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TAIL PROBABILITIES OF THE MAXIMA OF GAUSSIAN
RANDOM FIELDS!

By Jiayancg Sun
University of Michigan

This paper gives a general two-term approximation for the tail probabil-
ity of the maxima of a class of differentiable Gaussian random fields and
illustrates its potential statistical applications.

1. Introduction. Let {Z(¢), ¢t € I} be a nonsingular Gaussian random
field with zero mean and unit variance where I is a d-dimensional indexing
set. Various statistical problems can be reduced to calculating the tail probabil-
ity

(1) P{maxZ(t) > z}

tel

as z — o, Typical examples can be found in projection pursuit [cf. Sun (1991)]
and change point problems [cf. Hogan and Siegmund (1986)].

According to Adler (1990), page 5, when d = 1 there are only six special
cases (i.e., six kinds of covariance functions) for which exact formulas for the
tail probability (1) are known. For other cases, we can only obtain approximate
results. A one-term approximation formula for (1) can be found in Adler
(1981), page 160, if the Gaussian random field Z(¢) is homogeneous. However,
this one-term approximation formula is often not good enough for the follow-
ing two reasons. First, the one-term approximation is frequently inaccurate,
especially when d is large. Sun (1991), for example, discusses exploratory
projection pursuit, which is concerned with finding the ‘“nonlinear’’ structure
of high-dimensional data. In this application, we observe data points with
dimension p and use a projection index with J terms to enumerate the
amount of nonlinear structure in one-dimensional projections. Sun (1991) then
expresses the maximum of the projection index over all projections as the
maximum of a d-dimensional nonsingular differentiable Gaussian random
field where d = p + J — 2. Evaluating the tail probability (1) helps to decide
whether the nonlinear structure is real or just random variation in the data.
Typically, we are interested in p > 4 and J > 3, and hence d > 5. In this case
the one-term approximation performs very poorly and additional terms are
needed to get sufficient accuracy. Second, the Z(¢)’s derived from many

Received March 1990; revised October 1991.

1Research is supported in part by NSF Grant DMS-89-02188.

AMS 1991 subject classifications. Primary 60G60, 60G15, 60F10; secondary 62E20, 53C99.

Key words and phrases. Gaussian random fields, Weyl’s formula, Karhunen-Loéve expansion,
differential geometry, Fourier series, extreme value.

34

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Probability. EIN®RN

WWww.jstor.org



TAIL PROBABILITIES OF THE MAXIMA 35

statistical problems are not homogeneous. Therefore, it is an interesting and
important question whether we can get a higher-order approximation formula
for a wider class of random fields.

The ideas from Adler (1981) and Chapter 12 of Leadbetter, Lindgren and
Rootzen (1983) can be used to obtain a general one-term approximation
formula for a wider class of random fields[cf. Hogan and Siegmund (1986) and
Bickel and Rosenblatt (1973)]. Unfortunately, these ideas do not seem to be
helpful in obtaining a higher-order approximation to (1).

In this paper we use a method which we call the “tube method’’ to obtain a
higher-order approximation formula to (1) for a wider class of random fields.
The intuitive idea is as follows.

Let d = d if d is even and d = d — 1 if d is odd. If Z(¢) is differentiable,
there is a neat and simple connection between Z(¢#) and some manifold
through a Karhunen-Loéve expansion of Z(t). (See Section 2.) When the
Karhunen-Loéve expansion of Z(¢) is finite, the d-term expansion of (1) in
Theorem 3.1 is an easy consequence of Weyl’s formula (1939) for the volume of
a tube around a manifold. When the Karhunen-Loéve expansion of Z(¢) is not
finite, the lengthy proofs of a general two-term approximation to (1) intro-
duced in Theorems 3.2 and 3.3 involve approximating Z(¢) by some Z,(t)
which has a finite Karhunen-Loéve expansion. Difficulty arises because our
approximation is in the tail of the distribution: (a) For a fixed z and appropri-
ate Z,(¢)’s, P{lmax Z,(¢) > z} - P{max Z(¢) > 2} as k£ — . (b) For a fixed £,
there is a higher-order approximation to P{max Z,(¢) > z} as z > ® (see
Theorem 3.1). (c) Our purpose is to approximate P{max Z(¢) > z} as z > » by
building bridges between (a) and (b). Therefore, it is a very delicate situation
where we need to choose a % based on z and the convergence rate of the
Karhunen-Loéve expansion of Z(¢).

. To study the convergence rate, we generalize the definitions of standard
Fourier series and standard Karhunen-Loéve expansion and make a connec-

tion between them. (See Section 6.) To take care of the remainder term

P{max[Z(t) — Z,(t)] > 2} as z —» », we use Borell’s (1975) inequality.

The first term of our general two-term approximation (Theorem 3.3) is the
same as the one-term approximation given by Adler (1981), page 159, when
Z(t) is homogeneous and differentiable. Since our final formulas for the two
coefficients depend only on the covariance function of the random field,
familiarity with elementary differential geometry is not needed to apply the
two-term approximation. In fact, in the context of projection pursuit, Sun
(1991) constructed tables for those constants.

The organization of the paper is as follows. Some preliminaries and the
connection between Z(#) and some manifold are presented in Section 2. Our
main results, the d and two-term approximate formulas, are given in Section
3. The geometrical meanings of the two coefficients in the two-term approxi-
mation and their applicability in practice are discussed in Section 4. The
theorems in Sections 3 and 4 are proved in Sections 5 and 6. Some related
known results and definitions in differential geometry are briefly introduced in
the Appendix.
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Notation. Throughout this paper, 3 means there exists, s.t. means such
that, i.i.d. means independent, identically distributed, a.s. means almost surely,
r.v. means random variable, PP means projection pursuit, ||A|| is the determi-
nant of a matrix A, llull = (Cu$)'/? if u is a vector (u, u,,...)", d = d if d is
even and d =d — 1if d is odd. f € €"(I) denotes that the (vector) function
f has [th-order bounded mixed continuous partial derivatives for [ = 1,2,...,n
on its domain I. A random field Z(¢) is said to be differentiable in I if it has
mean square differentiability: 3 random fields Z(¢),...,Z,(¢) s.t. for all ¢t €I
andi=1,...,d,

lim £
h—0

Z(t + h8;) — Z(t) 2
{[ - - Zi(t)] } =0.

2. Connections and preliminaries. As early as the 1930s, there were
statistical questions which called for the calculation of the volume of a tube
around a manifold [cf. Hotelling (1939)]. For recent applications, see Knowles
and Siegmund (1988). In this section we give a connection between a differen-
tiable Gaussian random field and a differentiable manifold, introduce defini-
tions related to the tube of a manifold embedded in a unit sphere and present
Weyl’s (1939) formula for the volume of the tube.

Connection. Assume {Z(¢), t € I} is a d-dimensional differentiable Gauss-
ian random field with &£[Z(¢t)] =0, £(Z(¢))?] = 1. Z(¢) is said to have a
uniformly convergent Karhunen—Loéve expansion in t € I, if there exist i.i.d.

A410,1) rv.’s X, X,,... and a sequence of twice continuously differentiable
functions u(#), uy(?),..., such that as £ — o,

k
(2) Y u,(t)X, > Z(t) uniformlyint €I, aus.

=1

We shall write this expansion as Z(¢) = L7_ju,(1)X,. Note that the
Karhunen-Loeéve expansion defined here does not¢ require the orthogonality

(3) [Iui(t)uj(t) dt =0 fori+j

as the standard Karhunen-Loéve expansion does [cf. Adler (1990) and the
Appendix]. Set
k k

(4) Zy(t) = Lu ()X,  Zy(8) = Lu(t)X,
-1 -1
for £ =1,2,..., where v,(¢) = u,(#)/0,(¢) and 02(t) = L*_(u,(t))% Then
4.,, vE={vh(t):te I, vi(t) = (vy(2),...,v(2))}
is a d-dimensional manifold embedded in S*~!, the unit sphere in %#*, and

Z={u(t):t €1, u(t) = (uyt),us(t),...)}
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is a d-dimensional manifold embedded in S, the unit sphere in %#”. Here
S* ={x: x = (x, Xg,...) € R, L7_1x2 = 1}. Therefore, there is a connection
between a differentiable manifold embedded in the unit sphere and a differen-
tiable Gaussian random field, through a uniformly convergent Karhunen-—
Loéve expansion of the random field.

Existence of a Karhunen-Loéve expansion. Let r(s,t) be the covariance
function of a nonsingular differentiable Gaussian random field Z(¢) on a
d-dimensional rectangle I with mean 0 and variance 1. In general, by Mercer’s
theorem, r(s,t) has an absolutely and uniformly convergent eigenvalue
(A)—eigenfunction (A,(¢)) expansion

(5) r(s,t) = X LA (5)A(2),
=1
where the A,’s are in decreasing order A; > Ay > Ag> -+ > 0 and

fIr(s, £)A,(2) di = A A (s), fIAl(t)Am(t) dt=35,,.

This expansion (5) is called the Mercer expansion [cf. Courant and Hilbert
(1953), pages 138-140]. Under an additional mild condition on r(s,?)
[cf. Lemma A.1 by Garsia (1972)], there exist i.i.d. #(0,1) r.v.’s X;, X,,...,
such that

k

Y u,(¢)X, > Z(¢t) uniformlyin¢ e, a.s.

=1
as k — o, where u,(¢) = \/A—lAl(t) for ] =1,2,....Here the “mild” condition
is tantamount to the sample path continuity of Z(¢) [cf. Theorem 3.8 etc. in
Adler (1990)]. Therefore, there exists a Karhunen-Loéve expansion to a
Gaussian random field in most cases. (See also a generalization of the existence
lemma, Lemma A.2 in the Appendix.)

Definitions. The following definitions are intuitive if one thinks about
them geometrically. Note that the value of % can be infinite.

DEFINITION 2.1 (Tube). The tube with radius r of a manifold 2* = {u*():
uk(t) = (u ), ..., u,®), t € I} embedded in S*~! is

(6) Fi(r) = {y:y € 8*71, inflly - uh(®)ll < 7).

Define the cross section of u*(t) in Z,(r) by
C(u*(t)) = {y:y € Tu(r), y — u*(t) Lut(¢)}

[the dots denote partial differentiation with respect to ¢;, i = 1,...,d; see
Johansen and Johnstone (1990)]. A tube Z,(r) has no self-overlap if any two



38 J.SUN

different cross sections of the tube do not overlap: C(u*(¢,)) N C(u*(t,) = &
forall ¢, # ¢, € 1.

DerFINITION 2.2 (Critical). The critical radius of the tube Z,(r) is
rye = inf{r: r > 0, Z,(r) has self-overlap}.

The critical point of the tube is d, = r2./(2 — r2). The semicritical radius of
the tube 7,(r) is

k—d-1
Fre =inf{r:r>0,3 y(¢, &) =ub(t) + Y &nt(e),
i=1

y(t, &)
ly(t, €I
Here £ < o, n*(¢),i =1,2,...,k — d — 1, are mutually orthogonal unit nor-
mal vectors of %* at t and are orthogonal to u*(¢). J(y) is the volume
element (Jacobian) at y = y(¢, &) = (y((¢, £),...,y,(&, E)":
dy dy
Y, b—a e E

€ J,(r),st. J(y) = 0}.

J(y) = ynA(2),n5(2), - ()|

The semicritical point of the tube is d, = 72./(2 — F2).

According to the multivariate inverse function theorem, for 2 < » and
r>0,

(&€
lly (¢, )l (¢, 8)ll

B k—d—1 y( &)
c {EI y(t, &) =ut(t) + i§1 &ni(t), Iy (¢, O (¢, Ol

s.t.3 ¢ # ¢, ¢ € a small neighborhood of t € 7,(r),

y(t,€)  y(t,¢) o kedm
oG A R fini(t)}

c {Z,(r) has self-overlap},

k-d-1
{3 y(t,€) =ut(t) + X &nk(e), € J4(r),st. J(y) = 0}
i=1

€ Ti(r),

hence r,, < 7.

DerFINITION 2.3 (Full rank). A real vector function f=(f,..., f,)is full
rank if there is no Borel measurable function F such that

fi=F(fureeos fores £)

for any i = 1,...,n, where the ¥ denotes missing.



TAIL PROBABILITIES OF THE MAXIMA 39

Weyl’s formula (1939). Suppose %* is a smooth manifold (without bound-
ary) embedded in S*! for a finite k. Let 6 = arccos(1 — r2/2) be the
spherical radius related to a radius r. Then the volume of the tube Z,(r) is

27rm/2 i
= — k. (0), ifr<r,,
F(m/2) e=0, even ( ) *
() vl
<— Yk d(0), ifr<F,.
F( m/2) e=0, even *
Here m =k — d — 1, k, is the volume of Z*, k,’s for e = 0,2,... are other

integral invariants of %*, J,(8)’s are some incomplete beta functions

Jo(0) = fosin”“l(x)cosd(x) dx,
0

m(m +2)...(m+e—2)J,(0) = [ sin™**"!(x)cos?"*(x) da,
0

r,. and 7, are the critical and semicritical radius.

In the simple case where d = 1, k£ = 3, the first term in Weyl’s formula (7)
indicates that if r is smaller than the critical radius, the dotted area in unit
sphere S? (see Figure 1) is equal to 2k, sin(8) if the curve is closed. Here «,, is
" the length of the line.

One dimensional
manifold

sk-1
k=3
Tube of the
manifold
with radius r

r

Fic. 1. Tube of the one-dimensional manifold in S2.
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3. Approximation for the tail probabilities. In this section Theorem
3.1 gives a d-term approximation to (1) when the corresponding
Karhunen-Loéve expansion of Z(¢) is finite. Theorems 3.2 and 3.3 give
respectively a two-term upper and a two-term approximation formula to (1)
when the corresponding Karhunen-Loéve expansion is infinite.

~

d-term approximation.

LEmMA 3.1. Suppose that Z(t) is a d-dimensional nonsingular three times
differentiable Gaussian random field on I, a compact subset of Euclidean space
R, with mean 0 and a finite Karhunen—Loéve expansion

k
Z(t) = Lu(t)X,
=1
where |lu*@)||l = 1 for u*@) = (u,@),...,u,@®), and X, X,,..., X, arei.i.d.
10, 1) r.v.’s. Then the critical radius r,, of the manifold Z* = {u*(t): t € I}
is positive.

The idea of proving Lemma 3.1 is to assume r,, =0 and then find a
contradiction.

THEOREM 3.1. Let Z(t) be a nonsingular Gaussian random field on a
d-dimensional Borel measurable set I ¢ #* with mean 0, variance 1 and
covariance function r(s,t). If r(s,t) € C3 has finite expansion

k

r(s,t) = lZ ul(s)ul(t)’ k < oo,
=1

and the manifold %* = {u*(t): t € I} has no boundary, then as z — =,
(8) P{maxZ(t) > 2} = koto(2) + kah(2) + ++ +rabhal2) + 0(¥a(2)).

Here kg, Ky, . .., kg are the same constants as those in Weyl’s formula for the
manifold %* and

1 ®
(9) n,l/e(z) = Wi)/—z/;z/zu(d+l e)/2 1exp{—u} du,

-~

e=0,2,4,...,d.

Discussion of conditions in Theorem 3.1. A key assumption in Theorem
3.1 is that the manifold %* formed from the expansion of r(s,t) has no
boundary. It is easy to check in the following two situations. The first case is
when Z* or its image is known explicitly, for example, in the case of the PP
regression index suggested by Johansen and Johnstone (1990). The second
case is when we can parametrize the domain of Z in terms of a in S d =
{a: @ = (ay,...,az,1), llall = 1} or there is a one-to-one continuous mapping
from the interior of the parameter space I to S¢ and onto from I to S¢. For
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example, this is the case of Friedman’s (1987) PP index and Johansen and
Johnstone’s (1990) PP regression index. When the corresponding manifold
does have a boundary, some corrections to the approximation are needed. We
do not discuss this case here; interested readers are referred to Sun and
Loader (1991).

Another key assumption in Theorem 3.1 is that r(s,¢) has a finite term
expansion, or there exists a Z(¢) identically distributed as Z(z) which has a
finite Karhunen-Loéve expansion. The Gaussian random field Z(¢) corre-
sponding to the PP regression index, suggested by Johansen and Johnstone
(1988), has a finite Karhunen-Loéve expansion. However, in most cases, it is
hard to prove that r(s,t) has a finite term expansion. If Z(¢) is the Gaussian
random field corresponding to Friedman’s (1987) PP index, for example, we
cannot prove and doubt that Z(¢) has a finite Karhunen-Loéve expansion.
Therefore, it is helpful if we have a result which holds even if the
Karhunen-Loéve expansion is infinite.

Two-term approximation. If the Karhunen-Loéve expansion of Z(¢) is
" infinite, it is a much harder problem to calculate the tail probability of the
maximum of Z(¢) in (1). The reason is that Weyl’s formula works only for
finite cases (k < «).

THEOREM 3.2. Suppose Z(t) is a d-dimensional nonsingular Gaussian
random field on a bounded d-dimensional rectangle I with mean 0, variance 1
and covariance function r(s,t) which satisfies the regularity conditions R.1
(for m = 6), R.2 and R.3 described below. Then as z — «,

(10) P(maxZ(1) > 2} < kobo(2) + kiha(2) + 0(Us(2)),

where ,(2)’s are given in (9), k, and k, are the same constants as those in
Weyl’s formula for a manifold. The constants depend only on the double mixed
derivatives of r(s, t).

THEOREM 3.3. Suppose Z(t) satisfies the conditions in Theorem 3.2 and
R.4 described below. Then as z — «,

(11) P(maxZ(t) > 2} = kobo(2) + katha(2) + 0(Ux(2)),

where kg, koo(2) and Y,(2) are the same as those in Theorem 3.2.

Note that Theorems 3.2 and 3.4 can be generalized to the case where I is a
bounded convex set in ¢ since Lemma 6.1 remains valid.
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The four regularity conditions R.1-R.4 on r(s, ¢) are certain differentiabil-
ity conditions on r(s, ).

R.1. One of the following is true for some positive integer m.
(1) There exist functions f and g, such that

r(s,t) =g(f(s) —£(2)),

where f,g € €™%°(I), g is an even real function in each of its
coordinate(s), fis a real vector function with full rank.

(2) There exist integers d; < , d, < d and functions f, h,;, h; fori,j=
1,...,ds, such that

ds
r(s,t) = X hi(sD)h;(tD)Vhi;(f(sP) - f(19)),
i,j=1
where f, h;; € €™%%* (1), dy=d —d,, h; € €% h;; are even func-
tions in each of their coordinates, f is a real vector function with full
rank, s = (sy,...,8,), and s® = (s4 11,..., 84)-
R.2. The d x d matrix R(t) = (9°r(s, 1) /ds; 0t ,|s—1) g5 4 is nonsingular on I.
R.3. The manifolds ¥* = {v*(t): t € I, v*(t) = (v,(2), ..., v, (1))}, derived from
an expansion of r(s,t) = L7_,u,(s)u(t), have no boundary for all k > d.
Here v/(2) is defined in (4).
R.4. For some cy > 0, the critical radius r,, of the tube ,(r) of the manifolds
v'* satisfies ry,, = c,.

Discussion of conditions R.1-R.4 in Theorems 3.2 and 3.3. The two
representations of r(s,#) in R.1 can be examined easily. The homogeneous
random fields have covariance functions like (1) in R.1. The non-homogeneous
random fields similar to the one derived from Friedman’s PP index have
covariance functions like (2) in R.1. The differentiability required in R.1
implies that the condition of Corollary A.1 in the Appendix holds with a = 2.
Hence a uniformly convergent Karhunen-Loéve expansion of Z(#) exists.

Conditions R.1 (for m = 6) and R.2 together ensure the following two
properties of the related manifolds derived from an expansion of r(s,¢). The
properties will be applied to show the two-term (upper) approximation formu-
las.

PropPERTY 1. There exists ¢, > 0 such that the semicritical radius 7,, >
¢o > 0 (cf. Proposition 5.1).

ProOPERTY 2. There is a uniformly convergent Karhunen-Logve expansion
of Z(t) satisfying some regularity conditions for the rate of the convergence of

L (uf() >0 ask oo
Il=k+1

(cf. Proposition 5.2).
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Condition R.3 is the first key assumption in Theorem 3.1. See the discussion
there.

Condition R.4 is confirmed by some numerical examples about r,’s (and
hence d,’s) in Johansen and Johnstone (1990). In most applications, the A,’s
decrease rapidly as [ — o, viz. the first few terms of the Karhunen-Loeéve
expansion usually dominate the variability of Z(¢). For example, this behavior
appears in the application to image processing [cf. Yaglom (1987a) and Yaglom
(1987b), note 118]. Hence R.4 and Property 2 are reasonable. The drawback of
condition R.4 is that it is relatively hard to check. We also believe that there
are similar conditions to R.1 (for m = 6) and R.2 which are sufficient for
I've = Co > 0, condition R.4. (See the following conjecture.) Without R.4, we
still have a two-term upper approximation formula in Theorem 3.2.

In summary, R.1-R.4 are all reasonable, where R.1-R.3 can be examined
easily.

Conjecture. The conditions in Theorem 3.2 are sufficient for (11), that is,
R.1, R.2 and R.3 are sufficient for R.4, or for the lower bound to hold.

ReMaRk. The condition f, g € €™¢" (m = 6) requires a lot of differentia-
bility from the covariance function. In two dimensions, md? = 24. However, a
careful reader of the proofs of Theorems 3.2 and 3.3 will see that these
regularity conditions, especially condition R.1 (for m = 6), can be weakened.

4. Geometric meanings for k, and k,. The two coefficients «, k, in
Weyl’s formula are two geometric constants of the d-dimensional differen-
tiable manifold % = {u(?): u(?) = (u(?),...,u,(t))}. Here %k is finite or infi-
nite. A d-dimensional differentiable manifold is determined by its metric
tensor, which has the components defined by the following inner product:

du(t) Ju(t koou,(t) ou,(t

(12) gij<t>=< 9, a§)>= y ) 2
i J -1 9% J

for i,j=1,...,d, t =(¢,...,t;) € I. More specifically, in principle every-
thing we need to know about the manifold %, like the volume and some total
scalar curvature (cf. the Appendix) or k, and «,, can be represented as some
functions of R(¢), ¢t € I. Here R(2) is a d X d symmetric matrix formed from
the functions g;,(¢). R(¢) is called the metric tensor matrix in this paper.

If we know the Karhunen-Loéve expansion of Z(¢) explicitly, R(¢) is known
explicitly. In general, however, we only know the existence of the expansion.
For example, in the case of the Friedman’s (1987) PP index, we do not know
the explicit Karhunen-Loéve expansion of the related Z(¢). Lemma 4.1 builds
a connection between R(¢) and the covariance function of a Gaussian random
field. This connection enables one to calculate the metric tensor matrix
without knowing the Karhunen-Loéve expansion explicitly.
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LEMMA 4.1.  Let r(s,t) be the covariance function of a nonsingular differ-
entiable Gaussian random field Z(t) on a d-dimensional compact set I which
satisfies R.1 for m = 6. Then there exists a Z(t) identically distributed as Z(t)
which has a uniformly convergent Karhunen-Loéve expansion

k
Z(t) = Z u,(t) X,
=1
for a finite or infinite k. In particular, the metric tensor of %= (u(2),..
u,t) is

k9 p 92r(s,t
(13) gi(t) =) ualt(.t) l;lt(t) _ az(zt)

=1 i J U [s=¢

The proof of this lemma is given in Section 6. Note that when Z(¢) is
homogeneous, g,;(t) is the corresponding second-order spectral moment of
Z(t) which does not depend on t.

The first coefficient «, in the approximation formula (8) is the volume (or
area) of the manifold [Weyl (1939)]. The volume of a manifold is relatively easy
to calculate compared to other geometric terms. Weyl (1939) did not explain
the explicit geometric meaning of the second coefficient «,. He vaguely de-
scribed it as “certain integral invariant.” Theorem 4.1 shows the explicit
geometric meaning of «, and a formula for it based on R(2).

THEOREM 4.1. Let k, and k, be the two coefficients (constants) in Weyl’s
formula for Theorems 3.1-3.3. Then «k, is the volume of a manifold and Kg IS
some total scalar curvature. Further, if condition R.1 holds for m = 6, we
have

Ko = [qu:c(t)nl/2 dt,...dt,,
(14) S d(d-1)

— I D 1/2
Ky = fl( 5 5 IRV dty ... dt,

Here S is the intrinsic scalar curvature of the manifold which has R(¢) =
(8 Naxar 8&:;@) = %r(s, t)/ds; 0t;ls=1, as its matrix of metric tensor
[cf. Kreyszig (1968), page 310, or the Appendix]. When Z(t) is homogeneous,
the scalar curvature S = 0.

ProOF. Lemma 4.1 says that R(¢) = (6°r(s, t)/3s; 0tjls=¢)4x4. The expres-
sioh for k, is then automatic. The calculation 1nvolved to obtain the final
geometric meaning of «, or expression (14) is enormous. The key idea of the
proof is to manipulate patiently the complicated expression for k, in Weyl’s
paper and apply the definition of scalar curvature as in Definition A.5.
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There is a less computational approach to the proof of (14) by using slightly
more advanced techniques. We omit the details.

When Z(t) is homogeneous, the g,;(¢)’s are independent of ¢ and hence
S=0.0

REMARK. In the case of Friedman’s projection pursuit index, the corre-
sponding metric tensor matrix is diagonal, and hence «, and «, are easy to
obtain. It is also helpful to express a multiple integral as the expectation of a
function of some simple random variables. In this way, we can use the Monte
Carlo method to estimate «, and/or k, quickly by a computer. For examples,
see Sun (1991).

5. Related theorems and proofs for Section 3.

ProoF oF LEMMA 3.1. Notice that I is compact and u*(¢) is three times
differentiable on I. If r,, = 0, there exist ¢, ¢, € I, t, # ¢,, such that u*(¢,) =
u*(t,), which is equivalent to Z(¢,) = Z(¢,) a.s., by the assumed finite repre-
sentation for ¢t € I.

However, Z(¢,) = Z(¢,) contradicts the assumed nonsingularity of Z. Hence

> 0.0

Proor oF THEOREM 3.1. First, define Z(t) = If_,u, )X, where
X, X,,..., X, are iid. #70,1) r.v.’s. Then Z(¢) and Z(¢) are identically
distributed, which implies

P{ maxZ(t) > z} = P{ maxZ(t) > z}.
tel tel

Second, by Lemma 3.1, the critical radius r,,, and hence the critical point
d, =rZ/@2—rZ), of the manifold Z* = {u*(t) = (u(),...,u,@®): t €1},
are positive.

Third, since U = (X, /I X, X, /Il X|l,..., X,/ XD is uniformly distributed
on the unit sphere S*~! and is independent of || X||, we can rewrite the tail
probability as follows:

P(maxZ(t) = 2} = P{ maxZ(t) > z}

tel

[ P{ max(ut(6),0) = <} P11 < d)

2z

1+d ®
f(+")z+f =A+B.
z (1+dy)z

(15)
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Fourth, we calculate A by applying Weyl’s formula and bound B by
some elementary probability inequalities. Let r,, = [2(1 — z/x)]'/2 and 6 =
arccos(l — r?,/2) = arccos(z/x). If z < x < (1 + d,)z, then

0 <rkz < Vzdk/(l +dk) =rkc.

Applying Weyl’s formula in Lemma 2.1, we have that for x € (z,(1 + d,)2),
P{max(u*(2),U) > =\ = PlU: infllut(s) - Ull < 2(1 |
> -} = : - < - —
{max(ut(,0) = T} = P{Us mflt 0 :

1 2x™/? d
16 = — J (6
(16) p ey SIREI0
I'(k/2) d

= T(myz) @7 L

e=0, even

Here m =k —d — 1 and w,_, = 27*/2/T'(k/2) is the surface area of S*~1.

Note || X|| is the square root of a x? r.v. with % degrees of freedom which
has the density function f,(x) = x*~!exp{—x2/2}/{2*%~?/2I'(k /2)}. We have
from (16) that

Kedo(0).

A= /;(1+dk)2p{ 1}16a_1x< uk(t), U> > ;}P{”X” € dx)
I'(k/2) d -
= I1("1’/2)‘”_(d+1)/2 Z Ke_/; fk(x)Je(O) dx

e=0, even

I'(k/2) d ®
- T(m/2)m@+D/2 e=0§wn'<ej; +dk)sz(x)=]e(0) dx
Straightforward calculation shows

I'(k/2 d -
A= F(m/(2)77(3+1)/2 ) Kef fr(x)dJ,(0) dx

e=0, even z
= Koo(2) + Kaha(2) + -+ +Kg¥4(2),
I'(k/2) d ®
A= Ty @ L ke | ful%)J(6) dx

e=0, even 1+d,
= o(¥a(2)),

) 2
B = P{axukt,Uz—}PXed
+dy)z ntﬂel< (®),0) x jPUXI < dz)

< [ 0, PUXI € d) = o(ya(2)).

4

The summation of A,, A, and B here leads to (8). O
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Proor or THEOREMS 3.2 AND 3.3. Suppose Z(?), ¢t € I, is a d-dimensional
nonsingular Gaussian random field with mean 0 and variance 1. Assume Z(¢)
is identically distributed as Z(¢#) and has a uniformly convergent
Karhunen-Logve expansion intel: Z@¢t) = Zl n l(t)X,, where X, X,,...
are iid. #(0,1) rv’s. Note that [lu()|® = I3 ,u(t) =1 because of
cov{Z(#)} = 1. Let Z,(¢) and Z,(¢) be the partial sums of Z(¢) defined in (4).
Define

(17) a? = max Z u?(e), b,f—mln Z u?(t).
tel j_pyy I g+

Write «* as the integral invariants in Weyl’s formula when the manifold is

7 = {vr(t): v (t) = (vy(2),...,v(2))}

with v,(t) = u,(¢)/0,(t) and 02(t) = £¥_,u%(#). Denote «, as k¥ when k = =,

In the following, we shall give Propos1tions 5.1 and 5.2, then use them to
prove Theorems 3.2 and 3.3. The two properties given in the discussion of the
regularity conditions R.1-R.4 are the immediate consequences of Propositions
5.1 and 5.2.

ProposITION 5.1. Suppose Z(t) is a nonsingular differentiable Gaussian
random field on a d-dimensional compact space I with mean 0, variance 1 and
covariance function r(s,t) which satisfies the regularity conditions R.1 (for
m = 6) and R.2. Then there exists a uniformly convergent expansion r(s,t) =
Y7_1u,(s)u,(¢) and a constant ¢, > 0 such that for all k,

(18) Fre = Co > 0.

Here 7, is the semicritical radius of the manifold 7* = {v*(): v*(@) =

(u(8) /0, (), uy@) /0, (1), ..., u®) /o (1)), t € I}, a2(t) = TF_ul(2).

Proor. Let the uniformly convergent expansion r(s,#) = X7_,u,(s)u(?)
be the one given in Lemma 6.1. By the assumptions, the manifolds #* and

={u@®): u@®) = (ut),uyt),...), t €I} are three times differentiable. As-
sume there is no such ¢, for (18). Then for some ¢, which decrease to 0 as
k — =, there are n, — « such that

(19) nkc < Ers
that is, lim, . 7, . = 0. Without loss of generality, we denote n, by k.
According to Definition 2.2,
k—d-1
Fre=inf{r:r>0,3 y(¢,§) = vk(t) + Z gnk(t),
y(t,¢)

m_e I(r),st.J(y) =0,,
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where n*(¢), i =1,2,...,k —d — 1, are mutually orthogonal unit normal
vectors of 7* at v*(¢) and are orthogonal to v*(¢). For the tube of »* with
radius r, = 27,,, there is

k—d—-1

y=y(t,€) =vh@t)+ X &ni(t),  y(4,€)/ly Ol € T(n),
i=1

such that

dy dy
—,nk(2),n4(2),...,nh_4_1(t)

y oy v =0.
Vot oty

(20)  J(y) =

In the following, we show that (19) and (20) produce a contradiction and hence
(18) holds.

Expressing dn*(¢)/dt, by the Weingarten equation (cf. Definition A.5), we
have

F] k ) 9 k
(21) IS DAL

12

+...’

where —L(1) is the coefficient of dn%(¢)/dt; in the direction dv*(¢)/d¢;, and
“+ ...” are components orthogonal to the tangent space spanned by
k(@) at;, i =1,...,d, and hence are some linear combinations of
n%(@), n%@),...,nk_,_(#),v*(#). Therefore,

a_y _ a(v*(t) + T2 Eng(1)) _ vk (t) .\ k—d—1§k3nzle(t)
ati 3ti ati = l ati
dut(t) REt auk(t
- 0t( = fz"(—ELz(l) at( ) )
i =1 j ¥
Let
aj" 3vk(t) kE—d—1 . 0vk(t)
o, + ¢ -2 L) )
ot; ot; = e o,

Then dy/dt; = 35 /3¢t; + - -+ and

(22) (fl . fy—)=(avk('t),...,avk(t))(ldxd—k};_lgﬂ(l))’

at, " oty at, at,

where L(1) is the d X d matrix L(I) = (L{(1));y4. “+ -7 are some linear
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combinations of n%(¢), nk&(2),...,n%_,_,(#), v*(¢). Therefore,

dy 2

oty

(J(¥))* =],

dy
3oy E,n?(t)’ng(t)’ﬂwni—d—l(t)
d

a5 a7 2
-, —,n’{(t),n’g(t),...,n’,‘z_d_l(t)
1

= ok, 5
d

35 35 ’
= (———,..., b—t;,n'f(t),n’g(t),...,n’,‘e_d_l(t),vk(t))

ay ay
X (:9‘2_—, ce, b—i—,n’{(t), n’g(t), vy n’,:_d_l(t), vk(t))
1 d

(23)

a5 g\ (95 a5
at, "oty ) ot oty

(avk(t) dv*(t) )’(avk(t) avk(t) )

at, 7 oty o, T oty

E—d—1 2

Iyva — z;1 fzki(l) [by (22)]

2

X

k—d-1

=”(gikj(t))”dxd Iyxa = l§1 ERL(D)

Here (g}(#)) is the d X d matrix with elements

k T oLk k
(1) = " (t) av"(¢) _ ¥ v, (t) 3v,(t)'
& o, o, [T oy ot

Let g;;(t) = L7, 9u,(t)/d¢t;du(¢)/3t;; we shall prove under (19) that as

k — o,

(24) "(gikj(t))dxd” _)“(gij(t))dxd“ =1
k—d—-1
(25) Iyva — Z fzkf'(l)' — Cy
=1

for some c;, c, > 0. (23), (24) and (25) together contradict (20), and therefore

(18) holds.
By Lemma 6.1, for some constant ¢ > 0, and any ¢,s € I,

du,(t)

i

u,(t)

c c

ur(Oua(s)l < 750 lua(®)l < 73

c
k%’

c
< .
k
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This implies that as £ — o, uniformly in s, ¢,
k k du,(t) ar(s,t)
-

Xoui(s)u,(t) = r(s,t), Zuz( )

’

k %u,(t) ?r(s,t) k 8u,(s) du,(t) ?r(s,t)
(26) X ui(s)—; o, otjor, L at, s, ot
=1 i 0t i 0t =1 8; J 8 0L
i 2u,(s) 6ul(t) a*r(s,t)
/=1 9s;0t; oty ot 0sir?sj3ti,0tj,'

Now as r(¢,¢t) = 1 and r(s,¢) = X7_,u,(s)u,(¢) uniformly in s,¢ € I, we have
that
k
(27) a2(t) = Y u,(t)u,(¢t) > 1 uniformly as k£ — .
-1
That r(s,t) is maximized at s = ¢ gives dr(s,t)/ds;|s—, = 0. Thus we have by
R.2 that as & — o, uniformly in #,

904 o [& 2 i duy(2)
TR _ © " _ 4t
;o { g ) } oy, 1§1 “i(t)
© du,(t ar s,t
N Z l( ) u, £ = ( ) _ 0,
=1 9 as; |,
(28)
k k
gk(t) = aL ov* _ i y 6ul(t) duy(t) B ﬂc?ak 1
’ AN = ot ot, ot, of

By Lemma 4.1, (26) gives

%r(s,t
g(t) = (gij(t))dxd B (a—s(;_t—)

s=t)d><d

Hence (28), the nonsingularity and continuity of (9%r(s, t)/ds; 9¢;ls=t)gxq ON
the compact set I give the following two results: (i) (24) holds, and (ii) the
inverse matrices g~ *(¢) = (g% ¥(t)) 4 of g*(t) and g X(t) = (g% (¢)) x4 Of
g(t) exist for k greater than some positive integer %k,. The elements of these
inverse matrices have a uniform upper bound and ||g~(¢)|| has a positive lower
bound, that is, for some M, M’ > 0,

(29) ghii(ty <M, g¥t) <M, g ()l =M.

Let L(I) = (L;;})gxq = 8"L(1), g* = (g})axq, @ d X d symmetrical matrix,
u(t) = (uy(@),...,u,(t)). By the Gauss formula given in Definition A.5, R.1
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(for m = 6) and (26), we have

2

R a2yt
LL() < Z< ,n'f> <
7 7\ 0t t; dt; 3t;
1 %ut(e) 1 [ou*(2) doy(2) . duk(t) do,(2)
o2 oo, oR(t)\ ot ot o, ot

uk(t) doy(t) doy(t)  uk(t) oy (t)|’

(30) 20(¢) ot; ot of(t) ot;0¢;
i Purt)[* [out )| 00u(t) \* [ aut )| d0u(r) \?
< + +
ot; 9t | at;, |\ o at; ||\ ot
L L(2ou(0) d0u(2) 2+ uk(t) 3%o,(2) |
4\ at, ot o2(t) 9t;ot;
SM”
for some M” > 0. Equations (29) and (30) imply
(31) Y (Li()) <M”
l

for some M"” > 0. On the other hand, as y(¢ &)/lly(t Ol € I(r,), we
have X,(¢/)?/(1 + L,(¢/)?) < r2, which implies by (19) that X,(&})? <
rZ/(1 —r2) - 0 as k - . Consequently, from (31) we have that

k-d-1
Ijxa— X fsz(l)“_’1>0
=1

as k — o. This gives (25). Therefore, (24) and (25) hold. Hence (18) is
proved. O

PROPOSITION 5.2. Suppose r(s,t) is the nonnegative definite covariance
function of a Gaussian random field Z(t) on a d-dimensional rectangle I.
Assume the regularity condition R.1 holds for m = 6. Then there is a uni-
formly convergent Karhunen—-Loéve expansion L7 ju,(¢8)X, for Z(t) which is
distributed identically as Z(¢) and the corresponding kk, x, and a, in (17)
satisfy the following requirement:

J ey, e, > 0, and K, ¢ > 0 such that

(32) a? < fork > K,

k4+91
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and consequently
. 1
(33) Ko —Kg =0 W .

We need Lemma 5.1 in our proof of Proposition 5.2.

LeMMmA 5.1.  Suppose Z(¢) is a d-dimensional Gaussian random field on a
bounded compact set I in R with mean 0, variance 1 and covariance
function r(s,t), which has uniformly convergent expansion r(s,t) =
Yru(u,t)intel.

Further, assume 0*r(s,t)/d%, 32tj is uniformly bounded, the d X d
matrix (9°r(s, t)/ds; t;ls=)yxq is continuous and nonsingular on I,
Tio10u(8)/0t;du,(t)/0t; and Tf_,du (¢)/dt; u () converge uniformly in I as
k — «, and, for some ¢,, &, > 0,

> du,(t) 1
B, o (1)
1-k+1 9% k1/2reo
* du,(t) du,(t) 1
Z = O(k1+el
1-k+1 Ot 0

as k — . Then “a?% < c/(k'*%2) for some e, > 0"’ gives

5 1
Ko = Ko = 0 27+¢;

for some g5 > 0, that is, (32) implies (33). Here k% and «, correspond to the
manifold formed from the u ,(¢)’s.

ProoF. Suppose R(t) = (g,;(t))gx4 is the matrix formed by the metric
tensor with components g, ;(¢) of the manifold % of Z(¢), R k) = (gl () gxa
is the matrix formed by the metric tensor of the manifold »* of Z(#)
(cf. Definition 4.1).

In the following, we shall prove that

Kg—K0=f , IR*(¢)ll dt—f I‘/IIR(t)II dt
(34) te te
<c  max dlgij(t)_gikj(t)l

for some positive constant ¢, and as &k — o,

(35) i’jn}ax dlgij(t) _gikj(t)l = O(W)

.....

for some e > 0. The lemma is an immediate result of (34) and (35).
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Similarly to the proof of Proposition 5.1, we have gikj(t) - g;(t)as k - x,
uniformly in ¢. Further,

lgikj(t) - &:;(0)
1 k au,(t) au,(t) _ 9oy day, 1 © du,(t) du,(t)

<||= - T — |+ ==
o} o1 ot at; L he1 Ot ot t; dt; af

Now (27) and the assumptions give that as & — ,

1 kou,(t) du,(t) < Ju,(t) du,(t)
(_ - 1) 3 at; ot; Lz at; ot

2

O, =1 i J I=k+1 i J
ai | k du,(t) ou,(t) > du,(t) du,(t)
aZ |d%r(s,t) a? ©  du,(t) du,(t)

1
=0 J, L+ minfey, e2)

and
doy, 9oy, 1 1 kodu,(t) k m(t) 1
at; ot; of (E’l at, wi(? ))( Z;‘ ot um(t )) ol
2 duy(t) 2 0u,,(¢) 1
= l=kZ+1 at, “it) m=Zk+1 dt; “nlf)| = (W)

Hence from (36), we have as k& — ,

,(0) - 800 = o 3

uniformly in ¢ € I, where ¢; = min{e;, 4, 2¢,}. (35) is proved.
The following representation,
?r(s,t
R(t) = (_._(___) )
\ 9s:0¢ s=t/ dxd

and the assumption on r(s, ¢) imply that the determinant || R(#)|| has a positive
lower bound, say [,. Therefore, (35) gives |[R*(®)ll = (gDl > 1,/2 for all
k > K, some positive constant.
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Considering | - || as a multivariate function of d?2 varlables 8ij» we obtain
the following inequality by the definitions of «, and «Z:

- _f IRE(2)ll dt—ftel\/IIR(t)IIdt

<c(d? ! q(8) — gk(2)l.
o(d® 1), max  lg,(t) — g5(2)
Here the constant c(d? ) only depends on d? and the lower bound [, of
|R(#)ll. (34) is proved. Hence Lemma 5.1 is true. O

ProoF ofF ProposiTION 5.2. By Lemma 6.1, there exists a uniformly con-
vergent expansion for r(s,¢) = Xy ,u,(s)u,(¢), such that for some constant
c>0andany t,s €1,

. (2 < c du,(t) c
s — < —.
up(t)u,(s)l < Pk at, Be
Hence for some constant ¢’ we have
©  du,(t) c *  du,(t) du,(t) c
L 5wl < 53 T Ptk
I=k+1 i I=k+1 i J
bZ < a? = max i u(t) < °
= tel g1 ! k%’

and the following two series converge uniformly in ¢ as & — oo:

z(t) k0w (2) du,(2)
Z uy(t), ot ot
= t; =1 i J
Define Z(t) = X7_,u,(t)X,, where X;, X,,... are iid. .#(0,1) r.v.’s. Then

Z(t) and Z(¢) are 1dent1cally distributed and all the conditions in Lemma 5.1
hold. Hence (33) also holds by Lemma 5.1. The proposition is proved. O

Condition 5.1 and Condition 5.2 for the rate of the convergence of

) (u,(t))2 -0 ask >
I=k+1

are implied by (32), which is a consequence of the regularity conditions R.1
and R.2, by Proposition 5.2. We shall use these two conditions to prove
Theorems 3.2 and 3.3. Therefore, we leave room for readers to see that
R.1-R.4 can be weakened in Theorems 3.2 and 3.3.

CONDITION 5.1. Let Z(t) be a d-dimensional Gaussian random ﬁeld with a
uniformly convergent Karhunen—-Loéve expansion. There are z, > 1 and &, > 0
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such that for all z > z,, 3 a, k < 227%0 and ¢,, > 0 with
Ehe
(1+8)°

Here & = 8(2z) satisfies that as z > », §-22/2 — 2lo
0(1/2%) for k < 227%, where a3 is defined in (17).

a3 <

gz — o, and £y, =

ConDITION 5.2. For the same random field Z(¢), k and ¢,, in Condi-
tion 5.1,

Kklﬁo(z,) . =o(i) Kk‘l’o(z”) o =0(i)
210 I L A 7N ) B R P
as z — ©, where ,(2) is defined in (9),
, 1 -, " 1 - g,

, =
(1- b,f)l/z (1- a2)1/2
Here a%, b} are defined in (17) and «k, and % are introduced after (17).

Condition 5.2 can be simplified. For e = 0,2,...,<d, as 2,k >, k <
22—90’

¥.(2') f;"’/zu(dﬂ_e)/z_l exp{ —u} du

Uo(2)  [Rpu T2 exp( —u) du

1d—e—1 2 2
(37) 2 { 2 2 }

prarl A 5

2
z
=1- ?(afz — 2¢,, + b,f)(l +0(1)).
Similarly, as 2,k — o, k < 227%,

1:2((;) = 1= S (eh — 204, + a3)(1 + (1)),

Since

k‘ﬁo(z') ik Po(2') _ Po(2') 1
“0ge(e) o (ke T Ro)y oy Tl gy )

a sufficient condition for Condition 5.2 is the following:

1
Kg—K0=O 3 |
2

(6% — 284, + £7,)2* = 0(1),

(a3 — 2¢,, + £r,)2* = 0(1).

(38)
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LemmA 5.2. Condition 5.1, (38) and hence Condition 5.2 are implied
by (32).

Proor. Without loss of generality, assume ¢, &, < 1.
Choose k& = z27%0e1/4 2 = 1.1, 8 = 1.1 <21/8 _ 1 g2 — ¢ /k4*+1/2 Then

2 2 2
¢ Ehz Erz Ehz
b2 < ak = 1 7 ~ 2 =
k4te kel/ z€1—€0€1/8 1+96

for z > 2z, and ¢,, ~ k~27%1/* ~ o(2~*). Hence Condition 5.1 holds.
On the other hand,

2

Skz 1
by <af < ~o|l—].
S0 =T 0(28)

By (33), Kg — Ko = O(k_]'_eo) = o(z_(2_9051/4)(1+50)) — o(z(—2+2€o—eoel/4—ele%/4))'
Therefore, (38) and hence Condition 5.2 hold. O

Proor or THEOREM 3.3. By Proposition 5.2 and Lemma 5.2, there exists a
Z(t) identically distributed as Z(#) which has a uniformly convergent
Karhunen-Loéve expansion in ¢ € I:

Z(t) = Lu(t) X,

and satisfies Conditions 5.1 and 5.2 with &2, as in the proof of Lemma 5.2.
Hence

P{maxZ(t) > z} P{I?:I}(Z(t) > z}.

tel
To prove (11), we need to show that as z — o,
P{max, o ; Z(t) > 2} — koto(2)
Ko¥s(2)

Assume Z*(t)and Z*(¢) are the finite & partial sums defined in (4). On the
one hand, since

(39) =1+o0(1).

P{ maxZ(t) > z} - P{ max (£(¢) - Zy(t) + Zy(1)) = z}

tel

< P'{ I:lea;(Z‘k(t) >2z(1- €kz)}

+ P{I?Ea\;( (Z(t) - Zk(t)) = zakz}’
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we have
P{maxtel Z(t) = z} ~ Kotho(2)
K2¢2(z)
+ P<maxtel(2(t«)p ;zz)‘k(t)) > 200 —A+B.

On the other hand, as
P(maxZ(t) = z} - P{ max (Z(t) — Zy(t) + Zy(2)) = z}
tel tel
> P{ maxZ,(t) — max|Z(t) — Z,(t)| = 2,
tel tel
max|Z(t) - Zy(t)l < zskz}
te
> P{ ma;(Zk(t) >2z(1+ akz)}
te
- P{ max|Z(t) - Zy(t)| > zakz},
te
we see that

P{maxtelz(t) 2 Z} — Kotho(2)

Koia(2)
1) . P{max,eIZk(t) >2(1+ Ekz)} — Koo(2)
Koia(2)
B P{maX,61|Z~(t) - Zk(t)l = Z{-sz} =A+ B
Koha(2) - ’

In the following, it is enough to choose % as some function of z s.t. as
z — oo

(42) A<1+0(1), B =0(1),

(43) A>1+o0(1), B’ =o0(1).

We choose the same % as that in Lemma 5.2. Without loss of generality, Z(¢)
will be denoted by Z(#).

PROOF OF “B = 0(1).” Condition 5.1 implies
2
€kz

(44) —>1+5
ay )
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for some & which satisfies 6 - 22/2 — log 22 — » as z — «, and therefore,
%€y,

—> 00 as z — oo,

(45) ~

Let G2(t) = L7 X t), Z@) = (Z(@) - Z,(t))/a,(t). Let m denote the
median of the distribution of sup,.;IZ(¢)|. Using Borell’s (1975) inequality
[cf. also Adler (1990)] we have that for y > 0,

P{Tgcw(t)l >y} <10y - m).
Hence as z = o,

3 P{maxte, Z(t)a,(t) = zakz}
- Kaa(2)

P{max,; Z(t) > z&;,/a,}

Kkatha(2)
1 - ®(z¢4,/a, —m)
Ka¥a(2)

~ 1 [by (45)]

) d—-3)/2
ypers [ ou?™®/? exp{ —u} du

=o(1) [by (44)].

Here ¢ is some positive constant.

PrOOF OF “A < 1 + 0(1).”
P{max, . ; Z,(t)0,(t) = 2(1 — &;,)} — ko¥o(2)

Kota(2)
(49) < P{max, . ; Z,(t) = 2'} — xo¥o(2)
B Kkota(2) ’

where 2z’ = 2(1 —¢,,)/(1 — b)Y? and bZ = min, ; L7, u7(t) is defined
in (17).

Let v*(¢) = (u,(8)/a,(8), uy(t) /o (®), . . ., u, () /0, (#) and d, = 1/
(2 — r2). Under R.3, a similar proof to that of Theorem 3.1 gives that

P{maxZ,(t) > 2} = [:P{Tguk(t), Uy > %I}P{IIXII e dx)

tel

>;(47) _ 'f(l +dp)Z " f°°
4 A+dy)z

z

= k§¥o(2') + K3¥5(2') + Ry,
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where
T'(k/2) e
R = = 5 mym@a T stf fu(x).(0) dx
['(k/2) d A+dyz
+ Y K, " f(x)d,(6) dx -
(48) F( m/2)7T(d+1)/2 e=4, even '/;’ *

+fz'(1+dk)P{maX<u (1),U) = — }P{||X|| e dx)

tel
=Ry, + Ry + Ry

Here J,(-) is defined in Lemma 2.2 and f,(x) is the density function of [|X].
Therefore,

Kkowo(2') — Kkoto(2) + AAED) _ R,
Katha(2) Kotha(2) Katha(2)
=A +A,+ A,
and it is enough to show that as z — o,

Kgl/fo(zl) — Kko¥o(2) 5

A<

(49) 4= Kota(2) 0
_ K3Ys(2')

(50) A, = ia(2) 1,

51 4, = - e 0

( ) 3~ szz(z) - L.

Condition 5.2 implies (49).

It is obvious that x% — k, as & — « by (28). Under Condition 5.1, b7 <
a? <&2,/(1 + 8) = o(z72). This gives b7 — 2¢,, + 2, = o(z~2). Hence, by the
same derivation as for (37), we have that ,(2')/¢,(2) = 1 as z — ». Thus
(50) is valid.

Condition 5.1 gives Ry, = 0(¥5(2)) = o(¢y(2)) as z — «. It is also easy to
see that for some ¢ > 0,

Ry.< [ P(IXlledy),
A+dy)z

r((d +1)/2) =
Wf(Hdk)zlP{llel € dy}.

From R4, d, =r2 /(2 —r?)>r2/2 >c%/2 > 0. Thus a simple calculation
gives

lez' =c

o

P(IX]| € dz) < [

/ fu(x)dx <R[, u®*"exp(—u}du
1+dy)z' 1+c2/2)2' 2%/2
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for 2%/2 > (k — d + 1)/{2(c2 + c{/4)} and
2

R (1+ 03/2)k AN 52 cd 2* 0
=" | — —cf— — —— 1} = 0.

1T T T(k/2) | 2 GRITO T a2

By Stirling’s formula for I'(k/2), we have for £ < cz?27*°, R, > 0 as z - =,
Hence (51) is valid and consequently “A < 1 + o(1)” is proved. ‘

“A'>1+ 0(1)’ and “B’ = 0(1)” can be proved similarly.

As described in Section 4, kg, k, of a d-dimensional differentiable manifold
Z={u(®): u(t) = (), uy(t),...,u,?)} are determined by the metric tensor
8ij of %. By Lemma 4.1, g, (t) = {3°r(s, t)/ds, 6¢;},_,, which implies that «,
and «, depend only on the double mixed derivatives of r(s,¢). O

Proor oF THEOREM 3.2. The proof is almost the same as that of Theorem
3.3, only with some minor changes.

By Proposition 5.1,
(52) Fre=ce>0
for some ¢y, > 0. As (52) is similar to the regularity condition R.4, we call it
R.4'. In other words, R.1-R.3 and R.4’ are satisfied in Theorem 3.2.

The minor changes include:

1. R.4 in the proof of Theorem 3.3 is replaced by R.4'. 3
2. The critical point d, is replaced by the semicritical point d,.
3. (47) is changed into
P{ maxZ,(t) > 2} < kbo(2) + Khtp(2) + Ry
te
4. All the arguments about (43) are deleted.

Therefore, “A < 1 + 0(1)” and “B = 0(1)” still hold under the conditions
of Theorem 3.2, which implies (10). The theorem is proved. O

6. Related theorems and proofs for Section 4. This section makes a
connection between a Fourier series and a Karhunen-Loéve expansion. In this
way, we can control the convergence rate of the Karhunen-Loéve expansion
and prove Lemma 4.1. We first give our definition of a Fourier series and
discuss some relevant properties.

DeFiNiTION 6.1 (Fourier kernel). A {n(l),...,n(d)} Fourier kernel
fr ~@)(t) on a d-dimensional rectangle I is one of the following d(d + 1)/2

n(l),...,
combinations of sine and cosine functions:

fnl(l) w@y(t) = Sin(bna)tl)Sin(bn(z)tz) T Sin(bn(d)td)’

.....

fnz(l) w@(t) = cos(bn(l)tl)sin(bn(z)tz) sin(b,ayta),

.....

f;?a) w@(t) = sin(bn(l)tl)cos(bn(z)tz) tte Sin(bn(d)td)’

.....

ot iy = €08(bpiyt)c08(buapts) ** c0S(byata),

.....
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which are mutually orthogonal when certain relations among the b, and the
lengths of sides of I are satisfied:

(53) ain(l) ..... w@y > 0, ifi=7, {n(1),...,n(d)}
= ={n'(1),...,7(d)},

0, otherwise,

for i,i’=1,...,(d + Dd/2, n(i),n'(i) = 1,2,..., where b,,,/n(i) > b,, > 0
for n(i) > n(i,). Here b,;, and n(i,) are positive numbers.

Assume that the orthogonality condition (53) holds. For i=1,...,
(d+1d/2,n@G)=1,2,..., let

. 1 .
02(1) ..... nd) = P '—ff(t) f;(l) ..... n(d)(t) dt.
nQ),..., n(d) "1

The following series with real coefficients Chty....nea, and the Fourier kernels
fac,. ... n@\?) is called a Fourier series:

.....

o d(d+1)/2
z X Crqy,...,ndy Fr,...,ne@(2)-
n(1)=0,...,n(d)=0 i=1

REMARK 6.1. A routine generalization of the standard theorems in Walker
. (1988), pages 185-216, Carslaw (1930), page 225, Sneddon (1961), pages 34
and 40, and Tolstov (1962), pages 125-180, shows that all the properties about
the coefficients of the above Fourier series, its convergence, integration and
differentiation are the same as those for the regular Fourier series where the
coefficients b,,;, = cn(i) for some positive ¢, i = 1,...,d(d + 1)/2.

For a regular Fourier series of a function, where b, =cn(i), i=
1,...,d(d + 1)/2, that the function takes the same value at all its end points
is a necessary condition for its Fourier series to converge to itself in its entire
domain I. Under our definition of a (semi) Fourier series, it is not necessary
for a function to have the same value at the end points for such convergence.
Here is one example.

Let r(s,¢) be the covariance function of a Brownian motion B(¢) on (0, 1).
Then r(s,?) = min{s, ¢} for 0 <s, ¢t < 1, and r(0,0) # r(1,1). However, the
following Fourier series convergence uniformly to r(s, #):

* [sin(n — 1/2)mt [ sin(n — 1/2)7s
r(s:t) =2 L ( (n—1/2)7 )( (n—1/2)7 )

n=1

Here d =1, b,,, = (n(1) — 1/2)7. This expansion also gives a uniformly
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convergent Karhunen-Loéve expansion of B(%):

* sin(n — 1/2)wt
B(t) = V2 ,
(2) ‘/_E’l (n-1/2)w "

where X, X,,... are some iid. .#(0,1) r.v.’s [cf. Yaglom (1987), pages
448-450]. ‘

In fact, let f(¢) be a function defined on a rectangular region I =
I, X -+ X I,.If it has the same value at its end points and its jth order mixed
partial derivative is either continuous or satisfies the Dirichlet condition (see
Definition A.6) for j =1,2,...,d, there is a Fourier series for f ‘“which
converges uniformly to f in any interval which contains neither in its interior
nor at an end any point of the discontinuity point of the function” [cf. Carslaw
(1930), page 275, and Walker (1988), (3.6), page 185]. Here I, = [a, b;] for
i=1,...,d.

If £(¢) on I does not have the same value at its end points, we can always
transform f(¢), as indicated below, into a new function [cf. (54)] which has the
same value at all end points. This new function has jth-order bounded
continuous mixed partial derivatives or its jth-order mixed partial derivatives
satisfy the Dirichlet condition only if f(¢) does so. Without loss of generality,
assume that d = 2, that is, I = [a,, b;] X [ay, by]. Then the new function at
t= (tb t2),

tl_a
1

Faon () = F(t1,t2) = 3— = (F(b1,85) ~f(a1,2)

t —_
’ _ 22 (f(ay, by) —f(ay,as3))
2 2

(54) b
(t, - al)(t2 —a,)
" (b —ay)(by — ay)

(f(b1,b3) = f(b1,a3)
—f(ay, by) +f(ay,ay))

has the same value f(a,,a,) at the four end points (a,,a,), (a;, by), (b}, ay)
and (b, b,), and the difference between the old and new functions, viz. the
quadratic function

(f(al’ by) — f(aq, az))

i —a,
1

faiee(t) = b

ly —ay
2

(f(by,ay) _f(al’a2)) + b

—a; — Gy

ty —ay lg — Qg
e e (UCHERILES

~f(ay, b3) + f(ay,as))

has a uniformly convergent Fourier series by a similar trick used for r(s, t) of
B(t) [cf. Yaglom (1987a), pages 448-450]. Therefore, if f(¢) has jth-order
mixed continuous derivatives for j = 1,...,d, f,.., does also and hence has a
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f /f61/f62/f63/f64/f65/f66
f fu” fie” fis" fu fis” fie e
f /fl/f /f /f /f /f
I /f:1/ff/f%/fz‘i/fzs/f26
fao /fu/f;/ 33/]‘2/]‘35/;6
fso/s/ /53/ /45/f46
1 56
'_feo/ /62/ /f64/f65/f66/...
/

Fic. 2. The ordering diagram in the bivariate case. f;; j represents d(d + 1)/2 components with
the ordering

1 d
fij""fi%‘“" _)fi(j'( +1/2

uniformly convergent Fourier expansion. This implies that f(¢) has a uni-
formly convergent trigonometric series. This trigonometric series is a summa-
tion of two Fourier series. We call the summation of a finite number of Fourier
series a semi-Fourier series. The properties of the coefficients of a semi-Fourier
series are similar to those of a Fourier series.

In the following, we can assume any function under consideration has the
same value at all the end points.

DeFiNITION 6.2 (Regular ordering). A regular ordering of a multidimen-
sional indexing Fourier series to a univariate indexing Fourier series is
Y7 1c, fi(¢), where ¢, is the coefficient of the Ith Fourier kernel in the
dictionary ordering. (See Figure 2 for the ordering diagram in the bivariate
case.)

Under this ordering, £}, . wa(t) is ordered as f, for some I <
d(d + 1)/2(max,_; 4 n@)? where i = 1,...,d(d + 1)/2.
We shall use the following Lemma 6.1 to prove Lemma 4.1.

LemMma 6.1.  Suppose that a nonnegative definite covariance function r(s,t)
of a d-dimensional random field Z(t) on a rectangle I satisfies the regularity
condition R.1 for m = k. Then there is a uniformly convergent expansion for
r(s,t) = L7_ju,(s)u (1), where lu (u, ) <c/l* for all s,t €I, for some
posztwe constant c.

Proor. Case 1: Part (1) of R.1 holds. Without loss of generality, assume
fs)=s, I=[-mw/2,m/2] X -+ X [-mw/2,7/2]. Then r(s,t)=r(s—1t)=
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r(wy, wy, ..., w,) is symmetric in terms of each w;, =s, —¢,,i=1,...,d, on
[-m,w] X -+ X[—m, 7] and is bounded, even and has up to kd? mixed
bounded continuous partial derivatives. Hence r has a uniformly convergent
Fourier series [cf. (3.6) in Walker (1988)]. Further, without loss of generality
again, assume r(-) in terms of the w,’s has the same value at its end points.

In the following, we expand r(w,, w,...,w,) into a Fourier series accord-
ing to its coordinates, one by one.

Expanding r(w,, w,,...,w,) into a Fourier series in terms of w,, we see
that this series is a cosine series as r(+) is symmetric in w;: ’

[

(55) r(wy, wy,...,wy) = Y, ci(w,y,...,wy)cos(nw,),
n=0

where the coefficients cl(ws,, ..., w;) are symmetric in terms of w,,...,w, by
virtue of the same symmetry in r(-).

Similarly to (55), for m =0,1,2,... we expand cl(w,,...,w,;) into a
Fourier series in terms of w,, which is still a cosine series in w,:

00
(W, .., wg) = X ¢ (wg,...,wg)cos(nw,).
n=0

The new coefficients c2 ,(w,,...,w,) are still symmetric in terms of
Wgy ..., Wy
Repeating the above procedures for w, ..., w,;, we have

r(wy, Wy, ..., wy)

0

= Z Crq1y,...,n(d) cos(n(l)wl) T cos(n(d)wd)
n(1),...,n(d)=0

el

= z Cray,... nay €08(n(1)s1)cos(n(1)t,)
(56) n(D),...,n(d)=0

+sin(n(1)s,)sin(n(1)t,)]
... [cos(n(d)sy)cos(n(d)t,) + sin(n(d)sy)sin(n(d)ty)]

o d(d+1)/2

Z Crqy,...,n(d) Z Aina) ,,,,, n(d)(t)Ain(l),...,n(d)(s)’
n(),..., n(d)=0 i=1

where A, (%) is the ith configuration of the following (p — 1)p/2
combination of sines and cosines:
sin(n(1)¢,)sin(n(2)t,) - - - sin(n(d)t,)
cos(n(1)t,)sin(n(2)t,) « - sin(n(d)td)
sin(n(1)t;)cos(n(2)t,) - - - sin(n(d)ty)

cos(n(l)tl)cos(n(25t2) ~--cos(n(d)ty)
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Since r(-) is nonnegative definite, ¢, . ,) is nonnegative. Similar to a
theorem in Walker (1988), page 199, we have
c
lenqy,...n@)| <
@,...,n(d) n(1)F - n(d)™

for some positive constant c. Therefore, using the regular ordering in Defini-
tion 6.2 and the remark following the definition, the reordered Fourier series
© dd+1/2

Zcz )Y Ail(t)Aiz(s)
=1 i=1

has the property c, < c/I* for some ¢ > 0. This Fourier series uniformly
converges to r(s,t) for k£ > 2. Therefore, the conclusion of Lemma 6.1 is true
in Case 1.

Case 2: Part (2) of R.1 holds. Similar to Case 1, without loss of general-
ity, assume the function under consideration has the same value at its end
points and f(s) = s.

From (56), we have

r(s,t)
ds o
= Z hi(s(l))hj(t(l)) Z Cﬁi{l),...,n(dz)
i,j=1 n(1),..., n(dy)=0
do(dy+1)/2
X .Zl Ain(l),...,n(dz)(t)Ain(l),...,n(dz)(s)
im
w dg
S I T N YA
n(),...,n(dy)=01i,j=1
dy(dy+1)/2
X '21 Ain(l),. . nda) t)Ain(l), e nedp(S)
im
= Z cn(l),...,n(dz)( s®, t(l))Ain(l) ..... n(dz)(t)Ain(l),...,n(dz)(s) s

n(1),...,n(dy)=0
where
d,
L .
cn(l),...,n(dz)(s( Lty = ) hi(s(l))hj(t(l))c;i](l),...,n(d)'
i,j=1

Integrating by parts, we see that there exists a constant C; ;. .1, . n(dy SUCh
that

N Cij _ Ci,j;n(l),...,n(dz)
1),...,n(dg) — ’
n(l) n(dsz) n(l)k(d2+1) - n(d2)k(d2+1)

where C; ;. .1y ... nw, depends only on i,j;n(),...,n(d,) and Ith mixed
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order partial derivatives of & ;; for I = 1,2,...,6d,(d, + 1). Now define
- kdy+1 kdy+1
cn(l),...,n(d)(s(l)’t(l)) =n(1) AR n(d) 2t Cn(l),.‘.,n(d)(s(l)’ t(l))-

It is easy to see that &,y . na(s®, t?) is bounded uniformly in
n(1),...,n(dy). It is a continuous symmetric kernel in s®, #¥ which has up to
fourth mixed order partial derivatives. Hence ¢, na,(s®,t®) has a uni-
formly convergent Mercer expansion,

Y wl D nda)( g(D) gy nD . ndp(pD)
=1
which implies that
* 1

Z kdy+1 kdgy+1
nD),... ndy=0 (1) o n(d)"

r(s,t) =

el
X[ ¥ w0 ntda( g) b, nda)(4D)
=1

X Ain(l), o ongdy(t) Nowy, ., (dy)(8)-

Therefore, by the regular ordering from multiple index {r(1),...,n(d,), } to
univariate index, the conclusion of Lemma 6.1 is true in Case 2. O

Proor or LEMMA 4.1. By Lemma 6.1, for m = 6 there exists a uniformly
convergent expansion of r(s,t), such that '
(58) r(s,t) = X u,(s)u,(t),

=1

where u,(s)u,(¢) < c¢/l™ for some c¢ > 0. Therefore, as k — o,
YF_ 10u,(s)/ds;0u,(t)/ot; converges uniformly in I. We can exchange the
summation and differentiation as follows [cf. Walker (1988), Theorem 5.5,
page 26]:

a%r(s,t) 2 Kk

= L uy(s)u,(t) [by (58)]

ds; dt; ds; 0t; /=

du du
u(s)u,(t) = <£, £> = g,;;(t) by definition.
J

k 92
/=198;0¢;

13

Therefore, Lemma 4.1 is valid. O

“Connection. If Z(t)is a d-dimensional nonsingular Gaussian random field
satisfying R.1 with mean 0 and variance 1, there is a uniformly convergent
(semi) Fourier expansion for r(s,¢) (Lemma 6.1). Under the same conditions,
there is a Karhunen-Loéve expansion for Z(¢) based on this (semi) Fourier
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expansion (Proposition 5.2), where Z(¢) and Z(t) are identically distributed.
This gives a connection between a (semi) Fourier series and Karhunen—-Loéve
expansion.

APPENDIX

More on the existence of a Karhunen-Loéve expansion. Let r(s,t) be the
covariance function Cov(Z(s), Z(¢)) of a random field Z(¢) on I, a d-dimen-
sional compact space. Define Ar(s,t) = r(s, s) + r(¢,¢) — 2r(s, t) and

(59) p(u) = |s—rt1|1:§\/¢7 Ar(s,t) .

Lemma A1 [Garsia (1972); a sufficient condition]. Suppose Z(t) is a
d-dimensional nonsingular random field with mean 0 and covariance func-
tion r(s, t).

If
(60) [1\/— log u dp(u) < =,
0

then there exists a partial sum formed from the first k eigenvalue—eigenfunc-
tions of r(s, t):

k
Zy(t) = lgl \/)‘—zAz(t)Xl’

which converges to Z(t) uniformly in ¢t on I as k — », with probability 1. Here
Xy, Xy,... arei.i.d. #00,1) r.v’s, A, is the lth eigenvalue of r(s,t), A(¢) is
the corresponding eigenfunction of A, [cf. (5)], and p(u) is as defined in (59).

The existence of an orthogonal eigenvalue—eigenfunction expansion (Mercer
expansion) of the covariance function r(s, t) of a random field Z(¢) is given by
Mercer [cf. Courant and Hilbert (1953), pages 138-140, or (5)]. The corre-
sponding series ¥;_,u,(¢)X; as in Lemma A.1 is called the uniformly conver-
gent standard Karhunen-Loéve expansion of Z(t), where u(¢) = /A, A/(¢)
for’=1,2,....

REMARK A.1. If Ar(s,t) satisfies the Lipschitz-a condition:
(61) Ar(s,t) <clls —¢lI* forall s,t-€1,

for some positive constants ¢ and «, then (60) in Lemma A.1 is valid. This
immediately gives Corollary A.1.

CoroLLARY A.1.  Suppose Z(t) is a nonsingular Gaussian random field on
a bounded d-dimensional closed space I, with mean 0, variance 1 and
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covariance function r(s,t) which satisfies, for some a € (0, 2],
d
r(s,t) =1— Y a,(s,t)ls; — t,|* + o(ls — t|*)
=1
as |s — t| = 0, where the a,/(s,t)’s are bounded and nonnegative on I. Then
Z(t) has a uniformly convergent standard Karhunen—Loéve expansion in t € I

[ef. ().

REMARK A.2. Suppose Z(t) is a d-dimensional homogeneous random field
and the covariance function r(s,t) =r(s —¢) of Z(¢) has two continuous
derivatives with respect to w (= s — #) on its bounded domain. Then r(s, ¢)
satisfies a Lipschitz-2 condition, that is, (61) holds with « = 2. Hence Z(¢) has
a uniformly convergent standard Karhunen-Loéve expansion on its bounded
domain 1.

LeEmMMA A.2 (Extension to nonorthogonal series). Suppose Z(¢) is a d-
dimensional nonsingular random field on a bounded domain I, with mean 0
and covariance function r(s,t), and

j;)l\/— log u dp(u) < .

If there is an expansion of r(s,t) = L7 A, A (s)A (), such that
i_ 1A @A (8 is dominated by Tk_.clA,l for some ¢ > 0, which converges
as k — o, then the random field Z(t):

Z(t) = lgl \/)‘—lAl(t)Xl’

is identically distributed as Z(t) and has a uniformly convergent
Karhunen—Loéve expansion on its bounded domain I, where X, X,,... are
ii.d. #00,1) rv.’s.

Proor. Just follow the proof in Adler (1981) from pages 52 to 57 and
notice the following three things. First, our A; is ¢; and X; is 6, in Adler’s
proof. Second, the inequality signs in Adler’s proof need to be switched at
three places (misprints): line 4 from the bottom on page 52, line 10 from the
bottom on page 55 and line 7 from the bottom on page 55. Third, there is a
small change to match our assumption on the expansion in (A.5), where the
A,’s do not have to form an orthogonal system. The small change is to replace
four lines (lines 11 to 14) on page 56 with

E{ Y Akﬂ,f(w)} <c Y Al <o ]
k=1 k=1
REMARK A.3. Lemma A.2 says that under certain conditions for the covari-

ance function of a random field Z(¢), there exists a random field Z(¢) which is
identically distributed as Z(¢) and has a uniformly convergent Karhunen-Loéve
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expansion on its bounded domain I. Lemma A.1 says that if the expansion of
r(s, t) is orthogonal, there is a Karhunen-Loéve expansion which converges to
Z(t) itself on its bounded domain 1, viz. Z(¢) = Z(¢). These two lemmas on the
existence of a Karhunen-Loéve expansion play the same role in finding an
approximation formula for P{max, . ; Z(t) > z} as z — «, since

P{maxZ(t) > z} P{ maxZ(t) > z}
tel tel

and Z(t) has a uniformly convergent Karhunen-Loéve expansion to itself as
Z(¢) in Lemma A.1 does.

Some basic concepts and formulas in differential geometry and Fourier
series. Suppose %= {u(t): u() = (u (), uy(t),...,u, () €S* L tel}lisa
d-dimensional differentiable manifold on metric space I, £ < «. Its metric
tensor is the inner product

£(D) = <3u(t) au(t)> Eoduy(t)  duy(2)
LJ .

T ae oot dt;

of the partial derivatives of u. Here i,j =1,2,...,d, t = (¢,,¢,,...,¢,) € L
The inverse matrix R™(¢) of the metric tensor matrix R(t) = (g;,(¢)) is
written as

(62) R7H(#) = (87(8))axa-

DEeFiNITION A.1 (Volume). The volume, or area of a subset M C % is

V(M) = [t eu_l(M)\/“R(t)” dt,

where [|R(¢)l| is the determinant of R(¢#) [cf. Kreyszig (1968)]. Hence the
volume of % is V(%) = [, ;/IIR(¢)Il dt.

DeriNITION A.2 (Riemannian curvature tensor). The Riemannian curva-
ture tensor of % is the tensor with components

() oLf(?)

.. t —
isn(t) at; at,,

+ Z (TAOT;(8) = TH(OT()),

where the T/, are called the Christoffel symbols defined on %

gz;(t) agij(t) + ag;,(t)

at, 3,

1 d
(63) -3 Le"®

l

with g} as in (62) [cf. Kreyszig (1968), (41.4), page 134].
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DEeFINITION A.3 (Ricci curvature tensor). The Ricci curvature tensor of %
is the tensor with components

Rij(t) = ERfjk(t)
k
[cf. Kreyszig (1968), page 309].

DEFINITION A.4 (Scalar curvature). The scalar curvature of % is

d
S()= ¥ &Y ()R,(1)

i=1,j=1

[cf. Kreyszig (1968), page 310].

DEFINITION A.5 (Formulas of Gauss and Weingarten). Let n,, [ =1,2,...,
be the normal vectors orthogonal to the tangent space spanned by du(?)/d¢,,
l=1,...,d.

The Gauss formula of % gives a linear expansion of 92u(¢)/dt, ot  in terms
of du(t)/ot,, k=1,...,d,and n,, 1 = 1,2,...:

a2u(t) _ ZFZ 3U(t)
at;or; TV ot

+ ZLij(l)nl’
1

where L, (1) = 0*u(t)/o¢t,dt;,n;) = ¥,,&;,, L7(1), T}; is the Christoffel sym-
bol defined as in Definition A.2.

The Weingarten equation of % gives linear expansion of dn(¢)/d¢; in terms
of du(t)/ot,, k=1,...,d,and n,, 1 =1,2,...:

ank(t) ; duk(¢)

+'..’

13

where —L/(1) is the coefficient of an%(¢)/d¢; in the direction du*(¢)/dt;, and
“+ ---” are components orthogonal to the tangent space spanned by
auk(t)/atj, i=1,...,d [cf. Kreyszig (1968)].

DEFINITION A.6 (Dirichlet condition). A function f(x,,...,x,) defined on a
rectangular region I = [ay,b;] X -+ X [ay, b,;] satisfies the Dirichlet condi-
tion, if one of the following two conditions holds:

1. f is bounded on I. For any fixed x;, j # i of j €(1,...,d), the interval
(a;, b;) can be broken up into a finite number of open partial intervals, in

each of which f(x,,...,x,), as a function of x;, is monotonic for i =
1,...,d. )
2. f(xq,...,x,4) has a finite number of points of infinite discontinuity in I.

When arbitrary small neighborhoods of these points are excluded, f is
bounded on I, and the remainder of (a;, b;) can be broken up into a finite
number of open partial intervals (when x; is fixed for j # i), in each of
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which f is monotonic in terms of x;, for i = 1,..., d. Further, the infinite
integral [; f(xy,...,x;)dx,...dx,; is absolutely convergent [cf. Carslaw
(1930), page 226].
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