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ON 1-DEPENDENT PROCESSES AND k-BLOCK FACTORS

By RoBERT M. BurTON,! MARC GOULET! AND RONALD MEESTER

Oregon State University, Oregon State University and
University of Utrecht

A stationary process {X,}, < 7 is said to be k-dependent if {X,}, ., is
independent of {X,,}, . ,_;. It is said to be a k-block factor of a process {Y,,}
if it can be represented as

Xn =f(Yn""’Yn+k—1);

where f is a measurable function of k& variables. Any (k¢ + 1)-block factor
of an i.i.d. process is k-dependent. We answer an old question by showing
that there exists a one-dependent process which is not a k-block factor of
any i.i.d. process for any k. Our method also leads to generalizations of this
result and to a simple construction of an eight-state one-dependent Markov
chain which is not a two-block factor of an i.i.d. process.

1. Introduction. A stationary stochastic process {X,}, c, ‘is said to be
k-dependent if {X,}, ., is independent of {X,}, . ,_;. Obviously, a one-depen-
dent process is k-dependent for any k2 > 1. A stationary stochastic process
{X,} is said to be a k-block factor of a stochastic process {Y,} if it can be
represented as

Xn =f(Yn’Yn+1"' "Yn+k—1)’

where f is a measurable function of % variables.

It is clear that any (%2 + 1)-block factor of an i.i.d. process is also k-depen-
dent. It was conjectured by Ibragimov and Linnik (1971) that the converse of
this statement is not true: They conjectured that there are k-dependent
processes which are not (& + 1)-block factors of any i.i.d. process. Progress on
this conjecture was made by Aaronson, Gilat, Keane and de Valk (1989) who
showed that there exists a two-parameter family of two-state one-dependent
processes which are not two-block factors of an i.i.d. process. The construction
of their processes is algebraic and a more probabilistic mechanism was desired.
In this paper, we construct a four-state one-dependent process which is not a
k-block factor of an i.i.d. process for any k > 2, thereby settling the conjecture
of Ibragimov and Linnik in the affirmative.

In Aaronson, Gilat and Keane (1990) it is shown that any one-dependent
four-state Markov chain is necessarily a two-block factor of an i.i.d. process.
This result is sharp in the sense that they constructed a five-state one-depen-
dent Markov chain which is not. Their proof is quite complicated, and in this
paper we give a very simple proof that a certain eight-state one-dependent
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Markov chain is not a two-block factor. For more details on one-dependent
processes, we refer to Goulet (1992) or de Valk (1991) for an example.

The organization of the paper is as follows. The processes of interest are
constructed in Section 2, and our main result is proved in Section 3. Section 4
deals with some generalizations of this result, and the final section is .devoted
to our Markov chain example.

2. Construction of the process. We construct a stochastic process { X}
with state space {0, 1, (;), (g } as follows. First we choose an arbitrary set of
indices S C N. We then start off with an i.i.d. sequence {Z,}, ., defined on a
probability space (0, &, P) such that P(Z, =0)=P(Z, = 1) =P(Z, = 2) =
1/3. Let, for all n € Z, 7(n) be defined as

m(n) = max{ml|Z,, = 2},
m<n
and let d(n) =n — 7(n) — 1. Thus d(n) is the number of elements strictly

between Z, and the previous 2. Now the process {X,} corresponding to S is
defined on (2, &, P) as follows:

Z,, ifZ,=0o0rZ,=1,
Xn = (‘n), if Z, = 2,
2
where
n—1
Y. Z;(mod2), ifd(n) &8,
. Jj=tm(n)+1
ln = n—1
1- ) Z; (mod2), ifd(n)€ES.
Jj=7(n)+1

In words, if Z,, = 2 and the number of elements between this and the previous
2 is not an element of S, then the top coordinate of X,, is the modulo 2 sum of
these elements. If the number of elements between this 2 and the previous 2 is
an element of S, then the top coordinate is one minus this modulo 2 sum. We
will call the modulo 2 sum of a set of zeroes and ones the parity of this set. It
is clear that { X,} is stationary for any S, and in order to state our main result,
we define . to be the class of those S c N, which have ‘“‘arbitrarily big gaps”
between successive elements. More precisely, if we write S = {s;, s,, ...} where
s; < 8;,, for all i, then

S= {S CNlsup(s;1 —s;) - °°}-
Our main result is the followiﬁg:

THEOREM 1. For any S, the corresponding process {X,} is one-dependent,
but it is not a k-block factor of any i.i.d. process, for any k > 1, whenever
S e
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As a heuristic argument why processes like this should not be k-block
factors, we remark that in order to determine the top coordinates, we may
have to look back arbitrarily far. Some irregularity condition on S is needed
though, because the process corresponding to S = & is in fact a two-block
factor of an i.i.d. process. See Goulet (1992) for details.

3. Proof of Theorem 1.

We first prove one-dependence:

Lemma 1. For any S, the corresponding process {X,} is one-dependent.

Proor. It will be enough to show that

P(B|A) = P(B),
for events A and B of the form
.A = {Xj =aJ,J = _1,..., _m}

and
B={Xj=bj,j=1,...,n},

where m,n > 0. Of course we may assume that both A and B have positive
probability. If b, € {0, 1} for 1 <i < n, then B is clearly independent of A by
construction. Hence we now assume that b & {0, 1} for at least one value of i,
and we define

9 = min{l <j < nlb; & {0,1}}.

It is clear from the construction that of all coordinates in B, only the top
coordinate of b, can possibly depend on A. In order to exploit this we define
the following events:

D={X,+ - +X,_1=b;+ - +by_;(mod 2)},
By = { X, = by}.
Conditioning on X, and writing {X, = (;)} for {X, = (g)} Ui{X, = (;)}, we
see that
P(BIA) = P(B]A, X, = (;))P(XO = ( ; ) A)

+ P(BIA, X, € {0,1})P(X, €{0,1}|A)
- r{min o 3 e )

+(3)"'P(B,lA, D, X, € {0,1})P(X, €{0,1}|A).

The idea now is to argue that in each of the terms above, we may remove A
from the conditioning event without changing the values of the probabilities
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involved. Clearly

and
P(X,€{0,1}|A) = P(X, € {0,1}).

Also, from the construction of the process it follows that

P(B,,IA,D, X, = (;)) =P(B(,ID,X0 = (;))

Finally, by symmetry of even and odd parities, the probability of seeing a 1 (or
a 0) as the top coordinate of a given 2, given any event which does not specify
all coordinates back to the previous 2, is 1/2, whatever the precise form of the
event. The events {A, D, X, € {0,1}} and {D, X, € {0,1}} both fall in this
category, and hence

P(BylA, D, X, € {0,1}) = P(B,ID, X, € {0,1}),
which completes the proof. O

A cylinder event like {X, = a,, X, = a,, X; = a5} will be denoted by

XX, - Xy, =aa5%*ag.
Hence, in some sense, asterisks represent unspecified symbols. Note however
that if we choose S such that, say, 2 & S, the event X; --- X, = (;)1* (;) is
the same as the event X; -+ X, = ( ;)10( ;), the symbol represented by the
asterisk is determined by the other coordinates. Analogously, events like
(X, = (;) X, =ay, X, =a} U(X, = (g) X, = ay, X, = a,} will be denoted
by

X, X, = (;)aQ*a4.
To complete the proof of Theorem 1, we now prove:

LEMMA 2. For any S € ., the corresponding process {X,} is not a k-block
factor of any i.i.d. process, for any k > 1.

Proor. For ease of description, we will give the proof in the case where S
is the set of squares, i.e., S = {n%ln € N}.

The proof will proceed by contradiction, so take & arbitrary but fixed and
suppose that {X,} can be represented as

Xn =f(Yn""?Yn+k—1)’

where f is a measurable function of % variables and {Y,} any i.i.d. stochastic
process. The code of a sequence of symbols ¥ = (y,¥9,...,¥,), m =k, de-
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noted by c(y), is defined as

c(y) =f(y1’y2"“’yk) f(yz"“’yk+1) f(ym—k+1""’ym)'

Furthermore, the sequence xxx --- x (n elements) will be denoted by [x]".

Now we choose a number n so large such that there exist i, j € N satisfying
(1)-(iv) below: ' :

G k<i<j<n?

G)n?2—i+le&S,foralll=1,...,k,

i) j—-Ile&S,forall=1,...,k,

vVj—i+leS,foralll=—-k+1,...,k—1.

It is an easy matter to check that this choice is possible and we fix numbers n,
i and j with the properties (i)-(iv). Now let m = n? + £ + 1 and define, for
any m-tuple {; <i, < --+ <i,, the event

.. . 1 n2( 1
E(iyig,...\i,,) = {c(Yil,Yiz,...,Yim) = (2)[0] (2)}
By assumption we have that P(E(i,,...,i,,)) > 0 for any m-tuple i; < iy <
+ < 1i,,. Furthermore, we define for any k-tuple j, < --- <j, the event
. . 1
F(ji,--osdp) = {c(le,...,YJ~k) = (2)}

The idea of the proof now is to start with the event E(1,2,..., m), then “pull
this event apart” and insert a 2 in two different places, and then show that
this results in an impossible event having positive probability. To do this,
remember our choice of i, j and n and consider the event

D, =E(1,2,...,i,i+k+1,....m+R)NFE+1,i+2,...,i + k).
In comparison with the event E(1,2,...,m), k — 1zero’sin X; -+ X2, are
replaced by 2k — 1 new symbols, the middle one of which is (;) by construc-
tion. More formally, on the event D; we have

B N [ e 1)
k — 1 times k — 1 times

Now let the random variable n, on D, be defined as

= UX, = *)
no-, max {1z, (5]},

that is, n, is the index of the last (;) preceding the designated sequence

[0]**~+1, Because of the fact that X2 pi0= ( ;), and our choice of i (condi-

tion (ii) above), the parity of all the asterisks with coordinate larger than n,
equals 1 on D,. (Note that it follows from this that the rightmost asterisk

cannot be ( ;), since then the parity of the elements between this ( 2 ) and the

final ( ;) would be zero and we would reach a contradiction right away.)
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Next, we consider the event D,, defined as
D,=E(1,2,...,j,j+k+1,....m+R)NF(j+1,...,] +Fk).
As above, we see that on D, we have

1 j— 1 n2—; 1
X1X2 Xn2+k+2= (2)[0]1 B e % (2) * o ok [0] J+1(2)’

k — 1 times k — 1 times
Now let the random variable m, on D, be defined as

. *
Mo = j—k+g1£llsj+1 {lle B ( 2 )}’

that is, m, is the index of the first ( ;) following the designated sequence
[0} ~*. The (random) top coordinate of X,,, is denoted by g. By the same
reasoning as above, the parity of the asterisks to the left of X,, must be ¢,
this time using condition (iii) above. The contradiction now arises from
combining D; and D, to construct the following event:

Dy=E(1,2,...,i,i+k+1,i+k+2,...,j+k j+2k+1,
J+2k+2,...,m+ 2k)
NFGE+1,i+2,...,i+k)NF(j+k+1,j+k+2,...,]+2k).
We obviously have that P(Dj3) > 0, and on D, we have
XXy o Xpziopas

_ (;)[O]i—k § o (;) % e % [O]j—i—k+1

k-1 k-1
1 n?—j 1
Kk oo *(2)* e *[0] J+1(2).
k-1 k-1

Combining the conclusions obtained individually for D, and D, above, we see
that the parity of all elements between the last ( ;) preceding the designated

sequence [0} *"#*! and the first (g) following it is 1 — q. But from condition
(iv) above, it follows that the number of elements between this ( ;) and ( g) is

not a square, and hence g has the wrong top coordinate and we conclude
that P(Dj) = 0, which is the desired contradiction. O

4. Generalizations. There ‘are two ways to extend the example above.
One may weaken the assumptions on the process {Y,} and no longer require
that this process is i.i.d. On the other hand, one may strengthen the require-
ments for the process {X,,}. The process {X,} discussed above has the property
that certain finite dimensional events have probability zero. For example, for
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any s € S, the event

XX, o Koo (3)10(3)

cannot occur. We will see in the proof of Theorem 3 below how we can
construct an example of a one-dependent process which is not a k-block factor
for any k%, such that all finite dimensional events have positive probability. In
order to state our results, we define the following concepts. A stationary
process {Y,} is said to be positive on cylinder events if for any finite sequence
n,<ny< -+ <n; and any B C R’ with positive /-dimensional Lebesgue
measure we have

P((Y,,Y,,...,Y,) € B)>0.

A stationary process X = {X,} with finite state space T satisfies the finite
energy condition of Newman and Schulman (1981) if the following is true. For
any t €T and for any event B measurable with respect to the o-field
generated by { X, |n # 0} and with positive probability, we have P(X, = ¢|B) >
0. We remark that having finite energy is strictly weaker than being positive
on cylinder events.

Each of the following theorems generalizes the result of the previous
sections.

THEOREM 2. For any S € 7, the corresponding process {X,} is not a
k-block factor (for any k > 1) of any process {Y,} such that {Y,} is positive on
cylinder events.

Proor. It is an easy matter to check that the proof of Lemma 2 goes
through without change if we only assume {Y,} to be positive on cylinder
events. O

THEOREM 3. There exists a one-dependent process with finite energy which
is not a k-block factor of any i.i.d. process, for any k > 1.

Proor. This requires more work, though the idea is the same as in the
proof of Theorem 1. Let Z,, i, and d(n) be as defined in Section 2, where we
again assume for simplicity that S is the set of squares. Let {«,}, be a
sequence of positive real numbers in (0, 1), decreasing to zero. The process
{X,}, which we will define now, is a perturbed version of the one constructed
in Section 2. As before, if Z, = 0or Z, = 1, then X, = Z,. Butif Z, = 2, we
perturb the top coordinate of X, independently of anything else as follows:

(l2n ), " with probability 1 — Xd(n)y
X =

( 1 _2 P ) ,  with probability a ;.
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We will say that the top coordinate of a 2 is right if it is equal to the parity of
all elements back to the previous 2, otherwise it is wrong.

It is easy to see that {X,} has finite energy, and the proof that it is
one-dependent is the same as in the proof of Lemma 1. So we need only to
show that {X,,} is not a k-block factor of any i.i.d. process, for any & > 1. Take
k arbitrary but fixed and suppose that {X,} can be represented as

Xn =f(Yn""’Yn+k—1)’

where (Y} is an ii.d. process. The code c is defined as before. Take any n, i
and j as in the proof of Lemma 2, with the extra requirement that j — i —
k + 1> n/2. Later we will need to choose n and ; sufficiently large and i
sufficiently small. Define the following events, again setting m = n? + k + 1:

E(iy,...,i,) = {c(ygl,...,Y,.m) - (;)[0]"2(;)},
F(iq,... i) = {c(Yil,...,Yik) = (;)}

By the independence of {Y,} we have that

P(E(iy,...,in)) = (3)" 7°(1 - ap2)

and P(F(iy,...,1,)) = 1/3. As in the proof of Lemma 2, let D, be the event

D, =E(1,2,...,i,i+k+1,....m+Ek)NF(GE+1,...,i+k).
Then we have that

P(Dy) = (1)1 - a).

On the event D; we have

X, Xppapro = (;)[O]i‘ku( 0 )u[O]”z“'“(;)~

k-1 k-1 '

We define n, as in the proof of Lemma 2. Let D,(1) C D, be the event that the

parity of the stars with coordinate larger than n, is 1, and let D,(0) be the
event that this parity is 0. Now D,(0) is contained in the event

{X1 o Kaygan = (;)[O]i‘ku( . )u[Ol”Z'i.+1( 5 )}

N {the top coordinate of X,z ,_ , is wrong}

and hence we see that
n2—
P(D(0)) < (%) {e+4an2—i+1'

This implies that we can choose n so large and i so small (depending on k)
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such that
P(Dy(1)) = §P(Dy).
Next, we define the event D, as
D,=E(1,2,...,j,j+k+1,....m+R)YNF(j+1,...,]+k)

and m, is defined as in the proof of Lemma 2. We denote by D,(r) c D, the
event that the top coordinate of X, is right. Reasoning in the same way as
above, we find that

P(Dy(r)) = IP(Dy),

for j and n large enough.
Now we define D; by combining D; and D, as in the proof of Lemma 2.
Then we have that

P(D;) = (3)" (1 - a,2),

and on D3 we have
XXy o Xpzionao

= ( ;)[O]i—ku( ; )u[O]j—i—kJrl

k—-1 k-1
*...*(;)*...*[O]nz_m(;).
k-1 k-1

Let D4(1) c D3 be the event that the parity of the asterisks between the
designated sequence [0}/ "i7**! and the previous 2 equals 1. We claim that

P(Dy(1)) = §P(Dy).

To see this note that we have P(D;) = P(D)P(F(j +k +1,...,j + 2k)),
and also P(D,(1)) = P(D,(1)P(F(j + k + 1,...,j + 2k)). Hence
P(Dy(1) _ P(DyV) _3
P(D3) P(D,) 4

and the claim follows.

The event D,(r) C D, is the event that the top coordinate of the first 2
following the designated sequence [0} ~i7**! is equal to the parity of the
asterisks between this 2 and the sequence. In the same way as above we see
that

P(Dy(r)) = 3P(Dy).

Hence

P(Dy(1) N Dy(r)) = 3P(Dy) = 1(2)" (1 = a,2).
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On the other hand, we remark that D4(1) N D4(r) is contained in the event

{Xl o Xoziopie = (;)[O]i_k o (;)L o *,[0]j_i—k+1
k-1 k-1

s e ()
k-1 k-1

N {the top coordinate of the first 2 following the designated sequence

[0) " ** s wrong}.

This event has probability at most (1/3)""2k*8y by our choice of j and i.
/
So it follows that

n?—-2k+6 n?+4
(%) ’ &y, /2 = é(%) ’ (1 - anz)’
which is impossible for n sufficiently large. O
5. Markov chains and two-block factors. Consider the process {X,}

defined in Section 2, corresponding to S = {1}, that is, the top coordinate of a 2
is wrong if and only if there is exactly one element between this 2 and the

previous 2. We now define a Markov chain { M} with state space {(g), (;), ((1)),
( 1 ), (e ), (e ), (d), (’f)} (in this order), and transition matrix P given by

1)7\0/)°\1)°\o0
10 £ £ 0 0 0 O
10 £ % 0 0 0 O
0 £+ 0 0 5 0 0 3
P=§0000§§0
100 0 f 0 0 3
1 00 0 2 0 0 3
0 £+ 0 0 0 5 2 O
0 2 0o 0 0 % %+ o0

It is not hard to see that {X,,} can be represented as a one-block factor of {M,,},
that is, X, = f(M,), for all n, where f((g)) = (g), f((;)) = (;), f((;)) =0
and f((;)) = 1, where * € {e,d}. The interpret:ation of the Markov chain
{M,} is that if M, = (i), then X, =1 and X, is preceded by a 2. If
M, = (‘i), then X, =1 and the parity of all elements (including X,,) back to

the previous 2 is 0. If M, = (‘f), this parity is 1. (e stands for even parity, d

for odd.) The interpretation when the lower coordinate is 0 is analogous. We
now have the following result.
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THEOREM 4. The Markov chain {M,} is one-dependent, but it is not a
two-block factor of an i.i.d. process.

PROOF. An easy calculation shows that the stationary distribution = of
{M,} is given by

_ (2 1 1 A 1 1 1 1 1
™= (5’5’5’5’5’5’5’5 .
Straightforward calculations now show that P2 =TI, where II is the matrix
whose rows consist of . It is not difficult to check that this implies that {M,,}

is one-dependent.

To show that {M,} is not a two-block factor, it is enough to show that { X}
is not a two-block factor, as a one-block factor of a two-block factor is obviously
a two-block factor. So we now assume that {X,} can be represented as

Xn = f(Yn’ Yn+1)’

for some measurable function f and an i.id. process {Y,}, where we can
assume without loss of generality that Y, is uniformly distributed on [0, 1].
The code ¢ is defined as before, and k-dimensional Lebesgue measure is
denoted by A,. For w, x,y, z € [0, 1], we define the following events:

E = {(w,x,y,z) S [0,1]4|c(w,x,y,z) = (;)0(;)},
Ey(w,x,2) ={y €[0,1](w,x,y,2) € E},
Ey(w,x,2) = {(3,5) € Es(w,x,2) X Ey(w, %,2)If(y,5) = 1},

El(w,x,2) = {(3, 7,y ¥),(5,y") € Ej(w,x,2)}.
Of course, A,(E) > 0, and because of the fact that

A(E) = fol'/:j:)tl(EZ;(w,x,z))dwdxdz,

we see that A,(Ey(w, x, 2)) is positive on a set of positive measure in [0, 113
We next show that for almost all (w, x, z) we have (up to a set of measure
zero)

(1) Ey(w,x,2) = E3(w,x,2) X E3(w,x,2).
To see this, let
D(w,x,2) = (Es(w,x,2) X Ey(w, x,2)) \ E3(w, %, 2),
and
D= {(w,x,5,5,2)(5,y) € D(w,x,2)}.
On D we have either c(w;x,y,y,2) = (;)OO(;) or c(w,x,y,y5,2) =
(150( . )( 1), and from the definition of {X,} we see that A;(D) = 0. However,

2 2 2
1,11 .
A5(D)=[0f0[0,\2(1)(w,x,z))dwdxdz,
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and hence A,(D(w, x, z)) = 0 for almost all (w, x, 2), and (1) follows. But then
we conclude that for almost all (w, x, z) we have that up to a set of measure
Zero,
Ej(w,x,2) = Es(w,x,2) X E3(w, x,2z) X E3(w,x,2).
Because A(E5(w, x, 2)) is positive on a set of positive measure, we conclude
that
A((w, x,2) € [0,1]IA3( Ej(w, x,2))) > 0.

Now define the set G as

G={(w,x,59,5,5,2)(y,5,y") € Ej(w,x,2)}.
We then have

1,101
Ag(G) = A(ES(w, x, dwdxdz > 0.
o(G) = [ [ [ Ao Ei(w, %,2)) dwdx dz
On the other hand, on G we have

A _ 1 1
C(w,x,y,y,y ,Z)—(2)011(2),
which is impossible by the definition of the process {X,}. O
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