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ON CONCENTRATION FUNCTIONS ON DISCRETE GROUPS

By WOJCIECH BARTOSZEK
University of South Africa

Let (éu), > o be a random walk on a countable group G. Sufficient and
necessary conditions for the existence of a finite set A C G and a sequence
gn € G such that for all natural n we have P(¢, € Al = gn) = 1 are pre-
sented. This provides a complete solution to the problem of behavior of con-
centration functions on discrete groups.

Let &, be arandom walk generated by a probability measure 1 on a countable
group G [i.e., its transition probabilities are P(¢, .1 = g|é, = h) = p(h~1g)]. By
S(u) = {g € G: u(g) > 0} we denote the support of 1. The probability measure
u is called adapted if S(u) generates the whole group G. The smallest normal
subgroup containing S(u)~1S(w) is denoted by H(u). We say that the random
walk ¢, is concentrated (or the measure p is concentrated) if there exist a finite
set A C G and a sequence g, € G such that P(¢, € g,A) = 1 for all natural n. If
for any finite A C G we have sup, ¢ ¢ P(é, € gA) = k,(A) — 0, then the process
¢, (or the measure ) is called scattered. The function k. is usually called the
concentration function of a random variable &,.

The aim of this article is to provide a full characterization of concentrated
random walks on countable groups regardless of their algebraic structures. So
far, this characterization was known only for Abelian groups.

Let us begin with the notation and auxiliary results. The convolution operator
P, corresponding to a measure y on G is defined as P,f(g) = Trecf( gh)u(h).
We notice that for a probability measure g, the operator P, is a linear posi-
tive contraction on (P(G),|| - ||p), where 1 < p < oco. The inner product in 12(G)
is denoted by (,), and # stands for cardinality of sets. It is easy to check that
P,oP, =P,,, for any pair of measures y,v on G. The adjoint P}, to P, is the
convolution operator Pj corresponding to ji(A) = wWA~1). By 14 we denote the
characteristic function of a set A C G.

Proofs of the following two lemmas may be found in [1], Propositions 1.1
and 3.1.

LEMMA 1. For any finiteset A C G and a probability measure y on G, the
following three conditions are equivalent:

(a) Tim [P 1a]le0 = O,

Received January 1992. .
© AMS 1991 subject classifications. 60B15, 60J15, 47A35.
Keywords and phrases. Random walk, concentration function, adapted measure, strictly

aperiodic measure.

1596

G:]
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%:%?’)

[

The Annals of Probability. STOR ®

WWw.jstor.org



CONCENTRATION FUNCTIONS ON DISCRETE GROUPS 1597

(b) Tim [[P214]2 = 0

LEMMA 2. If uis an adapted probability measure, then H(u) is the subgroup
generated by U2, [S(*" + p*™) | JS(u* + 1*™)].

The next lemma is an easy adaptation of a well-known result of operator
theory (see [2], page 40, for instance).

LEMMA 3. Let u be a probability measure on G. Then there exists a measure
pon G such that

lim Ppeny e =P,

n — oo

in the strong operator topology on 1(G). The measure p satisfies Ji * p * pu = p.

Now we are in a position to formulate the main result of the paper.

THEOREM. Let ybe an adapted probability measure on G. Then the following
conditions are equivalent:

(i) u is concentrated.
(ii) w is not scattered.
(iii) There exists a function f € I*(G) such that lim, _, « ([P f|l2 > O.
(iv) There exists a probability measure pon G such that [i* p* ju = p.
(v) lim, _, o #S(u*") =d,, < .
(vi) H(u)is finite.

Moreover, if the above hold, then there is a natural Ny such that for alln > N
we have H(pu) = S(I*" * p*™) U S(u*™ * 1*") = S(I* * pu**) = S(u*™ = 1**).

PrRoOOF. (i) = (ii) is obvious and (ii) = (iii) follows from Lemma 1.
(iii) = (iv). If there exists a function f € I2(G) such that

. 2 .
dim ([P fllp = Mm (Prerayerf' £) > O,
then the measure p is Lemma 3 is nonzero. Now p = p/p(G) satisfies (iv).

(iv) = (v). Let fi * p * u = p hold for a probability measure p on G. Then for
some go € G we have (go) = sup, ¢ g /(&) > 0. Since for any natural n we have

Ago) = S W hagoh)w ™ (h)i " (ho),
hi,hy

thus p( higohs) = plgo) for all Ay € S(u**) and hy € S(i*"). It follows that for a
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fixed hy € S(1**) and all natural n we have

1> Y A(higohs) = #(Sw™)ago)-
h1€S(p.*")

The above gives the following estimation:

1
d, = lim #(S")) < =——.
H o n—oo (™) p(go)

(v) = (vi) Since #(S(u*")) is nondecreasing, then there exists a natural num-
ber N; such that for all n» > N; we have #(S(¢**)) = const. = d,. This implies
that for every g € S(u) the sets gS(u**), S(1*")g and S(u*"*P) are equal (n > Ny).
Consequently, for all n > N; and all natural & we get

S(,u*(n +k))S([L*k) - S(ﬂ*k)S(u*(n+k)) = S(.U'*n)
and

S(* ™S (u*) = S(u**)S () = S(i*™).

Now let us consider the following sequences of finite sets: R, 1 = S(i** * pu**)
and R, o = S(u** x[i*"). Clearly, both of them are nondecreasing, symmetric and
#R,, ;) < d2 (wherej = 1,2). Hence R, 1 = Ry,,1 = Ry and Ry 5 = Ry, 2 =R
for all n > Ny, where Ny > N is sufficiently large. Then

R1R2 - S(ﬂ*n */J'*n)S(/-‘*n *ﬁ*n) =S(ﬁ*n)S(,u*2n)S(ﬁ*n)
=S(i*")S(w™) = S(uw™)S(i*™") =R1=Rs.

Since R;’li = R, ;, the relation R 1Ry = Ry = Ry implies that R = Ry = Rp is a
subgroup of G. Similarly, if g € S(u), then g 'Rg = g7 'R, 18 = Rn 41,1 = R for
n > Np. Thus, since S(i) generates G, R is a normal subgroup of G. Finally,
since R = S(*" * u**) we have H(u) = R by Lemma 2.

(vi) = (i) Consider the finite set A = H(u). For any g € S(i) we have

S(u™) C gH(gH (). gH(w) = g"H(w),

so u*"(g"A) = 1 for all natural n. It follows the measure 4 is concentrated.
Finally, it follows from the proof of (v) = (vi) that H(1) = R = Ry = S(i*" ™)
=R2 = S(,U,*n * ﬁ*n) =R1 UR2 forn > N(). O

REMARK 1. We notice that any adapted and strictly aperiodic [i.e., H(u) = G]
probability measure p on an infinite G is scattered. Among others, this result
was established in [1]. It was also noticed there that for an adapted probability
measure 4 the essentially weaker condition G/g,,, # Z (integers) is still sufficient
for scattering. However, the following simple example shows that G/x, #2 is

not necessary. In fact, let us consider the group G = 22 with ordinary group op-
erations and adapted measure p = 150, 1)+ 261, 1). Clearly, H(u) = {(k, 0):k € Z}
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and G/g,,, = Z. For all natural n the nth convolution

n
* n
e (k) Ok, n)s

k=0

so #(S(u*")) =n + 1 — oo, and by our theorem v is scattered.

REMARK 2. Similarly, as in step (iv) = (v) of the proof of the theorem, we
may prove that, if the measure y is concentrated, then the measure p appearing
in Lemma 3 is exactly the normalized Haar measure on the subgroup H(u). On
the other hand, if 4 is scattered, then the strong operator topology limit of
Py e is the zero operator.

It may be easily inferred from the above theorem that, if #(S(1)) = co, then p
is scattered. The next obvious observation is that, if an infinite group G does not
possess nontrivial, finite and normal subgroups, then any adapted probability
measure u on ( is scattered unless G = Z and p = 6; or u = §_;. We end this
article with the following result which seems to be another good example of
possible applications of our theorem.

COROLLARY. Let ;1 be an adapted probability measure on infinite G. If there
exists in S(u) an element of finite index, or S(u) N S(i1) # D, then u is scattered.
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