa]. The diffusion limits for queue
lengths at strict bottlenecks require centering. This is because @) builds up at
arate of A, — u_, which is also the equilibrium buildup rate of the correspond-
ing fluid approximation [cf. Subsection 3.2]. After both centering and rescaling,
@) converges to a semimartingale, as apparent from (6.10): its martingale
component is a Brownian motion which is associated with a and vy; its
bounded-variation component is nonincreasing and is associated with 8 [see
(6.9)].

REMARK 3. In analogy to Remark 3 that pertains to Theorem 4.1, the
convergence (6.1) fails to hold in ¢ > 0 when @,0) # 0; Remark 4 there
applies after adding to @,(0) = 0 the assumption ,(0) = 0; Remark 8 is valid
with /\%" = )t% and uj = pg.

REMARK 4. The constant vector that is substracted from @ in (6.12) arises
from the particular centering of W” and @". It would not have appeared if the
centering was around (p" —e)* and (A" — u")*, rather than the present
(p —e)" and (A — w)*, respectively. [Here A" and p" are the inflow capacity
and traffic intensity vectors of the nth network (A% P,u").] With this
alternative centering, however, the drift (6.18) of X in (6.4) would have been
more complicated.

REMARK 5. In matrix form, the covariance matrix of £ is
A =T°[A 1]+ diag(A) + TB - TBP — P'BT - P'[I - B]TP,
where
I = diag(A A p), B =diag(b},...,b3),
% = diag(1A°), A = diag(a},...,a%).
REMARK 6. Theorem 6.1 provides light-traffic approximations for open
networks without bottlenecks (8 = y = &). For example, the rescaled busy-

time processes B™(t) converge weakly, in this case, to the driftless Brownian
motion

B = diag(r"")[Q(0) + £],
where £ is defined in 6.1.D. (Note that A ; <u; for all j simplifies 6.1.E.)

REMARK 7. The equality (6.15) is, in fact, a nonlinear equation with ¢} the
unknown. Lemma 3.2 in CMa guarantees that (6.15) indeed determines c;
uniquely. In analogy with Remark 9 after Theorem 4.1, (6.15) is the second
equality in the following:

LEMMA 6.2. Let A* and A be the traffic intensities of the networks
A%, P, u™) and (A%, P, u), respectively. If 6.1.A and 6.1.B hold, then the
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sequence Vn[A" — A] converges as n — . Its limit, c*, is given by
ch = [1— P el + Py,(ch A ck) + Ploct],

eA={cX + P [I-P] ¢+ P} + 15’(0’\ A c“)

B B aB a a B~y B\"B B )

ay“a

A A0 /A ’ A ’
ch=c) +P,c +Pﬁ7(cﬁ/\c§)+Pyc;‘.

To prove Lemma 6.2, one verifies first that the sequence Vn (A* — )) is
bounded. Then one proves that its limit points solve the three equalities above.
The uniqueness of the solution now establishes the lemma.

6.3. The proof of Theorem 6.1 is carried out, as in Subsection 4.2, under
the following assumptions. With probability 1 as n — oo:

6.3.A Q"(0) — Q(0),

6.3B A®"(¢) = Vn[A%"(¢) — A%"t] » A%(t) u.owc.,

6.3.C S*(¢t) = Vn [5™(t) — ut] » S(t) u.owc,

6.3.D R"(¢) = Vn[R"(t) - P't| » R(t) uw.o.c,

6.3.E V7 (t) =Vn[V7(t) — t] /w2 - Vi(t) uoe. forj=1,...,d.
Here

A° = BM(0,A,) with  (A4) i = 8,450,
S(t) = BM(0,As) with (Ag) = 8;m,b%,
R=(RY,...,R’7), where R’/=BM(0,A%) with (A%)y =p(8u —Py),

‘%(t) = _gj(t//-"j)//-“f

In view of 6.1.A and 6.1.B, the convergences 6.3.B-6.3.D, respectively, imply
that

6.3.F A%"(t) > X% u.o.c,
6.3.G Sn(¢t) > ut u.o.c.,
6.3.H R™(¢t) > P't u.o.c.

We are now ready to prove Theorem 6.1.

6.4. The starting point is the representation 2.7.A, namely
6.4.A Q"(t) =X"(¢) + [I-PIY™(¢),
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where
(6.19) X"(t) = Q¥(0) + 6™n't + £"(t),
(6.20) o7 = A" — [P' — I p”,
(6.21) £r(t) = [AY™(2) — MY me]
J
+ kgl{Rf[Sf(BZ(t))] — Pk BE(D))
—[8p(B2(t)) - 2B} (®)], Jj=1,...,d,
(6.22) Y (¢) = wi[t - Bp()],
(6.23) Br(¢) = /;)tl[Q;‘(u) > 0] du.

Similarly to the proof of Theorem 4.1, one starts with proving the analogs of
Propositions 4.3 and 4.4. The latter is rather immediate. Indeed, the conver-
gence 6.3.A implies that @"(0) — 0 as n — ». Thus, the analog of Proposition
4.4 follows from CMa (Theorem 5.1 and Remark 2 succeeding Theorem 5.2),
namely

6.4.B B"(¢t) > (p ANe)t u.o.c.asn — .
We next establish the analog of Proposition 4.3:

n T
6.4.C Qa (t + 7;7—) — 0 u.0.c.asn — ®,

for some 7 > 0 which will be specified below. To this end recall the derivation
of (4.14)-(4.15) from 4.5.C-4.5.D. Then deduce from 6.3.B—6.3.D the existence
of the following three limits as n — o:

1

6.24 —A%"(Ynt) » A% u.o.c.,
Vn
1

6.25 —S8"*(Vnt) » ut u.o.c.,
Vn

1
Vn

Now 6.1.A-6.1.B, 6.3.A and (6.24)-(6.26) provide all the prerequisites for the
fluid approximations (Theorems 5.1 and 5.2 both in CMa) of the processes
1/ Vn)Q"(Wnt), 1/ Vn)B"(/nt) and (1/ Vn )Y "(Vnt). Replacing n with vn
in the argument that leads to 5.1.A yields 6.4.C, with 7 > 0 being the equilib-
rium time (Theorem 5.2 of CMa) for the process (1/ ﬁ )Q™(Yn t).

(6.26) R([Vnt]) » Pt u.o.c.

6.5. Consider the sequence Y " defined by

X 1
Yr(t) = =Y"(nt).
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The present section is devoted to proving that:

6.5.A Both sequences {Y”, n > 0} and {ﬁ/", n > 0} are equicontinuous and
uniformly bounded on any compact subset of [0, ).

Introduce X X"(t), Y"(¢) and @"(¢) by replacing n in (5.1)-(5.3) with v . For
example, @*(t) = (1/ Vn)Q™(n(¢ + 7/ Vn)). Let B’ be the union of B and Y.
As in Subsection 5.3, write (5.15)—(5.18) with B’ substituting for g and Vné 0
for n0" It follows from 6.6.C-6.6.D, which will be verified lndependently
later, that Vn 6 n 6z is bounded below, say by r. Consequently XB is bounded
below by

Xa(t) = @p(0) + rt + £2(2).

From the characterization 3.3.F of the regulator as a least element it follows
that

(6.27) 0< Yy =ws(Xp ) < Wap(7)-

Now prove, as in Subsection 5.3, that xj converges u.o.c. to a précess in the
domain of V¥p . By 3.3.D, the sequence ¥y (¥z) converges u.o.c. to a limit
which is nondecreasing, continuous and vanishes at ¢ = 0. The monotonicity
of Y"(-), together with (6.27), implies that YB" is equicontinuous at ¢ = 0. To
treat an arbitrary ¢, > 0, apply the Markovian property 3.5.A-3.5.C to estab-
lish an upper bound similar to (6.27) (which is equicontinuous) for Y"(¢) —
Y"‘(to) t > t,. We conclude that YY" is equicontinuous, thus verifying 6.5.A.
6.6. In the present subsection we prove that
6.6.A Yy" -0 u.o.c,

starting with some preparatory results. As in verifying (5.22), one shows that
&7 converges u.o.c. to

J
(628) &) =40 + X Ri((M A ma)t)

+ élgk((pk A D)E)py; = 8;((p A 1)2),
for j =1,...,J. Now write the hat version of 6.4.A in blocks a, 8 and v:
(6.29) Qr = X: - P Y- P Y"+[I-PY",
(630) @5 = Xp - PL,Pr — P¥7 + [I- By]¥y,
(6.31) Qr + [A -, |Vnt=Xr - P, Y - P Y + [1-P)]Y}

Since p(P) < 1, the inverse of [I — P.] exists [Corollary 2.1.6 and Lemma 6.2.1
in Berman and Plemmons (1979)]. Solving for Y" in (6.29) and substituting
the outcome into (6.30) and (6.31) yields

(6.32) Q; =Xy — P¥; + [1- By|¥p,
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where
(6.33)  Xj(2) = Q4(0) +£5(¢) + 6pvnt — Pog[ I - P17'Q1(2),
Q5 (0) = @5 (0) + Pl 1 - P,]17'Q2(0),
£2(8) = £5(t) + PLlI - P17 ér(2),
65 = 65 + Pog[1 - P17 "6,
Pyﬁ and 15,3 are defined in (6.7) and (6.8), respectively, and
(638) Qo+ [, - Vue=Xp - B ¥p + [1- B9y,
where
(6.35) X7(¢) = Q(0) + £r(¢) + 1vnt — P, [T - P.]7'Qx(¢),
Qr(0) = Q2(0) + P, [I - P,]7'Qx(0),
r(t) = €r(t) + P,[1- P17 'éx(e),
6r =6r + P, [I- P 02,
B, =P, +P[I-P]'P,,
5 =P, +P,[I-P]'P,.

From 6.1.A and 6.1.B it follows that vn [8" — 6] converges to c + [P = Ile*,
where 0 = \° + [P’ — I]u. Let

05 =05+ P [I-P,]"6, and §,=6,+P,[I-P]",.
Writing 8 = A° + [P’ — I]u and the traffic equation (2.1) in blocks a, 8 and 1,

one can show that 6, = [I — P.}(A, — u,), 0-,3 =0 and 57 = A, — . There-
fore, as n — oo,

6.6B Vn[6r-6,] - ¢,

where 6, = [I = P ]J(A. = 1)

and éX’ = c) + [P, — Ilc¥ + Pj,ch + Pl.ct;
6.6.C Vn |5 - 6,] » &) + [By - I]ck + Bjger,

where 6; = 0 and cﬁ =c,3 + Pg[I - Pl e
6.6D Vu |07 -6, - & + B, - I|ck + By,

where 6, = A —p,y>0andc‘°—c"°+P' [1-P] e

PROOF OF 6.6.A. Let x* = X — P, Y,", with X from (6.35). By 6.5.A and
6.6.D,

(6.36) Xy = +® u.o.c.int>0asn —> .
Again by 6.5.A, now combined with the theorem of Arzela—Ascoli, any subse-

quence of Y" has a further subsequence that converges u.o.c. to a nondecreas-
ing contlnuous function, say Y Denote the index of this subsequence by n,,
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k=1,2,....1If l?y # 0, there must be an N > 1 and ¢, > ¢, > 0 such that
Y+ (t,) > Y/ "*(t,) forall k = N,
for some j € y. By property 3.3.C,

1
Vi
where s, € [t,,,]. On the other hand, we see from (6.34) that 6.5.A and (6.36)
imply

(6.37) Q7*(nys,) =0 forall 2> N,

1
V—E—Q;‘(nt) — +o, uniformlyin ¢ € [¢,,¢],
which contradicts (6.37). Therefore, Y’ = 0, proving 6.6.A. O

6.7. The convergence of Q" and B". First one proves the convergence of
Q" and Y" by an argument similar to the one in Subsection 5.4. One must
add 6.6.A because of the additional term Y" in (6.32). In view of (6.34), the
convergences of &7 ‘7 and Y" together with 6 6.A and 6.6.D, imply the conver-
gence of Q", thus estabhshlng the Q" part.

The proof of convergence for B" is given by 6.6.A. The convergence of B"
follows from B" = —diag(u, 1)Y" and the convergence of Y" Finally, one 1s
left with verlfylng the convergence of B" In view of 6.6.B, rewrlte (6.29) as

(6.38) [Y.r(¢) - v (un — At
= —[1- P17 {Qz(0) - Qr(t) + £2(t)
-P, Y — P, Y + Vn (67 — 6,)t

1= P [(w0 - ma) — (A% = A)]8).
By 6.4.C, (6.28), 6.6.A, 6.6.B, Lemma 6.2 and the convergence of YB to Y5, we
prove via (6.38) that as n — o,
= Vn (W = N3t
- —[1- P17 [Qu0) + £ - PoY + Py [t —c3] "t] woec,
and the proof is completed in view of the relation
Bi(t) = —diag(ug")[ Y — v (ws - Na)e].

6.8. The convergence of W* and D"*. The proofs are essentially the same
as those in Subsections 5.5 and 5.6. Major differences are the different time
and space rescaling, and the fact that at the right-hand side of relation (5.17),
a term (p; — 1)+\/_[p,] njl/w, which converges to —(p; — D*ck/u; as
n — o, must be added.

7. Networks with priorities. The results obtained so far can be ex-
tended to accommodate some networks with a nonhomogeneous customer
population. (Other such networks, the analysis of which is beyond the present
scope, are described in Subsection 8.9.) We shall now derive diffusion approxi-
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mations for what we call prioritized closed networks. These are closed net-
works in which two #ypes of customers circulate: type & for high priority and
type I for low priority. Each type has its own service and routing characteris-
tics and they interact solely through contention over service in the following
manner. An [-customer gets served at a station only when there are no
h-customers present there. Suppose that an hk-customer arrives at a station
amidst service of an [-customer. Then the service is interrupted, the server
immediately attends to the h-customer, the [l-customer is forced to return to
the queue and he is back up for service precisely when the station is again
empty of h-customers. Finally, an interrupted service of an [-customer re-
sumes from the point of interruption, rather than starting afresh. Such a state
of affairs is often summarized by saying that k-customers enjoy a preemptive-
resume priority over /-customers.

In Theorem 7.1 we present diffusion limits for the queue lengths and busy
times of both types of customers. As before, fluid approximations are a
prerequisite for proving diffusion limits and these are described in Remark 2
following Theorem 7.1. The diffusion and fluid approximations both arise as
the total population size increases indefinitely, while maintaining the number
of customers from each type comparable. For simplicity, it is assumed that the
service times and routing indicators do not vary with the population size. We
chose to analyze a closed network because open networks were already par-
tially covered by Johnson (1983) (see Subsection 8.4 for more details). Restrict-
ing the attention to two types of customers facilitates the presentation consid-
erably, while still providing all the ideas and machinery required for the
analysis of three types or more.

7.1. Entities associated with A- and I-customers will be appended with an
h and an [, respectively. For example, Q}'(t) represents the queue length of
h-customers at station j at time ¢ and B j’~(t) stands for the cumulative time
allocated by server j to serve Il-customers during the time interval [0, ¢]. The
triplets associated with the types are denoted by (0, P(k), u”*) and (0, P(1), u’),
where P(h) and P(l) are assumed irreducible.

The dynamics of h-customers, unaffected by I-customers, are identical to
those in Section 4. In particular [cf. (2.2) and (2.3)], the queue length and
busy-time process jointly satisfy, for j = 1,...,d,

J
71A QMt) =QM0) + ¥ RMHSP[BE(2)]} - SH[BI®)], =0,
k=1

718 Bi(t) = [1[@(x) > 0]du, t20.
0

Then for l-customers and j =1,...,J we have
J
7.1.C Ql(?) = Q0) + ¥ RLM{S{[Bi(v)]} - S}[Bi(t)], t=0,
k=1

71D Bi(¢) = fotl[Q}'(u) =0,Q!(u) > 0]du, ¢20.
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[One can prove that, given @"(¢), the processes Q‘(¢) and B'(¢) indeed exist
and are uniquely determined by 7.1.C-7.1.D.] For stating the limit theorem, it
is convenient to introduce the total queue length and busy-time processes

Q(t) = Q"(t) + Q'(¢),  B(t) = B*(t) + B'(2).
Note that @ and B are related by
B,(¢) = [;1[Qj(u) >0]du, ¢20,
forj=1,...,d.

7.2. We shall analyze a sequence of prioritized closed networks indexed by
their total population size n. As usual, entities associated with the nth
network are appended with a superscript n. Thus

e'Q"(0) = e'Q""(0) + e'Q@""(0) = n.

We further suppose that the following limits exist as n — o

1 . A
7.2.A ;Q"’”(O) -, Q@"(0) with ¢'Q"(0) > 0,

7.2.B ;ll—Q””(O) -, Q'(0) with e'@Q'(0) > 0.

(To avoid complications of no significance, the latter two inequalities are taken
to be satisfied with probability 1.) In the formulation of the theorem we use a
J-dimensional driftless Brownian motion

7.2.C £ = BM(0, A)

which starts at £%(0) = 0. The covariance matrix A = [A iz is given by
o 2 2 2

72D Ay = Nis[1+ (8] = M(80) pia(R) = M(B1)pas(R)

J
- & Moy (m)pu(m)[1 - (81,

where \* = (A%,...,A%) is the inflow capacity vector of the closed network
(0, P(h), u*), as defined via (2.1). The limit theorem is a FCLT jointly for the
sequences

Q"h,n(t) — %Qh'”(nzt), éh,n(t) - —i—[Bh’”(nzt) —phnt],

Qn(t) = %Q””(nzt), Bhn(t) = ;zl—Bl’”(nzt),
1 1
Q"(t) = —Q"(n%), B(t) = —[B"(n%) - p"nt].

Here p” is the traffic intensity of the network (0, P(h), u*). Denote by a and
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B, respectively, the set of nonbottleneck and bottleneck stations of the network
(0, P(h), u*). Then let

At = diag(p”), A" = diag(p'),

to ease the notational burden in Theorem 7.1.

THEOREM 7.1. Consider a sequence of prioritized closed networks indexed
by their total population size n. Assume that the service times and routing
indicators do not vary with n and that 7.2.A-7.2.B hold. Let £" be the
Brownian motion 7.2.C. Then the weak convergence

A

(11 (Q"",Q"",¢", B, Bn, Br) »,(§*,4".Q, B, B', B) int>o,
holds as n — «. The limit is described for t > 0 by

(7.2)
(7.3)
(7.4)
(7.5)
(7.6)
(7.7)
(7.8)
(7.9)
(7.10)
(7.11)

(7.12)
(7.13)
(7.14)

(7.15)
(7.16)

(7.17)
(7.18)

(7.19)
(7.20)

Q! =o,
Q= X"+ [I- P(h)]Y", *
XM(t) = X"(0) + £i(t) + Pug(h)[I - Pi(R)] T'EL(2),
X"(0) = Q}(0) + P,a(h)[I - Pi(h)]'QH(0),
P(h) = Py(h) + Poo(R)[I = P,(h)] ' Poy(h),
Y* = Uppy( X",
BE = (a%)7'[1 - Py(R)] Y[ Q1 (0) + £ - P (h)Y],
By = —(s) ",
@ =0,
Q=X+ [I-P)]y,
X(t) = X(0) + £,(t) + Pog(D[I - Pu(D)] E(2),
X(0) = @4(0) + Pog(D[I - Pi(1)] 7'Q.(0),
£(t) = &1(t) + {[1 - P()]A' - [1 - P'(h)]A"}BA(2),
P(1) = Py(l) + Py (D[ I = P,(1)] " Poy(D),
Y = Vp(X),
B, = (&) 71 - PA1)] 7[Qu0) + £, - Ba(1)Y],
BB = _(Alﬁ)—ly’
Q'= Q- Q"
B'=B - B".
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7.3. Remarks.

REMARK 1. As before, (7.2)—(7.20) are equalities in distribution. The con-
vergence of Q™" and B*" and the relations (7.2)—(7.7) are all consequences
of Theorem 4.1. Also, the remarks in Subsection 4.3 all apply to the perfor-
mance measures of k-customers.

REMARK 2. The bottlenecks B of a prioritized closed network, hence the
nonbottlenecks « as well, are determined by the triplet of the h-customers. A
deeper support for this remark is provided by the fluid approximation, derived
in Subsection 7.5 as an intermediate step along the proof of Theorem 7.1. In
the fluid model, each of the J buffers is capable of holding simultaneously, but
separately, two types of fluids: A-fluid and /-fluid. The circulation of A-fluid
conforms to the rules described in Subsections 3.1-3.3; [-fluid is released from
a buffer, according to the same rules, only when A-fluid is not present there. In
a finite time, the fluid network reaches the following equilibrium: buffers in «
are empty; the h-fluid circulates within B at constant rates A*; finally, the
l-fluid is motionless because it is never released from a buffer in B once it gets
there [see (7.38)]. In a diffusion time scale, equilibrium is reached instanta-
neously, which explains (7.10).

REMARK 3. A detailed alternative representation of (7.19)-(7.20) is given
on ¢ > 0by

Q. =0,
Q4 = Q(0) + PL(DII ~ P17'QU0) ~ [1- P'(1)] 8, B,
BL = (D})7'[1 - Py1)] [ @40) + Pa(1) A, BY),

Bi = (85) 7" - (4)7Y.

7.4. To simplify the proof for Theorem 7.1, let us assume that
T4A Q2(0) =0 and Q.(0) =0,

in which case (7.1)-(7.20) actually hold in ¢ > 0. The bar and hat conventions
from Section 4 are retained here. In addition, a superscript 2 or ! will always
be appended to a process or a property associated with the corresponding
customer type. Skorohod’s representation is assumed to have been applied.
Thus, the primitives associated with the customer types are all defined on a
common probability space, there is independence between the types, 4.5.B—
4.5.D [hence (4.14) and (4.15)] hold with probability 1 for both customer types
and so does 7.2.A-7.2.B. For example, it is assumed that 4.5.C* holds,
meaning that for almost all sample paths, $*"(¢) = §*"(nt) — u*nt - S*)
u.0.c. as n — o,
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In preparation for the proof let us center 7.1.A, as in Subsection 2.7, to get

74.B Qh»" = Xhkr + [I—P'(h)]Yh’”,
where
(7.21) X™n(¢) = Q™"(0) + 0%t + £77(2),
(7.22) 0" = [P'(k) — I]ub,
J
(7.23) Ern(t) = EI{R}‘[SIZ’(B?’"U))] — pu;(R)SE(BE"(8))}

J
+ X pu(W[SH(BE@) - wiBE (1)

~[sH(BF"(1)) - wiBF(1)],
(7.24) YPn(t) = uh[t - B (D))

The processes @™, X*" and Y*'" uniquely satisfy 2.7.A-2.7.C, playing the
roles of @, X and Y there. From 7.1.A-7.1.D, the total queue-length process
can be represented as

7.4.C Q"=X"+[I-P(D]Y",
where

(7.25) X"(t) = Q"(0) + 6t + £(¢),

(7.26) 6 =[P'(1) —I]n,

(7.27) = e —ph),

(7.28) £n(8) = ePm(e) + €4 (1)

+{[I - P'(h)]A" - [1 - P'())]A)[p" - B*"(1)],

J
(7.29) ghn(t) = ¥ (RYUSHBL™0))] =~ pay(D)SE(BE™(1))}

J
kE P (D[SH(BE™ (1)) — Wi BE"(1)]

—-[s}(Bim()) - wiBEm(2)],
(7.30) Y7 (¢) = [t — BI(1)].

As above, Q", X" and Y " uniquely satisfy 2.7.A-2.7.C. Note that u, defined
in (7.27), represents the service capacity available to l-customers after dis-
counting the capacity allocated to h-customers. The bar and hat analogs of
7.4.B and 7.4.C are omitted for the sake of brevity.

7.5. We now formally describe the fluid model which approximates the
prioritized network. One should remark that because of 7.4.A, equilibrium for
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this model starts immediately at time ¢ = 0. In view of Theorem 7.1 in CMa,
4.5.B", (4.14)*, (4.15)*, 7.4.A and the fact that I-customers do not affect the
flow of h-customers, we have

75.A (6"*", E”"‘) - (Q", 1_3") u.0.c.as n — o,

where

(7.31) Q"(¢) = Q"(0) and B"(¢) =p*t fort > 0.

Applying 7.5.A, 4.5.B/, (4.14)" and (4.15)" to the representation (7.25) yields
(7.32) X" >X uoc.asn - o,

with

X(t) = Q(0) + 6¢ = @(0) + [P'(1) — I]ut
=Q(0) + [P(1) — I]&(e - ph)t.
If u in (7.33) was a positive vector, then 7.4.C could have been analyzed as

arising from the irreducible closed network (0, P(1), u). However, u, = 0 since
p,'; = e, which is circumvented by writing 7.4.C in a and B blocks as .

(7.34) Qr =X> - P ()Y + [I - P(L)]Yr,
(7.35) Qp =Xp — P (L)Y + [I—P,;(l)]Y;.

From (7.31) and the inequality Y;"(¢) = Aglet — Bp(1)] < Allet — Bl™(2)), it
now follows that

(7.36) Y - o.

Corollary 3.29 on page 15 in Berman and Plemmons (1979) guarantees that
o[P()] < 1. Since u,z = 0, (7.33) and (7.36) suggest that the representation
(7.34) be treated as arising from the open network (0, P,(I),u,). (Such a
network has no exogenous input, hence all its traffic intensities vanish.)
Indeed, applying Theorems 5.1 and 5.2 in CMa, while taking into consideration
7.4.A, results in

(7.37) (Qz(2),¥2(£)) = (0,1,t) w.o.c.asn — .

(The long-run fractions of busy time also vanish.) Using 7.5.A, (7.30) and
(7.37), one can calculate now all the performance measures associated with
stations in a. For the B part, substitute (7.32), (7.33), (7.36) and (7.37) into
(7.35) to conclude that

(7.33)

Qg(t) - Qﬁ(o)'
Now use (7.30), (7.36) and (7.37) to identify the u.o.c. limit of B"” as B*
defined in (7.31), identical to the limit of B"". Consequently,

(7.38) B“" -0 u.0.c.asn—> .

7.6. We are now ready to prove Theorem 7.1. The convergence of @"*" and
B"" and the relations (7.2)-(7.9) are all consequences of Theorem 4.1, so the
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focus is on l-customers. The first step, as in Proposition 4.4 [cf. (7.38)], is to
verify that

= 1_ 1
7.6.A Bh"(t) = —n—B””(nt) = ;l—zBl’"(nzt) -0 u.0.c.asn — .

Since B“™(#) is uniformly Lipshitz, 7.6.A will follow from Arzela-Ascoli’s
theorem once it is shown that any u.o.c. convergent subsequence of B%"(¢) in
fact converges u.o.c. to zero. For ease of notation, let us assume that the

sequence B%" itself converges u.o.c. and denote its limit by B’. The proof of
7.6.A now amounts to verifying that B!=0. The convergence of BbLn implies
that £4™ - 0, in view of (7.29). Consequently,

(7.39) §A" - é u.o.c.as n — o,

where £ is defined in (7.28) and £ is a continuous process.

In the derivation of the fluid approximation it was already noted that
ug = 0, hence Theorem 4.1 cannot be applied directly to 7.4.C. Again, we
resort to the block representation (7.34)-(7.35). Momentarily assume that

7.6.B YB" —Y u.0.c.asn > w,

The representation (7.34), treated as arising from the open network
0, P (1), u,), confirms with Theorem 6.1 that

(7.40) Qr—@,=0,

in accordance with (7.10). Solving for ¥,* in (7.34) and substituting the
outcome into (7.35) yields

(7.41) Q=X+ [1-PO)]Yr,
where
X2(t) = Qp(0) + PLe(1)[I - P(1)] 7'Q7(0)

+£5(2) + Pop(D [T - PuD] 7ME2(8) = Pag(D[1 = Po(1)] Q2 (),

and P(l) is defined in (7.15). Applying to (7.41) the continuity 3. .3.E of the
oblique reflection mapping now verifies the convergences of Q" Y and B"
[the latter in view of (7.24)], which proves (7.11)-(7.16) and (7. 18) Lettlng now
n — « in the “hat” version of (7.34) establishes the convergence of B2 and
hence (7.17). Finally, the limits of @™ and B“" in (7.19) and (7.20) follow
from the relations

Ql,n - Qn _ Qh,n and ﬁl,n = ﬁn _ Eh,n'

To complete the proof of Theorem 7.1, one must still check 7.6.B and show
that B’ = 0. First, it has been actually shown that the limit of every u.o.c.
convergent subsequence of {Yﬁ , n > 1} must coincide with Y in (7.16). It
suffices, therefore, to exhibit one such subsequence. To this end, note that for
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any t >s >0,
0 < Y2(¢) - Y(s) < —AL[Brn(2) - BEn(s)].

Since ﬁ converges u.0.c. to a continuous limit, the sequence {¥;*, n > 1} is
equlcontlnuous The theorem of Arzela—Ascoli now guarantees 7.6.B.

The convergence to B B! in 7.6.A implies that Y" converges u.o.c. to 0 and
hence B" converges u.o.c. to ¢. The latter convergence, combined with 7.5.A

and (7. 31) shows that BB = 0. Now the block representation (7.34) and the

convergence 7.5.A yields B’ = 0, thus completing the proof of 7.6.A. Finally
note that, in view of 7.6.A, § in (7.39) is as defined in (7.14).

8. Simple extensions, related results and future research.

ExTENsIONS. The scope of Theorems 4.1, 6.1 and 7.1 can be extended
significantly with minor effort. We now outline some possibilities.

8.1. Consider a sequence of networks (A>", P(n), u*) in which the switch-
ing matrix also varies with n. This additional flexibility manifests itself only
through the Brownian drift of the diffusion limits. Specifically, for closed
networks add to 4.2.A-4.2.B the assumption that

n[P(n) —P] > M asn — », where P is stochastic irreducible,
and for the open networks add to 6.1.A-6.1.C the convergence
Vn[P(n) —P] > M asn — o, whereo(P) <1.

In both cases M is an arbitrary J X J matrix. Then Theorems 4.1 and 6.1 still
prevail with ¢ = BM(M'u, A) (instead of BM(0, A)).

8.2. For the convergence of queue lengths, workloads and busy times, only
4.2.A-4.2.B and 4.5.B-4.5.D are essential in Theorem 4.1 and only 6.1.A-6.1.C
and 6.2.A-6.2.D in Theorem 6.1. Our results, therefore, accommodate any
arrival, service or routing scheme, as long as the parameters involved converge
at the proper rates and the underlying primitive processes jointly satisfy an
appropriate FCLT. Such extensions again affect only the parameters of the
Brownian motion £. They apply, for example, to batch arrivals, to arrival and
service processes that are either superpositions or splittings of renewal pro-
cesses and to some networks with dependencies among routing, arrivals and
services [as in the single-station model analyzed by Fendick, Saksena and
Whitt (1988)]. Readers are referred to Section 6 in Reiman (1984) for more
rigorous details.

Reiman (1984) also points out that the convergence of sojourn times re-
quires more than the assumptions referred to in the previous paragraph. For
concreteness consider closed networks. First, the representation (5.23) is valid
only if a FIFO service discipline is adhered to at all stations. Now with FIFO,
the convergence of D}, in Theorem 4.1 indeed holds under the assumptions
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mentioned above if 5.6.A prevails, but 5.6.A may fail without Markovian
routing.

8.3. Theorem 4.1, as well as Subsections 8.1-8.2, extend to reducible
closed networks. Here the switching matrix P is of the form

P, Py, o Py,
0 Py, - 0
o 0 --- P

rr

where the diagonal blocks are all squares, P, is substochastic with o(P;;) < 1
and P;, i=2,...,r, are irreducible stochastic [see, e.g., Berman and
Plemmons (1979), pages 222-223). Write @ in Theorem 4.1 as (@%",...,Q"")
according to the partition of P. Then the diffusion limit @(¢) vanishes for
t > 0. Each other block i, i = 2,...,r, behaves like an autonomous irreducible
closed subnetwork to which Theorem 4.1 applies, but with the ith block of

@(0) in 4.2.A replaced with @*(0) + P;,[I — P;,1-1Q%0).

8.4. Prioritized open networks can also be analyzed. As in Theorem 7.1,
assume that there are only k- and I-type customers, but here o[ P(h)] < 1 and
o[P(1)] < 1. Johnson (1983) considered the case where none of the stations are
h-bottlenecks. As expected from (6.2) and Theorem 7.1 then, only the diffusion
limits associated with [-customers are nontrivial. They can be calculated as
though the network is the single class network from Section 6, but
the parameters that determine the limits must be modified to account
for the presence of h-customers. Specifically, one uses the service-rate vector
diag(e — p*)u!, which discounts the capacity allocated to h-customers and a
covariance matrix that is modified similarly to 7.2.D. Suppose, on the other
hand, that a certain station j is a bottleneck for h-customers. Then the
diffusion limit Q}' does not vanish. The behaviour of Q} conforms to Theorem
7.1 with an additional wrinkle: If p;’ > 1, then l-customers accumulate at j at
a rate Alj and their effective service rate there is zero.

RELATED RESULTS. We now survey some recent results of others that
pertain to the ones reported here.

8.5. It is commonly accepted that Baskett, Chandy, Muntz and Palcois
(1975) and Kelly (1979) have come close to exhausting the models of queueing
networks (of the type discussed here) which are amenable to exact analysis.
This explains the recent surge in research, which our results contribute to and
which resorts to approximations as an alternative mode of analysis. Specifi-
cally, Theorems 4.1, 6.1 and 7.1 provide theoretical justifications and guide-
lines for approximating queueing networks in terms of their bottleneck
subnetworks. Such approximations, commonly referred to as heavy-traffic
approximations, have traditionally treated balanced networks, thus excluding
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networks with either nonbottleneck or strict bottleneck stations. Coffman and
Reiman (1984) and Harrison and Williams (1987) approximate balanced open
networks, while Harrison, Williams and Chen (1990) focus on balanced closed
networks. The theoretical justifications for excluding nonbottlenecks in heavy
traffic approximations are (4.2) and (6.2) [the latter was partially derived by
Johnson (1983)]; strict bottlenecks have been omitted presumably because
they are perceived as rare in real systems. Reiman (1987) is recommended for
a summary of the principles that underly heavy traffic approximations, as well
as for references to alternative approximation schemes of queueing networks.

8.6. The analysis of the stationary distribution of a stochastic network
ranks high in importance. As a first step, one must address the foundational
question concerning the existence and uniqueness of such a distribution. A
safe conjecture is that, in great generality for the models in Section 2, a
stationary distribution exists for closed networks, as well as for open networks
without bottlenecks. Major progress toward confirming this conjecture is
reported in Borovkov (1987) [see also Kaspi and Mandelbaum (1989)], but a
definitive resolution still seems unavailable. Borovkov (1987) also considers
some diffusion limits of closed networks. However, his results are not as
explicit and are less general than ours and his approach seems less successful
than the one employed here.

8.7. Consider an RBM which closely approximates some queueing network
and suppose that this RBM has a stationary distribution. Kingman (1965) and
Harrison (1973) [see also pages 244-247 in Ethier and Kurtz (1986)] support
the hope that the queueing network itself must have a stationary distribution.
This distribution, properly normalized, must also be close to that of the RBM,
but a formal justification is available only in the easy case of closed networks
[Kaspi and Mandelbaum (1989)]. The premise, however, was sufficient to
stimulate the works by Harrison and Williams (1987) and Harrison, Williams
and Chen (1990). In the first paper, the authors demonstrate that for balanced
open networks (a = y = @ in Theorem 6.1), the open RBM @ has a unique
stationary distribution if and only if

(8.1) c=ct—[I-P] >0,

where c¢* and c* are defined in 6.1.A and 6.1.B, respectively. For the
sequence of open networks converging to @, (8.1) implies that all the traffic
intensities of the nth network, n large enough, are indeed strictly less than
unity. In the second paper previously mentioned, it is verified for balanced
irreducible closed networks that the closed RBM @ in Theorem 4.1 always has
a unique stationary distribution. (This is expected due to the compact state
space involved.)

Explicit calculations of the stationary distribution of an RBM are currently
available only when the distribution has a separable density of an exponential
product form (an example will be given momentarily). Indeed, the authors
mentioned in the previous paragraph prove, both for open and irreducible
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closed RBM’s, that such a form prevails if and only if the covariance matrices
A in 4.2.D and 6.1.E satisfy

(82) 24, =~ [Ajjpjk/(l —pj;) + Appr;/(1 _pkk)] forall j # k.

For an open RBM @ = (@, ..., Q,), (8.2) implies that, at a stationary state,
lts components are independent random variables and that each @;, j =

, J, is exponentially distributed with mean 2u;c;/ A, Jj» € defined i ln (8 1).
The analogous description for closed RBM’s, given by (2.17) in Harrison,
Williams and Chen (1990), is omitted here because it is less straightforward to
state.

Easy algebra shows that A in Theorems 4.1 and 6.1 satisfies (8.2), respec-
tively, when b; = land when a; =b;=1,j=1,...,d. (Recall that a; and b;
are the coeﬁiclents of varlatlon of the exogenous mterarrlval times and the
service times at station j.) These latter conditions are clearly met by Poisson
arrivals and exponential service times, as in all the classical references listed in
Subsection 1.1.

It was already emphasized that the balanced subnetwork B of a general
network behaves like an autonomous system whose parameters are identified
by our limit theorems. The stationary distribution of this subnetwork, when it
exists, has a separable form if b; = e for closed networks and az = bg = e for
open networks. Let us conclude this digression on stationary distributions
with an observation that applies to the example in Subsection 1.5: if the
service rates u” do not vary with n in Theorem 4.1 and (8.2) prevails, then the
stationary cistribution of the closed RBM that approximates the bottleneck
subnetwork B is, in fact, the uniform distribution on the unit simplex of
dimension |B].

8.8. One should mention another research trend that concerns diffusion
approximations of stochastic networks. It is aimed at models in which some
form of exponentiality is presumed. Such assumptions give rise to Markov and
point processes that are analyzable by martingale-based techniques. Represen-
tative references are Yamada (1988) and Kogan and Krichagina (1988).

8.9. Directions for future research.

NETWORKS WITH FINITE BUFFERS. Kogan and Krichagina (1988), as well as
the other papers in Perros and Altiok (1988), are actually concerned with
models of networks in which an upper bound is imposed on the number of
customers that can simultaneously occupy some of the stations. These practi-
cally important models are referred to in the queueing literature as either
queueing networks with finite buffers, or with finite capacity, or with blocking;
viewed as particle systems [Liggett (1987)], they are called systems with
exclusions. (Blocking and exclusion refer to the fact that transitions of cus-
tomers into fully occupied stations are forbidden.) Fluid and diffusion approxi-
mations for networks with finite buffers should arise from increasing the
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buffer sizes indefinitely and at proper rates. Indeed, order n is probably
required for the closed model in Section 4 and order Vn for the open model in
Section 6. Consequently, such approximations would provide insight on queue-
ing networks with buffers of moderate sizes but, to the best of our knowledge,
no theory has yet been developed. We believe that some modification of our
approach should be applicable to approximate the finite-buffer versions of the
models in Sections 4 and 6. The corresponding fluid and diffusion approxima-
tions would arise within the framework for RBM’s in polyhedral domains [as
in Williams (1987) or Mandelbaum (1990)].

MuLTITYPE NETWORKS. The model analyzed in Section 7 is a simple special
case of a multitype or multiclass queueing network [Baskett, Chandy, Muntz
and Palcois (1975), Kelly (1979)]. These are queueing networks in which the
customers are of several types, or classes, and they are allowed to change their
types upon completion of each service. [Work on multitype particle systems has
only recently started to appear, but with different emphasis; see Durrett and
Swindle (1988).] Fluid and diffusion approximations for multitype networks is
an active challenging area of research, as demonstrated in Johnson (1983),
Peterson (1985), Harrison (1988), Reiman (1987, 1988), Whitt (1988) and
Chen and Mandelbaum (1988).

Once customers are distinguishable, there is freedom in specifying the order
in which they are served and the routing which they are to follow. Here,
different options typically give rise to different fluid and diffusion approxima-
tions. This is important because it raises the possibility of comparisons among
different operating schemes, perhaps even leading ultimately to those which,
under some circumstances, are optimal in some asymptotic sense [cf. Wein
(1987), Chen and Yao (1989) and Chen (1990)]. We refer the reader to
Harrison (1988), where a promising general framework, called a Brownian
network, is introduced. Approximating multiclass networks, however, is typi-
cally difficult. Let us conclude with three examples for which some progress
has been made, but a definite form has not been reached yet. First consider the
prioritized networks in Section 7. Our methods and results are no longer
applicable if customers are allowed to change their type upon completion of
each service. A second example is when the service discipline at each station is
FIFO, but it is required to keep separate track of the performance measures
associated with each class. A last example is when each class can be served
only by a restricted set of servers (networks with multiserver stations can be
accommodated within this framework). An example is when a customer, upon
completion of service, joins the server who is confronted by the least work
among all the servers by which he can be served.

Acknowledgments. Thanks are due to Mike Harrison, Haya Kaspi, Ward
Whitt, Ruth Williams and an anonymous referee for commenting on earlier
versions of the manuscript and offering suggestions that have led to its much
improved present form.
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