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AUTOMORPHISM INVARIANT MEASURES ON TREES'

By RoBIN PEMANTLE

Cornell University

Consider a collection of real-valued random variables indexed by the
integers. It is well known that such a process can be stationary, that is,
translation invariant, and ergodic and yet have very strong associations:
The one-sided tail field may determine the sample; the measure may fail to
be mixing in any sense; the weak law of large numbers may fail on some
infinite subset of the integers. The main result of this paper is that this
cannot happen if the integers are replaced by an infinite homogeneous tree
and the translations are replaced by all graph automorphisms. In fact, any
automorphism-invariant process indexed by the tree is a mixture of ex-
tremal processes whose one-sided tail fields are trivial, from which the
mixing properties follow.

1. Introduction. An infinite, homogeneous n-ary tree is a loopless undi-
rected graph in which every vertex has precisely n + 1 neighbors: For exam-
ple, a unary tree (n = 1) is just the integers with the usual nearest neighbor
edges and a binary tree (n = 2) looks like it is supposed to as in Figure 1.

This paper considers processes indexed by a homogeneous n-ary tree;
throughout the paper, n is at least 2 unless otherwise stated. Without loss of
generality, such processes are assumed to take values in the standard measure
space [0, 1], that is to say, the process is a measure on the set () of functions ¢:
T — [0, 1]. The reason no generality is lost is that the main result (triviality of
certain tail fields) is measure theoretic, so [0,1] could be replaced by any
measure space without affecting the results. The convenience of [0, 1] is simply
to be able to take expectations directly instead of taking expectations of
indicator functions.

One class of examples of tree-indexed processes is the class of Markov
random fields [10]. Spitzer’s 1975 paper [16] is a thorough study of Markov
random fields on homogeneous trees gotten by extending integer-indexed
reversible Markov chains. Higuchi [9] has elaborated on this for ferromagnetic
Ising models on a homogeneous tree, giving representations of measures
satisfying local conditional probability criteria as limits of Gibbs states with
specified boundary conditions. Criteria for the existence of multiple Gibbs
states with the same local conditional probabilities (phase transition) are
given; see also [12] for results on the Ising model on a general tree. Another set
of examples, from where my interest in this problem derived initially, is the
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Fic. 1. Binary tree.

invariant measures for interacting particle systems. Classically, interacting
particle systems have been studied on the integer lattices Z™ [11], [6]. More
recently, there have been studies of the contact process on trees [13] and
unoriented percolation on a tree times Z [8].

This paper is concerned with measures u that are invariant under graph
automorphisms of T (formally defined in the next section). The stationary
measures for particle systems (e.g., the upper invariant measure for the
contact process) are often automorphism-invariant because the rules for evolu-
tion are. In the case of the Ising model, the stationary distributions are
Markov random fields and are automorphism-invariant as long as their local
characteristics are. At any rate, measures that are invariant under graph
automorphisms are natural objects of study and the object of this paper is to
shed some light on them.

What kind of general results can we expect? Consider for comparison the
case of random variables {X;: i € Z} indexed by the integers. Suppose the X;
are exchangeable, that is, their joint distribution is unaffected by permuting
the indices. Then de Finetti’s famous theorem ([7], Chapter VII, Section 4)
says that the X, are distributed as a mixture of i.i.d. random variables. In
particular, an extremal element in the class of exchangeable measures on RZ is
just an ii.d. product measure. On the other hand, suppose only that the
variables X; are stationary reversible, that is, their joint distribution is
unaffected by the permutations of the indices i » i + 1 and i — —i. Now
there is no neat characterization of the extremal measures and very little can
be said about the presence or lack of long range correlations. As an example of
what bad behavior may occur, consider the following process. Let X, be
uniform on [0,1) and let X; = X, + ja,,,q;, Where a is some fixed irrational
number. Let Y, = 1if X, € [0 1/10) and 0 otherwise. It is easy to see that the
Y process is an extremal stationary reversible process but that it is not mixing
and is in fact completely determined by its tail. Between exchangeability and
stationarity lie various notions of partial exchangeability, invariance under
groups of permutations of intermediate size. The more invariance you assume,
the stronger the characterization you obtain; see [1] or [5] for further exam-
ples.
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Returning to the case of a homogeneous n-ary tree, note that when n = 1,
the tree is just Z' and automorphism-invariance is just stationarity and
reversibility, so we get nothing new. In contrast to this is the infinitary tree
(n = ). Aldous [1] uses exchangeability to characterize the extremal automor-
phism-invariant processes; these turn out to be functions of reversible Markov
chains (any transition kernel for a reversible Markov chain has a natural
realization as a tree-indexed process, also called a Markov chain; see the
example in Section 5). Mixing and triviality of a certain tail field follow from
the Markov characterization.

The main result of this paper is to show that in fact for any n > 2,
automorphism-invariance and extremality imply that the one-sided tail fields
(as defined in the next section) are trivial. A mixing property follows from this
as does a weak law of large numbers. The preliminary work for this result will
include a discussion of what can and cannot be done in an automorphism-
invariant way on the boundary of a tree and on the horocycles of a tree.

Horocycles on a tree are a discrete analogue of horocycles on a Riemannian
surface which are circles centered at infinity. In fact much of the previous
work that has been done regarding tree automorphisms and harmonic func-
tions on trees has been motivated by the tree structure of SL,(K) for finite
fields, which is a discrete analogue of the Riemannian structure on SL,(R). In
this regard, see, for example, [15] and [3]. Since harmonic functions on any
graph have a random walk interpretation, study of harmonic functions on
trees and Martin boundaries has appeared in the context of random walk
problems (see, for example, [14], in which it is shown among other things that
the Martin potential kernel on vertices v for a particular boundary point of a
homogeneous tree depends only on which horocycle centered at that boundary
point contains v). The results and methods in this paper are not explicitly
based on consideration of SL,, but the use of random walk arguments in the
proofs of Theorems 2 and 3 bears unmistakable resemblance to the previous
work of Cartier [3], Chen [4] and others.

Note added in proof. 1 have recently learned from Shahar Mozes and Alex
Lubotzky (personal communication) that the main result of this paper may be
proved by a completely different method, namely, by adapting the Howe—-Moore
theorem to the group of even automorphisms of a homogeneous tree.

2. Definitions and results. Let T be a homogeneous r-ary tree, in other
words, every vertex (also called a node) has n + 1 neighbors and there are no
loops. Let xy denote the unique path connecting x to y, so the graph distance
d(x, y) is the number of edges in the path xy. As a graph T is bipartite, which
means that the set of vertices of T divides into two equivalence classes, where
x ~y if d(x,y) is even. It will be helpful to label the classes (arbitrarily)
EVENS and ODDS. For any set A C T, define the hull of A, denoted hull(A),
to be U, , e a%y-

For any node x, define a ray from x to be a sequence x, x,, X5, ... such that
d(x;,x;,,) =1and x;,, # x; for all i. (Here and after, x, will always mean
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x.) The set of rays .2 from a fixed node x can be given a natural measure m,
defined by m {-Z: y € £} = (n + 1)"1n179®Y for each y. This measure is
called the Hausdorff measure at x since it is the Hausdorff measure for the
metric d, on rays from x defined by d(.£,, -£,) = (n + 1)"'n"*, where £ is
the number of vertices other than x shared by .#; and .7#,. Hausdorff
measure is defined on the o-field &, generated by these sets as y varies (this
is just the Borel o-field with respect to the sequence topology). Another useful
way of thinking of m, is as the Poisson measure for the symmetric random
walk potential kernel [3].

The boundary of the tree, denoted 4T, is a natural object that can be defined
(following [17]) as the set of equivalence classes of rays where two are
equivalent if their set theoretic difference has finite cardinality. For any fixed
vertex x, the boundary is in one-to-one correspondence with the set of rays
from x. From this correspondence, 4T inherits the measure m, on the o-field
# = #,, the subscript being dropped because all o-fields &, are identical on
dT. Each m, is absolutely continuous with respect to each other, so there are
well-defined null sets on #.

The next definition follows [3] but in different notation. For any a € 4T and
any vertex x, define the horocycle in direction a through x, denoted h(e, x), to
be the set of vertices y such that d(x,z) = d(y, 2z) for all but finitely many
vertices z on any ray in a. (Terminology is from hyperbolic geometry where a
horocycle is a circle centered at infinity.) Write -# for the set of horocycles.
The horocycles in direction a are a partition of vertices of T into equivalence
classes. The classes have the same order type as the integers in the sense that
each horocycle 2 in direction a has a successor, namely the horocycle of
neighbors of elements of A that are in rays from a from points in A. Since
every horocycle is a subset of either EVENS or ODDS, horocycles are termed
even and odd accordingly. See Figure 2 for an illustration of some of these
definitions.

Let Q = [0, 1]T denote the set of [0, 1]-valued functions on T and let F be
the usual Borel o-field on Q making each coordinate measurable. Typical
elements of ) are denoted ¢. Let AUT be the group of graph-automorphisms
of T, which is to say that = € AUT if and only if 7 is a bijection from the
vertices of T to the vertices of T and 7(x) neighbors w(y) if and only if x
neighbors y. Elements of AUT can be classified according to whether they fix
at least one vertex, permute the two endpoints of an edge or act as a
nondegenerate translation along a doubly-infinite path ([17], Proposition 3.2).
Let G be the subgroup of index two in AUT (called AUT " in [17]) generated by
permutations 7 that fix at least one vertex. Alternatively, = € G if and only if
m preserves the parity classes, that is, 7(EVENS) = EVENS and #(ODDS) =
ODDS.

There is a natural action of G on Q defined by m(£) = o7~ 1. Say a
probability measure u on & is G-invariant if u(A) = u{w(¢): £ € A} for all
A € & and m € G. Use the notation P,(¢ - - ) to denote u{é&: ---}.

This paper is concerned with probability measures on % that are invariant
under the entire group of even automorphisms, G. Since G is uncountable,
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Fi1c. 2. h,; and hy are horocycles in direction a with h, the successor of h,. Both extend
infinitely upward.

this seems like a lot to ask so here is a way to find a countable subgroup
G, € G such that any measure on & invariant under G, is invariant under
the whole group G. List all pairs of finite sequences of vertices which can be
mapped to each other by elements of G and choose for each pair such a map.
Then G, is the group generated by these selected maps. Let u be a G-
invariant measure on . Let A € & be a cylinder event, that is, one that
depends on finitely many values of ¢£. Any map 7 € G is the pointwise limit of
maps in 7, € G,. Since 7, is eventually constant on A and u is 7,-invariant,
it follows that u(A) = u(w(A)). The cylinder events determine the measure, so
u must be G-invariant.

The space .#; of G-invariant probability measures is a closed, convex
subset of the linear space of measures on (2, which is compact in the weak
topology. It is easy to check that the conditions of the Krein-Milman theorem
are satisfied and hence that .#; is the closed convex hull of its extreme points
(i.e., those G-invariant probability measures that are not convex combinations
of other distinct G-invariant probability measures). In particular, there is no
generality lost in restricting attention to extremal elements of .#;, since every
element of .#; has representation as an integral of extremal elements of .#;
and the main results of this paper for extremal G-invariant measures are
easily translated into results for general G-invariant measures.

REMARK. It may seem strange to limit G to those maps preserving parity,
since then the measure concentrating on ¢, is G-invariant, where £, is 1 on
EVENS and 0 on ODDS. The alternative is to allow the full group of tree
automorphisms, in which case the measure that puts mass 1/2 on ¢, and 1/2
on 1 — £, is an extremal G-invariant measure. Then the tail fields in the main
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Fic. 8. F, is the intersection of o-fields such as F, and F,, as the o-fields move farther and
farther to the right.

theorem would have one bit of information instead of being trivial; I find this
even less aesthetic than restricting G.

Several kinds of o-fields might reasonably be called the tail field. Define the
big tail field & * to be the intersection over all finite sets of the o-field of
information given by the configuration outside the finite set. This is an
analogue of the two-sided tail on the integers. There is also an analogue of the
one-sided tail field, only instead of there being two, there is one for each
boundary point. For each vertex x and each ray .2 from x, let #(.2") be the
o-field of information at all vertices z for which zx intersects .2 in some point
other than x. For each a € dt, define F(a) to be the intersection over rays .~
in a of F(X). Call ¥(a) the tail in direction «. The main result can now be
stated.

THEOREM 1. Let p be a probability measure on the Borel subsets of () that
is invariant under G. Suppose u is extremal in that class. Then for any
a € 9T, the tail F(a) in direction « is trivial.

Consequences of this theorem are that extremal invariant measures on &
are mixing, that events become independent uniformly as they become distant
and that there is a very general weak law of large numbers that holds over
large sets of arbitrary shape; these will be spelled out in Section 5.

REMARK. When n = 2k — 1, the tree is just the right Cayley graph for the
free group on %k generators, FG(k). The left action of this group on itself
preserves the graph, so FG(%) is a subgroup of the automorphism group of T'.
It is natural to ask whether Theorem 1 is true with G replaced by the smaller
group FG(k). The answer is trivially no: FG(k) has a quotient isomorphic to
Z, so any behavior on Z such as extremality plus nontrivial tails may be lifted
to FG(k).
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3. Preliminary results on random functions. The first idea in the
proof of Theorem 1 is that random functions on T whose distributions are
G-invariant are almost surely constant, that is to say, with probability 1, they
are constant modulo null sets of dT. For this section, let (Q, ) be any
measure space with probability measure p and revert to o instead of ¢ for
sample points. Let f: (Q, %) X (3T, #) — R be any bounded jointly measur-
able function. Then f(w, ) is what I call a random bounded measurable
function on dT. Another description for f is as a random field indexed by dT.
Later, it will be useful to have a notion of almost sure constancy jointly in u
and %, by which will be meant constancy modulo p X m-null sets for any,
hence every x. For w € () and x € T, let

e.(f,0) = [f(0,a) dm.(a)

be the average of f on T in the Hausdorff measure at x. Each e, is
measurable and is hence a bounded, real-valued random variable. The follow-
ing theorem is a consequence of the fact that G acts ergodically on dT. A direct
probabilistic proof (similar to an argument in [4] but with a different twist) is
included as a warm-up to the proof of Theorem 3.

THEOREM 2. Let f: (Q, %, u) X T, &) = R be a bounded random func-
tion, that is, bounded and jointly measurable. Suppose that f is G-invariant in
the sense that P, (e (f, w) € A;) = Pe, (f, w) € A,) for any finite collection
of x; in T, Borel sets A, cR and 7 € G. Then f is w-almost surely constant
modulo HB-null sets.

Proor. From the relation m, = (n + 1)~ Zy d(x,y)=1My, it follows that
e, (f, ) is harmonic in x for each . By G-invariance, P,(le, f — e, f| > ¢) is
the same for any x, y with d(x,y) = 1 and x € EVENS. Let p(e) denote this
quantity. Let z,, z;, ... be a sample random walk on T independent of f with
2, € EVENS with probability 1. Write v for the law of the random walk. Now
for each w, {e, } is a martingale in the random walk filtration, hence converges
almost surely. But P, (le,, —e,  |> ¢)is easily seen to be p(e) by Fubini’s
theorem and conditioning on the pair (2,,,2,;,,). The almost sure conver-
gence implies P,,.(le, —e, |>¢) > 0as k — o, hence p(e) = 0 for any
¢ > 0. Thus P(e(f,w) = e,(f,w)) = 1 for any neighbors x and y, hence for
all vertices of T. Then e L f , w) is independent of x for almost every w. When
this occurs, f(w,-) is constant modulo a null set, since the values of e,
determine a function modulo null sets. O

The following is a digression in the sense that it is irrelevant to the eventual
proof of Theorem 1. For some fixed g8 € 9T, let f(w, @) be independent of w
and equal to 1 if @« =8 and 0 otherwise. Then the distribution of f is
G-invariant in the sense of Theorem 2, since null sets of 2 X 4T are ignored
and f is indeed almost surely constant modulo null sets. Clearly, however, f
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is never constant, so the modulo null sets cannot be dropped. Can this be fixed
by strengthening the G-invariance? By requiring the finite-dimensional
marginals of f to have G-invariant distributions it is easy to see (exercise for
the reader) that f cannot almost surely be constant with a finite exception set.
No form of G-invariance, however, is strong enough to force f to be almost
surely constant, as shown by the following example. For x € T, let
Q,, %, n,) =0T, B, m,) and let (Q, F, u) be the product of these. A typical
o € Q is a function from T to dT; the coordinates are independent, each with
a different Hausdorff measure for its law. Let f(w,a) = 1 if thereisan x € T
with w(x) = a and 0 otherwise; in other words, f is the indicator function of
the union of the single points picked out from Hausdorff measure at each
point. Then [ is never constant, having almost surely a countably infinite
exception set, but the distribution of f is G-invariant in the strongest sense:
There is a measure preserving G-action on Q such that f(mw,Ta) = f(w, a);
the action is defined by (rw)(x) = m(w(7m ™ 1x)).

The next job is to replicate Theorem 2 but for the set of horocycles #
instead of dT. The argument will be a little bit trickier. Let &%, C # denote
the horocycles containing x. Define Borel sets of horocycles to be the sets
A c # for which each A N &, is Borel, where Borel subsets of %, are
defined by the correspondence a <> h(a, x) between 4T and #,. Similarly, a
null set is a set N for which each N N &, corresponds to a null set. A
random function is a jointly measurable map from (Q, %) X (#, &) to the
reals for some space ) with a probability measure u on it. For o € () and
x,y €T, let I(x,y) be the set of a € dT for which y € a*, in other words,
I(x,y) is the set of boundary points past y as seen by x. Let

ehe(frw) = [ flw,h(a,2)) dm (a)/m(I(x,7))
I(x,y)

be the average of f on horocycles through z whose directions are in I(x, y).

3 * *
Write e, for eg,,.

THEOREM 3. Let f: (Q, &, n) X (H#, #) - R be a bounded random func-
tion. Suppose the distribution of f is G-invariant in the sense that the joint
distribution of a finite collection {e;‘lyizi) is the same as the joint distribution of
{er,.my,ms}- Suppose further that the finite-dimensional marginals of f have
G-invariant distribution, that is, the joint distribution of f(h;) is the same as
the joint distribution of f(mwh,) for a finite collection of horocycles. Then f is
w-almost surely constant on even horocycles modulo null sets, and the same for
odd horocycles.

ReEMARk. The assumption of G-invariance of the finite-dimensional
marginals is unnecessary but is included to shorten the proofs since it holds in
the application and in all interesting cases I know of.

Begin with two preliminary lemmas.
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LEMMA 4. Let h, and h, be any two horocycles that intersect. Then for any
x € hy N hy, the cardinality of £} N £, \ {x} is some value c(hy, hy) inde-
pendent of x, where £, is the ray from x in a;, the direction of h;. If ¢ = 0, the
cardinality of by N hy is 1. If ¢ > 0, the cardinality of hy N hy is (n — 1)L,
(Recall that n is one less than the degree of the vertices.) There is an
automorphism mapping the pair (h, hy) into another pair of intersecting
horocycles (I, I'y) if and only if c(h, hy) = c(h'y, h'y).

Proor. Figure 4 illustrates the overlap of two horocycles k; and h, in the
two cases c(h,, hy) = 0 and c(hy, hy) = k£ > 0. From these the assertions of
the lemma should be clear. O

LEMMA 5. Let a be any direction and let x and z be any vertices with z at
distance two from x and on the ray from x to a. Then for any k, there is a
sequence of four horocycles hy = h(a, x), hy, hs, hy = h(a, 2) such that h; N
h;., has cardinality at least (n — Dn*~1 fori=1,2,3.

Proor. Let y be the point on the ray from x in « at distance 2k + 2 from
x. Let B € 9T be a direction for which the ray from x in B intersects the ray
from x in « in precisely £ + 1 points and let y € 9T be such that the ray from
x in y intersects the ray from x in « in precisely £ + 2 points. Let h, =
h(B,x) = h(B,y) and let hy = h(y,y) = h(y, z). This works (see Figure 5). O

ProoF oF THEOREM 3. Fix x €T and let N be a positive integer. Let
@ =Xg,%y,... and B = yy,¥y,... be random rays from x = x, =y, with the
following properties: (i) the law of a is m ; (ii) the law of B is m; (iii) the law
v of (a, B) is m, X m, restricted to the set where x; = y; if and only if i < N;
(iv) f is independent of a and B.

Observe that e} (f,®) = E(f(w, h(a, x))Ix,,...,x,) and is therefore a
martingale in % for fixed » converging v-almost surely to f(w, h(a,x)| all
x;) = f(w, h(a, x)). Thus

(1) P,(lef..(f, ) — (@, h(a,x))| > ) =0

for each ¢ > 0, w € Q as k — «. Hence for any £ > 0, there is an N(¢) such
that for £ > N(e),

(2) P, (et ( f,0) = f(@, h(a, %))l > &) <e.
Now restrict the choice of N above to be at least N(e). Then
P, (If, (@, h(a,x)) = (o, h(B, %)) > 2¢)
) <P (let (o) = f(@, h(a,x))] > &)
+ P, (lek o (fr0) = f(o, h(B, %)) > &)
< 2e.
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x 3/ 8 hy = h@,x)
|
Ne

h, = h(B,x)

FiG. 4. (a) The case c(hq, hy) = 0. (b) The case c(hy, hy) = 3; here £y N £, \ {x} = {x;, x5, x3}.
hy = h(B, x) represented by vertices in rectangular boxes.

On the other hand, G-invariance of the finite-dimensional marginals of f,
together with Lemma 4, implies there is a p(N, ¢) such that for any Ay, h,
with ¢(hq, hy) = N,

(4) P (f(w,h;) — f(o,hy)l > 2¢) = p(N,¢).
The rays a and B are chosen always to satisfy c(h(a, x), (B, x)) = N. Thus,
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\(
z
h(a,x)
h(B,x) = h(B,y)

h(Y,y) = h(Y,z) N j
h(a,z) \

FiG. 5.

conditioning on « and B in (3) gives p(N, ) < 2¢ for N > N(e). Informally,
horocycles that share enough vertices are arbitrarily likely to have arbitrary
close values of f.

Now let h(a, x), h(a, w), h(a, z) be successive horocycles in direction a.
Apply Lemma 5 to the horocycles h; = h(a, x) and h, = h(a, z) to get h, and
hs with c(h;, h; ) > N(¢) for i = 1, 2, 3. Then

3
P,(f(w, hy) — f(w, hy)l > 62) < ¥ P(f(w, k) = f(@, k1)l > 2¢)
i=1

3
= Z_:lp(c(hi’ hi+1)’8)

< 6e.
This is true for any & > 0, hence P,( f(w, h,) = f(w, k) = 1. Since h; and h,
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can be any consecutive even horocycles it follows that for each a, P(f is
constant on even horocycles in direction @) = 1. Then by Fubini’s theorem,

P ({a: f(hy) # f(hy) for even horocycles k; in direction a}
(5)

is a null set) = 1.

Let f,: O X dT — R be defined by f,(w,a) =0 if there are vertices x,y €
EVENS with f(w, h(a, x)) # f(w, h(a, y)) and otherwise be defined by f,(w,
a) = f(w, h(a, x)) for any x € EVENS. Define f, analogously for odd horocy-
cles. It is trivial to check that f, and f, are measurable. To check that they
are G-invariant, pick any z € EVENS and write

e, (for @) = ]I( y)fe(w,a) dm (o) /m (I(x,y))

= i (@ h(e:2) dm.(@)/m.(1(x,9))

= e:(f, ),

where z is any even vertex and the last two equalities are u-almost sure; the
fact that f may be substituted for f, under the integral sign follows from (5).
Now e, ..,(f,,0) = e} ,..(f, ) p-almost surely, so G-invariance of f, fol-
lows from G-invariance of f. Theorem 2 now implies that f, is almost surely
constant modulo null sets. Of course, the same is true of f,. This proves

Theorem 3. O

4. Proof of Theorem 1. To show that % (a) is trivial, it suffices to show
that P”(AI(? (a))(-) is constant for cylinder events A. Since versions of
P,(A|F(a)X) differ on null sets, it suffices to find for each A and a a version
that is p-almost surely constant. Here is an outline of the reasoning.

Any vertex y in the horocycle hA(a, x) is indistinguishable from x when
viewed from «a (i.e., there is a 7 € G fixing a and mapping x to y) so F(a)
carries the same information about y as about x. The conditional distribution
of £(x) given F(«a) depends therefore only on the A(a, x) and not on x itself
and thus defines a function from horocycles in the direction « to probability
distributions on [0,1]. As a varies, this defines a function from # to
probability distributions on [0, 1]. Since the function is defined in a G-invariant
way, it must be almost surely constant modulo null sets, thus the conditional
distribution of £(x) given F(a) is constant. Applying a similar argument to
more general finite-dimensional marginals shows that % (a) is trivial.

Begin for real by constructing the conditional probabilities. A configuration
on a finite set S is just a Borel subset of [0, 1]°, that is, a specification of a
range of values for ¢ to take at each vertex in S. For each finite S ¢ T, each
t €Z* and each x € T \ hull(S), let #(8S, x,t) denote the set of z € T for
which x € hull(SU {z}) and 1 < d(x,2) < ¢
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N (8,x%,3)

Fic. 6.

The first goal is to define conditional probabilities
(6) P (¢ is in configuration 1l£(2) for z € #(S, x,1))

in a G-invariant way for each fixed configuration n on each finite set S. Fix an
xo € T. Each configuration 7 on a finite set S has finitely many images under
automorphisms of T fixing x, (see [17]). Choose one from each orbit and for
each chosen S, 1, each t € Z* and each 6: #(S,x,t) — [0,1], define
Wy(S, n, x,£X6) to be an arbitrary version of (6) evaluated at a ¢ that agrees
with 8 on (S, x,, ¢). Let W(S, 1, x,, £X(6) be the average of W(S, 7, x,, £X0’)
over the finitely many ¢’ that are § o 7~ ! for some 7 € G that fixes S, x, and
A8, x,4,t). Now extend W to arbitrary S, n and x by

(7) W(S,Tl,x,t)(e) =W(7TS,7T"7,7Tx’t)(0°7T_1),

where 7 € G maps x to x, and 1 to the only configuration on which W, is
defined. The right-hand side of (7) is well defined, due to the averaging
procedure, even though the term 6 o 7~ ! may not be. Clearly, W is a version of
(6) and is G-invariant in the sense that (7) holds for all = € G.

For each finite S ¢ T and each a € JT, let x,(S, @) be the unique x € T
such that d(x, hull(S)) = r and any ray in «a from a point in S contains x.
Let

(8) V(S’ n, a)(g) = ’:‘h_I)I:o tlgllw(s, n, xr(S’ a)’ t)(gl.///(s,x,.(s,a),t)))

where any limit that does not exist is defined to be zero. Recall that F(a) =
N,F(a"), where F(a") is the o-field generated by the values of ¢ on the
(8, x,(S, a),®). Then the inner limit on the right-hand side of (8) exists
p-almost surely and is a version of P (¢ is in configuration nl%(a”™)) and the
outer limit exists u-almost surely and is a version of P,(¢ is in configuration
nlF(a)).
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The conditional probabilities are now suitably defined. It is time to see why
they are p-almost surely constant. Fix S and 5. Fix a horocycle h(x,, a)
disjoint from hull(S). Let @: Q X Z#— [0, 1] be defined by

(9) Q(&, h) =V(7wS,mn, ma,)(§),

where 7 is any map in G mapping h, to h.

LEMMA 6. @ is well defined, jointly measurable, G-invariant and has
G-invariant finite-dimensional marginals.

Proor. The argument ma, is well defined because it is the direction of A.
The pair (7S, 1) is defined up to mapping under elements of G that fix A,
hence fix a. Such maps fix all but finitely many vertices in any ray in «, so the
pair (7S, 7n) ranges over the union over r of the finite orbits of some
particular pair (7S, m,n) under maps fixing all points on rays from S, in «
at distance r or greater from hull(S,). By construction, W is constant on each
of these orbits, hence on their union, since all the orbits intersect at (1,3, 7).
It follows from (8) that V is also constant on the union of the orbits and
therefore that @ is well defined.

To check measurability for fixed S and 7, note that for fixed r and ¢, the
right-hand side of (8) depends on « only through the points x(a): i = 1,...,r,
so it is a simple function partitioning 4T into clopen sets. For each of these
sets, the right-hand side of (8) depends on ¢ only through the values of £ on
the finite set A#(S, x,(S, @), ?), so it is a simple function in ¢ as well, thus
jointly measurable. Joint measurability is closed under taking limits and
assigning the value zero when limits do not exist.

To check G-invariance, note that

Q(éem Y, mh) = Q(&,h)

as an immediate consequence of definitions (7), (8) and (9). Since u is G-
invariant, this is a strong form of G-invariance implying both the ones in the
lemma. O

Returning to the proof of Theorem 1, Theorem 3 and Lemma 6 together
imply that @ is u-almost surely constant modulo null sets on even horocycles
and on odd horocycles. The constant modulo null set value of Q(¢, - ) on even
horocycles is a.s. the same as for Q(7¢, ), so it is a G-invariant random
variable, hence almost surely constant by the assumption of extremality. The
same is true of the odd horocycles, so @ is u X H-almost surely constant on
parity classes, meaning that the exceptional set is a u X m, null set for any x.
Then Q(-, @) is constant modulo u-null sets for almost every a, hence for
every a by the obvious G-invariance, and the triviality of %(a) has been
shown.

5. Corollaries, examples and limitations. This section describes a few
easy consequences of Theorem 1. The results are basically that mixing and a
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weak law of large numbers follow from the triviality of the tail fields #(a).
The proofs are along the usual lines.

For events A and B, write d(A, B) > j if there are sets V and W of vertices
such that A depends only on the value of ¢ at vertices in V, B depends only on
the value of ¢ at vertices in W and inf{d(x, y): x € hull(V),y € hul(W)} > j.

CorOLLARY 7 (Uniform independence for distant events). Let u be an
extremal G-invariant probability measure on (). Then for any fixed event A,

sup |w(ANB)—pu(A)u(B) >0 ask — .
B:d(A,B)>k

REMARK. It is not possible to get uniformity in A as well as B. For a
counterexample let £ be independent {0, 1}-valued automorphism-invariant
processes with P(¢M(v) = £™(w)) = 0.9 whenever d(v,w) =r and let ¢ be
the [0, 1]-valued process whose rth binary digit is £.

Proor. Suppose not and choose a sequence of events B, for which
(10) d(A,B,) 2k and |u(ANB,) —u(A)u(By)l =¢

for some £ > 0 and all k. Let V, and W, be the sets of vertices witnessing
d(A, B,) = k as in the definition of d(A, B) > j from the second paragraph of
this section. The first step is to show that all the sets V, may be taken to be
equal. Assume without loss of generality that no B, is trivial so no W, is
empty. Then each set V, has hull(V,) # T, so for each V,, there is some
oriented edge e, such that V, is included in the component of T \ e, contain-
ing the tail of e, and W, is included in the component containing the head of
e,. There are two possibilities. First, suppose there are only finitely many
distinct edges e, call them {e,: & € S}. Recall A is measurable with respect to
each o(£(v): v € V}), so that A is measurable with respect to N, go(¢é(v):
veV,)=0(W:ve N,V Since N, gV, is disjoint from each W, each
V, may be taken to be this set. On the other hand, if there are infinitely many
distinct e,, then there is some ray x,,x;,... such that infinitely many
oriented edges x;, x,, ; appear among the e,. If « is the boundary point for the
ray x,,%;,..., then A is measurable with respect to %(a). By Theorem 1,
F(a) is trivial, hence A is trivial and the corollary is trivially true in this case.
Step 1 has now been accomplished and in fact something stronger has been
shown: Not only can all V, can be assumed equal, but there is an oriented edge
e = xy such that V is in the component of T \ e containing x and each W, is
in the component of T \ e containing y.

Let xg, x,,... be any fixed ray. Write T® for the component of T \ {x,_;}
containing x, and T' for the component of T \ {x,} containing x,. Then since
hull(V) and hull(W,) are at distance at least k, there is some 7, € G mapping
V into T" and mapping W, into T(%). In fact by the stronger version of step 1,
r, may always be chosen to map the edge e to x,, x; and thus 7, A will be the

same event for all k. Replacing B, by 7, B, and A, by A=, A, does not
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affect equation (10), so there is no loss of generality in assuming that W, is
already a subset of T®. The rest is easy.

Write %, for o(T®) and note that N %, = ¥(a), where a € JT is the
direction of the ray x,, x;,... . By Theorem 1, %#(a) is trivial. Then

k(A N B,) — w(A)u(By)l < [ [E(AIF) - w(A)

< IE,(AlF) — u(A)ls.

Since N &, is trivial, the martingale convergence theorem implies E (A| %)
—u(A) - 0 almost surely and in L(u). Thus |u(A N B,) — /L(A)/.L(Bk)l -0
and the corollary is proved. O

CoroLLARY 8 (Mixing). Let u be an extremal G-invariant probability mea-
sure on Q. For any m € G, let |m| denote min, .y d(x,wx). Then for any
events A and B, u(A N wB) - u(A)u(B) as |7| - .

Proor. Choose any ¢ > 0 and let A’ and B’ be cylinder sets with u(AAA’)
<& and uw(BAB') <e. Now hull(A' U B’) is finite, having some diameter
D. Then d(A,7wB') > |m| — D - « as |m| -» «. By the previous corollary,
ju(A N 7B') — u(A)u(B’')| goes to zero. But

lu(A N 7B) — u(A)u(B)l < lu(A NwB') — p(A)u(B)l + 4e,

so limsup, .lu(A N 7B) — u(A)u(B)| < 4e. Since ¢ was arbitrary, the
lim sup is zero and the corollary is proved. O

CoroLLARY 9 (Birkhoff averaging). Again let i be an extremal G-invariant
probability measure on Q. Let m,,m,,... be any sequence of maps in G such
that for any x € T, d(mx,m;x) > |i - jl [e.g., m, = (w)* for some w without
fixed points]. Let f: Q — R be any bounded measurable function. Let

P
k

Then f® — E, f in probability.

ProoF. First consider the case where f = 1, for some event A. Clearly,
E,f® =E,f, so it suffices to show that the variance of f* goes to zero.
Write the variance of f® as

1
7 L [1(mA 0w A) — n(A)?].

1<i,j<k
Use the previous corollary with A = B and 7 = ;] 'rrJ to conclude that for
any ¢ > 0, there is an N such that |i —j |>N=>|1r 1-r|>N=>I/,L(1-rAﬂ
mA) — p,(A)zl < ¢. Then for k > N /g, the fraction of summands for which
Iz —jl < N is at most 2¢ so the variance is at most 2¢ + (1 — 2¢)e. Thus the
variance goes to zero as k goes to infinity and the special case is proved.
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By linearity, it is immediate that the corollary is also true for simple
functions (finite linear combinations of indicator functions). Finally, let f be
any bounded measurable function and ¢ > 0 be arbitrary. Let g be a simple
function with || f — gll. < &. Then for large enough k, P(Ig® — E, g| > ¢) <e.
But then P,(If® — E, f| > 8¢) <&, since f® and E, f are within & of g®
andE_ g, respectlvely "Thus f®>E,f in probablhty as well. O

The weak law of large numbers is a special case of this, although it must be
formulated differently to take parity into account.

CoroLLARY 10 (Weak law). Let u be an ergodic G-invariant measure of

= [0, 1]T and A be any Borel subset of [0, 1]. For a finite set of vertices S, let
e(S) =1 - 0(8) = |S N EVENSI| \ |S| and let A(S) be the fraction of vertices
in v € 8 for which ¢(v) € A. Let x and y be any vertices in EVENS and
ODDS, respectively. For any e, there is an N(¢) such that for any finite set
S c T of cardinality at least N(e), the probability is at least 1 — ¢ that
|A(S) — [e(S)P,(¢(x) € A) + o(S)P(E(y) € Al <.

Proor. By G-invariance, the expected value of A(S) is just e(S)P  (é(x) €
A) + o(S)P(£(y) € A). So again it suffices to show that the variance of A(S)
goes to zero. The correlation of the events ¢(x) € A and £(y) € A goes to zero
as the distance between x and y goes to infinity, according to Corollary 8.
Requiring S to be large enough forces each vertex in S to be at a large
distance from all but an arbitrary small fraction of the vertices in S. Then the
variance of A(S) is o(1) as the cardinality of S gets large, and the corollary is
proved. O

Berger and Ye [2] have used similar results to this to define entropy for
G-invariant probability measures on [0, 11T as follows. Let &, be the entropy of
the law of u restricted to a ball of radius & and divided by the number of
vertices in the ball. Then they show that &, decreases to a limit 2 which they
call the entropy of the process. In a subsequent work [18], they use a version of
Corollary 10 to show a version of the Shannon-McMillan-Breiman theorem
for trees, namely that if u is an extremal G-invariant measure and h,(¢) is
the log of the probability of seeing ¢ on the ball of radius & divided by the
number of vertices in the ball, then 4,, — h in probability.

Recall that there is an analogue of the two-sided tail field that is defined by

= Ngo(é(x): x € S), where S ranges over finite subsets of T. The
following example shows that #* is not necessarily trivial even when £ is a
Markov random field. Contrast this to the case of Z-indexed stationary pro-
cesses, where irreducible aperiodic Markov chains always have trivial two-sided
tails. The contrast is in a sense due to the fact that & * contains the
information of infinitely many tails.

ExampLE. Fix any p < 1 for which 2p — 1)?n > 1. Let ¢ be the Markov
random field such that £(x) is always —1 or 1 and the probability of £(x)
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being 1 given that £(y) =1 for precisely & of the n + 1 neighbors of x is
p* - py**17*/(p*(1 — p)**17* + (1 — p)p™*1-*). This is one of Spitzer’s
“Markov chains” [16] and can be constructed by picking some x, letting £(x)
be —1 or 1 with probability 1/2 each and defining the values of ¢ outwards
from x by letting £(y) agree with &(z) with probability p, where z is the
neighbor of y that is closer to x.

Let x, € T be a fixed vertex and let V,(¢) be the sum of ¢ over vertices at
distance k from x,. T. Kamae [9] has shown that E(V,(£)V,(£))/[EV,(£)2]1/2
remains bounded away from zero as k — «, which, by taking limits in L2,
implies the existence of & * measurable random variables positively corre-
lated with £(x,) and in particular, nondegenerate.
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referee; my work was enhanced by several conversations with Russ Lyons and
his comments on early drafts of the work.

REFERENCES

(1] Aupous, D. (1983). Exchangeability. Ecole d’Eté de Probabilités de Saint Flour. Lecture
Notes in Math. 1117. Springer, Berlin.
[2] BERGER, T. and YE, Z. (1990). Entropic aspects of random fields on trees. IEEE Trans.
Inform. Theory IT-36 1006-1018.
(3] CarTIER, P. (1972). Fonctions harmonique sur an arbre. Symp. Math. 9 203-270.
[4] CHEN, S.-S. (1981). Limit sets of automorphism groups of a tree. Proc. Amer. Math. Soc. 83
437-441.
[5] Diaconis, P. (1988). Recent progress in de Finetti’s notions of exchangeability. In Bayesian
Statistics 3 (Valencia, 1987) 111-125. Oxford Univ. Press, N.Y.
(6] DURRETT, R. (1988). Lecture Notes on Particle Systems. Wadsworth, Belmont, Calif,
[7] FeLLer, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed.
Wiley, New York.
[8] GRiMMETT, G. and NEwmaN, C. (1989). Percolation in © + 1 dimensions. In Disorder and
Physical Systems (G. Grimmett and D. Welsh, eds.). Clarendon Press, Oxford.
[9] Hicucsr, Y. (1977). Remarks on the limiting Gibbs states on a (d + 1)-tree. Publ. Res. Inst.
Math. Sci. 18 335-348.
[10] KinDERMANN, R. and SNELL, J. L. (1980). Markov Random Fields and Their Applications.
Amer. Math. Soc., Providence, R.I.
[11] LigGeTT, T. (1985). Interacting Particle Systems. Springer, New York.
[12] Lyons, R. (1989). The Ising model and percolation on trees and tree-like graphs. Comm.
Math. Phys. 125 337-353.
[13] PEMANTLE, R. (1992). The contact process on trees. Ann. Probab. 20.
[14] SAWYER, S. (1978). Isotropic random walks in a tree. Z. Wahrsch. Verw. Gebiete 42 279-292.
[15] SERRE, J.-P. (1968, 1969). Arbres, amalgames et SL,. Collége de France. Notes.
[16] SprzER, F. (1975). Markov random fields on an infinite tree. Ann. Probab. 3 387-398.
[17] Trrs, J. (1970). Sur le groupe des automorphismes d’un arbre. In Essays on Topology and
Related Topics. Springer, New York.
[18] YE, Z. and BERGER, T. (1990). Asymptotic equipartition property for random fields on trees.
Unpublished manuscript.

DEPARTMENT OF MATHEMATICS
OREGON STATE UNIVERSITY
CorvALLIS, OREGON 97331-4605



