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CRITICAL ATTRACTIVE SPIN SYSTEMS

By CAROL BEZUIDENHOUT AND LAWRENCE GRAY

University of Rochester and University of Minnesota

We study a class of attractive spin systems. We prove that for these
processes the system dies out when the parameters are on the critical sur-
face. We also prove that the supercritical process survives with positive
probability in a sufficiently thick space—time “slab.”

1. Introduction. In Bezuidenhout and Grimmett (1990), it was shown
that the critical contact process dies out. The proof presented in that paper
is easily generalized to show that in any one-parameter family of additive pro-
cesses with translation-invariant spatially symmetric rates, the critical process
dies out starting from any finite initial state, as long as the minimal death rate
is positive. However, since the argument given there relies heavily on spatial
symmetry, it implies nothing, for example, about the critical behavior of the
one-sided one-dimensional contact process. A corollary of the main result of
this paper, Corollary 2.6, implies that any critical additive process with mini-
mal positive death rate dies out with probability 1 from any finite initial state.
In particular, the one-sided contact process dies out at its critical value.

In fact, our argument has implications for a wider class of attractive finite-
range translation-invariant spin systems: we show that if the birth and death
parameters of such a system are critical for the process starting from a single
occupied site and if the death rate is strictly positive, then the process dies out
with probability 1. See Theorem 2.4.

As a by-product of the construction used to prove the main result, we show
that no matter what the spatial dimension of the process, survival starting
from a single occupied site is essentially a one-dimensional phenomenon. More
precisely, we obtain that for any spatial dimension d > 2, if there is a positive
survival probability for the process started from a single occupied site and the
death rate is strictly positive, then there is also a positive probability that this
process survives when it is restricted to a sufficiently thick two-dimensional
space—time “slab” (or, equivalently, after linear change of space—time coordi-
nates that leaves the time coordinate unchanged, the process survives with
positive probability when it is restricted spatially to a sufficiently thick one-
dimensional “tube”). See Theorem 2.8. Note that the analogous result for the
contact process followed easily from symmetry. In the absence of symmetry we
have to work somewhat harder to obtain the result about survival in a space—
time slab.

We use a refinement of the argument of Bezuidenhout and Grimmett (1990).
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That argument in turn was an adaptation to the oriented setting of an earlier
result due to Barsky, Grimmett and Newman (1989) about (unoriented) per-
colation in a half-space. Related techniques have been used in Grimmett and
Marstrand (1990) to study the supercritical phase for bond percolation in the
full space.

2. Statement of results.

2.1. Systems with attractive rates. We consider the class of spin systems
in Z¢ with translation-invariant finite-range attractive rates. A spin system in
Z? is a Markovian system of processes {¢4: ¢ > 0,A C Z?} with values in the
set 22°, the collection of all subsets of Z¢. We write &2 for the state at time ¢ of
the process with initial state A. The state ¢ is a subset of Z%. It is sometimes
called the set of “occupied sites” in Z¢ and its complement the set of “vacant
sites.” In a finite-range spin system, the occupancy of a site changes at a rate
determined by the occupancy of nearby sites. Let N, = {y € Z¢:max; |y;| < r}
and N/ = N,\{0}. The class of translation-invariant finite-range spin systems
with range r < oo is indexed by the set of parameters (rates) (3, §), where

B = (Bm):n CNy),
6 = (8(n):n CNy),

with B(n) > 0 and é(n) > 0. The quantity 3(n) is known as a “birth rate.” It
equals the rate at which a vacant site x in the state £ becomes occupied when
(¢ —x)NN]. =n, where { —x = {y —x:y € ¢}. Similarly, §() is the rate at
which an occupied site x in the state & becomes vacant when (£ —x) NN/ =n. A
vector of rate parameters (3, 6) is called attractive if 8(n) < B(n’) and 6(n) > 6(n')
whenever n C 7'. In the attractive case, the minimal birth and death rates are,
respectively, 3(®) and §(V)).

For a given set of rates (3, §), it is possible to construct all the corresponding
processes {¢2:¢ > 0,A C Z¢} jointly on the same probability space. We shall dis-
cuss the details of this construction in Section 3. The probability space resulting
from this construction will be denoted by 2, and the corresponding probability
measure by Pg s.

Under certain conditions on the birth and death rates, the construction men-
tioned in the preceding paragraph can be carried out so that the following holds:

AUeB =¢AYE forallA,BCZ%andt > 0.
t t t

The rate parameters (3, §) of such a system are called additive. Systems with
additive rates are closely connected with percolation models, so it is not sur-
prising that many results from percolation theory more easily generalize to
such systems. See the book by Griffeath (1979) or the more recent and some-
what less formal book by Durrett (1988) for conditions on the rates that lead to
additive systems.
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2.2. Critical processes. There are several notions of “criticality” for systems
{¢d:t > 0,A C Z4} with attractive rates (B,8). For A C Z2, we say that ¢4
survives for a given sample point w € Q if ¢w)#@ for all ¢ > 0, and we
call Pﬁ,,s(gA survives) the survival probability of the process ¢4. If the survival

probability of ¢4 is positive, we say that ¢4 is viable. If |A| < 0o, we define
84(r) = {attractive (8, 6): ¢* is viable}.

When A is a singleton, which by translation invariance we may take to be
{0}, we write 8y(r) for 85(r). We might call 84(r) the “supercritical region” in
parameter space. Any parameter vector (3, §) on the boundary of S4(r) is called
critical for the process starting at A, and the corresponding process ¢4 is called
a critical process.

Our main result (see Theorem 2.4) is that if (3, §) is critical for the process
starting at {0} and if 6(IN) > 0, then the corresponding critical process £{% is
not viable. Equivalently, the theorem asserts that So(r) N {(3, §): 6(N!) > 0} is
open in the set of attractive rates.

For any translation-invariant additive system, it can be shown that, for all
finite A C Z¢, :

¢{% is viable if and only if £ is viable;

see Durrett (1988). It follows from Theorem 2.4 that critical additive processes
with strictly positive death rates are not viable (Corollary 2.6).

2.3. One-parameter families and critical values. Consider a one-parameter
family of spin systems with range-r translation-invariant attractive rates, in-
dexed by a curve

2.1) {(By,62): 0 < X < 00}

in parameter space. We assume that each component of 3, is nondecreasing and
each component of §, is nonincreasing in ), and that 8o(N7) > 0 and By(®d) = 0.
We shall sometimes write P, for the corresponding probability measure. In the
most common examples, (3,, 6,) = (A3, §) for some fixed set of attractive rates
(B, 6). For example, the symmetric contact process is such a one-parameter
family with the choices: » = 1, 8x(n) = A|n| and 6,(n) = 1 for every 1.

It can be shown by using attractiveness and the hypothesis of monotonicity
in \ that the survival probability of ¢{°} is nondecreasing in \. Therefore there
exists a (possibly infinite) critical value ). defined by

. = 0, A< /\c,
(2.2) P, (¢1% survives) { S0, NS

As a consequence of our main theorem, we have that, for any such one-parame-
ter family for which )\, < oo,

P, (!9 survives) = 0.

See Corollary 2.5.
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2.4. Discrete-time systems. The spin systems {€}: t > 0,A C Z%} described
above evolve in continuous time. One can define analogous discrete-time spin
systems in which ¢ is a nonnegative integer and the parameters (3, §) are prob-
abilities instead of rates. Thus, if n € 2V,

Pg s(x & &1| (& —x) NN, =nU {x}) = 8(n),
Pﬂ,é(x € &u1|(& —x) NN, =n) = B(n).

Note that translation-invariance and the finite-range condition are built into
(2.3). Attractiveness is defined as in continuous time, except that there is an
additional condition, namely that

B +6m) <1

for all  C NJ. This extra condition is required in discrete time to preserve
the monotonicity properties that are fundamental in attractive systems. In
particular, it ensures that for any given configuration of occupied and vacant
sites in Z%\{x}, the probability that the site x is occupied at some time ¢ is
greater if x is occupied at time ¢ — 1 than if x is vacant at that time.

All of our main results are valid for discrete-time systems as well as contin-
uous-time ones, and the proofs are, apart from technical details, identical. We
need to discuss both types of systems, however, because Theorem 2.8 is proved
by induction on the dimension d, and even when the original system has a
continuous-time variable, after one step of the induction argument, we are
forced to deal with a discrete-time system.

All the quantities discussed above have analogues in the discrete-time set-
ting. We use the same notation as above to denote these discrete-time analogues.

(2.3)

2.5. Statement of results about critical processes. Our main result is the
following theorem.

2.4 THEOREM. For every r < oo, in discrete or continuous time, the set
{(B,8):6N)) > 0,¢10 is viable}

is open in the space of parameters (3,68) corresponding to range-r attractive
systems.

An immediate consequence of Theorem 2.4 for one-parameter families of
attractive spin systems is given in Corollary 2.5. See the paragraphs containing
(2.1) and (2.2) for an explanation of the notation.

2.5 COROLLARY. Consider a one-parameter family of spin systems with
attractive rates (8,,6)),A € [0,00), in discrete or continuous time. Assume
that the components of (3, are continuous and nondecreasing and the com-
ponents of 8§y are continuous and nonincreasing in A. Further assume that
Bo(D) = 0,65, (N!) > 0 and, in the discrete-time case, 6, (?) < 1. Then €10} 4s
not viable under P,,.
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Theorem 2.4 has the following consequence for additive processes.

2.6 COROLLARY. Let A be a finite subset of Z¢ and ¢ a critical process
in discrete or continuous time with finite-range translation-invariant additive
rates (8, 6). Assume that 5(N'!) > 0. Then ¢4 is not viable.

2.6. Survival of supercritical processes in restricted space-time. As we shall
see, an immediate consequence of the proof of Theorem 2.4 is the following
corollary.

2.7 COROLLARY. Let ¢4 be a viable process with finite-range translation-
invariant attractive rates (3, 6). Assume that 5(N') > 0 and, in the discrete-time
case, §(9) < 1. Then, possibly after a linear change of space-time coordinates
that leaves the time coordinate fixed has been made, there exists wy_1 > 0
so that with positive Pg s-probability, ¢ 9} survives inside the d-dimensional
space-time region

7072 % [—wy_1,wq_1] x Z x R*.

By working somewhat harder, we can show the following result.

2.8 THEOREM. Suppose {¢A:t > 0,A C Z%} satisfies the hypotheses of
Corollary 2.7. Then, possibly after making a linear change of space-time co-
ordinates that leaves the time coordinate. fixed, we can find a w > 0 so that
with positive Pg s-probability, & O} survives inside the two-dimensional space—
time region

[—w,w]® ! x Z x R*.

This last result can be stated informally as: if ¢ {®} survives with positive prob-
ability, then it does so when restricted to a sufficiently thick two-dimensional
space—time slab, or after a linear change of space—time coordinates that leaves
time unchanged, when restricted spatially to a sufficiently thick one-dimen-
sional tube in Z2.

3. Preliminaries.

3.1. Graphical construction of spin systems. Our goal in this section is to
define a single “universal” probability space on which all of the processes used
in the arguments throughout the rest of the paper are jointly defined. We use
the so-called “graphical construction” of spin systems. It enables us to make
convenient comparisons among several processes. The reader who is willing to
accept that such a construction exists may wish to read only about the construc-
tion in the discrete-time case, skip the details for the continuous-time case and
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then read about the auxiliary processes that we define in terms of the graphi-
cal construction.

We start with the discrete-time case. Let Uy ;, V, ¢, (x,t) € Z¢ x Z*, be inde-
pendent random variables, uniformly distributed on [0, 1]. Thus, to each point
(x,t) in space—time, we assign two uniformly distributed random variables. The
corresponding probability space is called (2, F, P).

Given a set of parameters (3,8) with range r and an initial state A, we
construct the corresponding discrete-time process on 2 inductively as follows.
Let & = A, and, having defined ¢ for a nonnegative integer ¢, define & | by
the condition

x € €A | iff either
3.1) x ¢ ¢ and B((¢f — %) \N}) 2 Uy sz 01
x € ¢4 and 5((&;“ — x) nN;) <Viter.

It is easily checked that (3.1) implies (2.3), so this construction does indeed give
us the desired discrete-time spin system. Note that in the discrete-time case,
one probability space (2, F, P) serves for all possible parameters (3, §) and all
initial states A. Thus, P,B, § equals P for all (3, 6). In the discrete-time setting,

we let
Fe=0{Uys,Visis <txe Zd}.

Now we turn to the continuous-time setting. Choose parameters (3, §) with
range r. Let B,, D,,x € Z% be independent Poisson point processes in [0, co).
We let the Poisson point processes B, have intensity parameter equal to the
maximal birth rate S(IV}), and the Poisson point processes D, have intensity
parameter equal to the maximal death rate §(®). In other words, each B, is
a random, discrete subset of the time line [0, co) with the property that the
distances between points in B, U {0} are independent, identically distributed
exponential random variables with mean 1/8(IV}), and similarly for the random
sets D,. (When the mean distance between points is infinite, we understand
the random set to be empty.) To each point ¢ € B, we assign a random variable
U.,, and to each point £ € D, we assign a random variable V, ;. These random
variables are all uniformly distributed on [0, 1], independent of one another and
independent of the entire collection of Poisson point processes B,, D,,x € Z¢.
Note the similarity to the discrete-time case. Let (2, , Pg 5) be the underlying
probability space. By removing a Pg s-null set, we may assume that the random
sets By, D,,x € Z% are pairwise disjoint. For this continuous-time setting, we let

Fr=0{B.N10,8], Dy N[0,8],Us,r,Va,5: 0 < 1,5 < t, x € Z}.

Given an initial state A, it can be shown [see Gray and Griffeath (1982),
Section 2] that there is a unique process ¢ defined on Q satisfying the follow-
ing four conditions. The first condition is that {;“3 = A. To state the remaining
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conditions, fix a site x and a time ¢ > 0. Let s; = 0 Vmax{s < ¢: s € B, UD,} and
sg = min{s > ¢: s € B, U D, }. Because of the nature of Poisson point processes,
both s; and sy are members of B, U D, U {0}, and s; < ¢ < sy, with probability
1. The second condition is that

if £ < s9, thenxe{‘fiffxegfl.
The final two conditions are analogous to (3.1):
ift =sy € B,, thenx c ¢4 iff either

(3.2) A
xe & or B( (64— %) NNY) > BNDUL, 5

ift =sy € D,, thenx ¢ &2 iff either

3.3)
x ¢ € or ( (64 %) NN) = 6@ WVi,e.

The collection of processes {¢A: ¢t > 0,A C Z%} is Markov with respect to the
o-fields F;. .

Let us give an informal description of the content of the preceding paragraph.
The first condition says that the initial state is A. The second condition says
that the occupancy of a site x does not change during any time interval that
does not contain a point in either B, or D,. The third condition tells us when
a vacant site x becomes occupied. This can occur only at a time ¢ € B, such
that the ratio 3((¢! —x)NN?) /BN!) is sufficiently large in comparison with the
corresponding uniform random variable. Thus, the points in B, are the only
times at which x may become occupied if it is vacant, and the random variables
U, , determine conditions under which occupation actually takes place. The
third condition also implies that an occupied site x does not become vacant at
times ¢ € B,. The fourth condition says that an occupied site x may be vacated
only at atimet¢ € D,, and then only if the ratio 6 ((5;A —x)ﬂN;) /6() is sufficiently
large in comparison with the corresponding uniform random variable. Vacant
sites x do not become occupied at times ¢ € D,.

In the proofs of our main results, we shall use several different auxiliary
processes, all of which can be defined on the probability space of the above
graphical construction. First, it will be convenient to be able to start processes
at times 7 other than 0. It should not be surprising that if 7 is a finite stopping
time with respect to the o-fields F;, then the graphical construction described
above can be used to construct processes 5?’ T t > 7 with initial state (at time
7) A and birth and death parameters (3, §), all on the probability sample space
Q. These processes will “fit together in a Markovian way” in the sense that

Ao o
(3.4) ghe =gt

ifo<t<t.
Second, we shall want to work with restricted processes. A restricted process
is one in which we allow a site x to be occupied at time ¢ only if (x,¢) lies in
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some given space—time set B. We shall use notation like £éA(B) and é47(B) for
such restricted processes. It should be clear that restricted processes can be
constructed on the probability sample space 2. One simply modifies conditions
(3.1), (38.2) and (3.3) appropriately, adding the restriction that x ¢ §f‘"r if (x,8) &
B.Inthe next several paragraphs, we shall introduce the various types of space—
time boxes B that will be of interest to us. It is a consequence of the properties
of Poisson point processes and our graphical construction that if B and B’ are
disjoint space—time boxes, then, for any two initial states A and A’ and initial
times s and &/,

(8.5) E;"S(B) and EtA"S'(B' ) are independent.

3.2. Notation. We use the following notation. Suppose that w; and A are
nonnegative and o; € R. Let w = (wq,...,wy) and a = (a1,...,04). Then
B(w, h; o) will denote a space~time box of width 2w; in the ith spatial coor-
dinate direction, height 2 (in the time direction) and angles of inclination from
the vertical ¢; in the d spatial coordinate directions. Thus

3.6) B(w,h; ) = {(x,t) € REXR:0<t<h,—w;,<x —ttano; <w;
' fori=1,...,d}.

When o =0 = (0,...,0) € R, we write B(w, h) for B(w, h; ). See Figure 1. We
also define six related boxes

R(w,h) = {(x, t) € B(w,h): (x4,¢) € [%,wd] X [g,h] },

R*(w,h) = {(x,t) € R(w,h): signxg_1 = +},
(3.7
—Wq h
L(w,h) = {(x, t) € B(w,h): (xq,t) € [—wd, T’] X [§’h] },
L*(w,h) = {(x,t) € L(w,h): signxg_1 = £}

One may think of these boxes as “upper corner” portions of B(w, k). For the case
of nonzero o, we also define the upper corner boxes R(w, ;) and L(w,h; )
much as B(w, h; o) was defined. Figure 5 shows a view of L(w, k) and R(w, h) for
a particular choice of w and /. We sometimes replace w; and/or A by co: we inter-
pret B(co,ws, . ..,wq, h; a), for example, as the union of B(wy,ws,...,wq,h; o)
over finite w;.

Suppose that the range of the rates is r, and let B = B(w, k; ) be as in (3.6),
with 2r < w; < c0,a; > 0 and A > 0. In the discrete-time case, assume that 2
is an integer. Let S:—'(B) stand for strips of width 2r along the right (+) and left
(—) sides of B in the ith coordinate direction, and let T(B) be the top of B. Thus

TB)={(x,t) cR*xR*: t =h,—w; <x; —ttang; <w; fori=1,...,d},
(3.8) SiB)={xteRIxR":0<t<hw —2r<x —ttang <w;}NB,
S7(B) = {(x,t) € RIxR*0<t<h,—w; <x —ttana; < —w; +2r} NB.
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1]
T T(B)

B(w, h; a) St(B)

Ti

0 w; —2r W

F1G. 1. The projection of B(w, h; a) onto the (x;,t) plane. The subsets T(B) and Si:'E of B are defined
in (3.8).

See Figure 1 again.

Finally, we introduce notation to count the number of occupied sites in T(B)
and Sl?t( B) for a process restricted to B. During the course of the argument, we
shall fix an initial state D. Let N7(B) denote the cardinality of the set

T(B) N {(x,h): x € EP(B)}.

Similarly, in discrete time, we let N (B) be the cardinality of the set

SEB) N {(x,): x € £P(B)}.

In continuous time, we let Ng: (B) be the measure of this set (using the product
of counting measure and Lebesgue measure). Also let

d
Ns(B) =) (Ns:(B) +N;-(B)),
i=1
N(B) = N7(B) + Ng(B).

3.3. Preliminary lemmas. In this section we state several known results as
lemmas for future reference. For all but the first of them, we also give short
proofs for completeness.
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The first result is the famous Harris—FKG inequality [see Harris (1960) and
Fortuin, Kasteleyn and Ginibre (1971)]. In order to state this inequality, we
need some definitions. Recall the probability space (2, F,Pg, s) defined earlier
in terms of the graphical construction. We put a partial ordering “<” on .
We say that w < w if, for all x € Z¢, (i) B(w) C B.(w'), (i) De(w) O Dy(w’),
(iii) Uy, ((w) > Uy, (w') for ¢t € B,(w) and (iv) V, ¢(w) < V, (') for ¢ € D,(w").
(For the discrete-time case, to make sense of these conditions, we let B, and D,
equal Z* for all x.) This partial ordering goes back to Harris (1978), at least in
the additive case. Informally, the conditions that define the partial ordering say
that there are fewer births and/or more deaths for the sample point w than for
w'ifw < w’. We call an event E € F a positive event ifw € E implies v’ € E for all
w’ such that w < w’. Note that intersections of positive events are themselves
positive. The following is a very useful tool in the analysis of systems with
attractive rates.

3.9 LEMMA. Positive events are positively correlated.
The following result was first used by Russo (1978) and Seymour and Welsh
(1978). )

3.10 LEMMA. Suppose A and B are positive events and
Pﬁ)&(AUB) >1—g and Pﬁ’,s(B) <1-—e.
Then Pg s(A) > 1 — €1 /es.

Proor. By the Harris—FKG inequality, A and B (and therefore A¢ and B¢)
are positively correlated. Therefore,

€1 2> Pﬁ,,s(Ac N B°) > P’@,,S(AC)P,@,,S(BC)
> 9Py 5(A°).

The result follows after some rearrangement. O

Our next two lemmas rely (in part) on the Harris—FKG inequality. They
concern the behavior of viable processes.

3.11 LEMMA. Let {€A:t > 0, A C Z%} be a spin system with finite-range
translation-invariant attractive rates (3, 8) such that §(N') > 0. Suppose D C Z°
is such that Pg, s(€P survives) > 1 — £ with ¢ > 0. Choose positive integers Ny
and Nii, and let N = Ny + Z‘i’l=1[Ni+ +N]. Then there exists a space-time box
B = B(w, h) depending on N and ¢ such that the following statements are true.
Let B'(w',h/; ') be a space-time box containing B. In the discrete-time case,
assume that the components o of the vector o are bounded above by arctanr
in absolute value. Then

P3s(NB)>N)>1-¢
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and

(1 —Pg 5(Nr(8") > No) ) ﬁ [(1 Pg s(Ns;(B) >N+)>
(3.12) i=1

x(1 - Pg,s(Ng-(B) > Ni‘))] <e.

Proor. To prove the first statement, assume, to get a contradiction, that
no such B exists. Then there exists a nested sequence B, 1 Z¢ of space—time
boxes (each of which is tilted no more than arctan r in any of the d spatial
directions in the discrete-time case), so that if Ej, is the event {N(B;) < N},
then Pﬂ’,g(Ek) > ¢. But then

P(Ej i.0.) > limsup Pg 5(E,) > .
n — oo
We may assume without loss of generality that, for each %, the boundaries of
the boxes B;, and B, ; are at least one unit apart (in all directions). Then it can
be shown that

(3.13) Pg 5(¢P dies outin By .1 | E;) > ¢ > 0,

where ¢ is a constant independent of k. The key facts here are the Markov
property and the fact that the sets 7(B) and Sii have been chosen so that
all occupied space—time points outside of B are necessarily “descendants” of
occupied space—time points in the sets T(B) and/or S;J‘. If the time coordinate
is discrete, a proof of (3.13) based on these facts is straightforward. In the
continuous-time case, the proof is slightly more technical because we count
particles in terms of the measure of the set of occupied space-time points. See
Bezuidenhout and Grimmett [(1990), (17) in the proof of Lemma (7)] or Durrett
(1989) for details. It is easy to show using (3.13) that Pg, 5P dies out|Ey,i.0.) = 1
and hence that Pﬁ, 5P dies out) > ¢. This contradiction establishes the first
part of the lemma. The second part, (3.12), follows from this and the FKG
inequalities because the events in (3.12) are all positive. O

Note that the essential ingredients in the proof of this lemma are (i) the FKG
inequality and (ii) the lower bound (3.13).

3.14 LEMMA. Let {¢4:t > 0, A C Z%} be a spin system with finite- -range
translation-invariant attractive rates (3, 6) such that §(N.) > 0 and ¢1% is
viable. Fix € > 0. Then there exists a finite set D and an integer J such that

(3.15) Py s(D <& (Dx0,41)) >0
and

(3.16) Pg 5(¢P survives ) > 1 —e¢.
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Proor. First, we shall show that there exists a finite set D and a positive
integer J such that (3.16) holds and

(3.17) Pﬁ’g(D - gJ{O}) > 0.

Suppose not. Then for every finite set D satisfying (3.17) for some ¢J, (3.16)
fails. But then for each such set D there exists a finite time m so that Pg 5(5% =
@) > ¢ > 0. By a standard stopping-time argument, one obtains from this that
Pg 5(¢{% survives) = 0.

A standard limiting argument also shows that (3.17) implies the existence
of a minimal finite set C C Z¢ such that

Pﬁ,a(D C ~J{O}(C x [0, J])) >0

(just take limits as C T Z%). Since C is minimal, the probability that every sitein
Cisoccupied at least once during [0, J] must be positive. Since there is a positive
probability that any site that is occupied at some time before time o is still
occupied by time o (recall that in the discrete-time case, the death probabilities
are bounded away from 1), it follows from the Harris—FKG inequality that there
is a positive probability that every site in C is occupied at time J by the process
starting at {0} and restricted to C. After enlarging D if necessary to equal C,
(3.15) follows. O

Our final lemma states that, for a spin system with translation-invariant
finite-range rates and with minimal birth rate equal to 0 started from a finite
set, the set of occupied sites is contained with probability close to 1 inside a
space—time cone whose width grows linearly with time.

3.18 LEMMA. Let {¢&:¢ > 0, A C Z%} be a spin system with finite-range
translation-invariant rates (3, ). Assume that 3(®) = 0. Then, for each ¢ > 0,
there exists an angle ag € [0,7/2) such that for all finite initial states A,

(3.19) Pﬂ,s(f‘f C [-p —ttan ag,p +1t tan a,l® for all t > 0)>1-¢,

where p = max{max; |x;|: x € A}. The quantity o depends only on ¢, the range
r and the maximal birthrate S(N}).

ProoOF. For the discrete-time case, this result is trivial, since growth occurs
only at integer times, and since a vacant site cannot become occupied unless
it lies within distance r of one or more occupied sites (let oy = arctan r, inde-
pendently of ). For the continuous-time case, we first note that the result is
obviously true if we restrict ¢ to a bounded interval [i.e., replace the expression
“¢ > 0”1in (3.19) by “¢ € [0, T” for T finite]. For large ¢, we compare the process
¢ to a range-r process with death rate equal to 0 and birth rate equal to S(V)).
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It is known that for such a process p(¢)/t — c a.s. for some constant ¢ indepen-
dent of A, where p(¢) is the maximum diameter of the set 5{‘. This convergence
of the quantity (p(z) — p(0))/t to the constant ¢ happens uniformly in the size of
A, in an appropriate sense. See the discussion of Richardson’s growth model in
Durrett (1988). Using these observations, it is easy to complete the proof. O

4. The fundamental lemma. The following lemma is the heart of the
proof, and we go into some detail in proving it. Unfortunately, the details in the
discrete-time case are somewhat messier than in continuous time, although
there is no essential difference. We give the proof for continuous time first and
indicate the necessary changes for discrete time afterward. In the statement of
the lemma, the set D and the integer J are provided by Lemma 3.14, and the
quantity oy comes from Lemma 3.18. The quantities Ny(B) and N s* (B) were

defined earlier, in terms of D and /. See subsection 3.2.

4.1 LEMMA. Let {€A:t > 0,A C Z%} be a spin system with finite-range
translation-invariant attractive rates (8, 6) such that (N.) > 0 and £ is
viable. Assume that §(p) < 1 in the discrete-time case. Fix § € (0, 1). Suppose
that D is a finite subset of Z¢ and J is a positive integer satisfying (3.15) and
(8.16), with ¢ = 6% /2 (in the discrete-time case, we need to take ¢ = §*/4). Fix Ny
and N* > 1. Let o be given by Lemma 3.18, with € = 6. Then, possibly after a
relabeling of coordinates, there exists a box B = B(w, h; a)with o = (0,...,0,aq)
and |ag| < ao, such that

(4.2) Pg s(N7(B) > No) > 1 -6,
(4.3) Pg,5(Ng:(B) > N¥) > 1-26.

Furthermore, the coordinates of w and the quantity h can be chosen as large as
we wish.

PROOF IN THE CONTINUOUS-TIME CASE. Because §(N!) > 0, the process &
is sure to die out if the size of ¢P falls below N, infinitely often. Consequently,
by (3.16) with € = §3/2, there exists a positive number #, so that, if ¢ > ¢y, then

(4.4) Pgs (1P| > No) > 1 - 62/2.

Noting that the proof of Lemma 3.11 is still valid even if we require in the
statement of that lemma that the first d — 1 coordinates of w equal oo, we
see that there exist wy = (co,...,00,wg) and ko > o so that, if B’ is any box
containing B(wy, ko), then
(1-Pp, 5(N2(B) 2 No) ) (1 - Pg s(Nsy(B) = N*) )

(4.5)
! - 3
x (1= Pg 5(Ns, (B)=N")) <8°/2.

By (4.4), there exist w; = (oo, ..., 00,w}) and k;, with w? > w¢ and hy > ho,
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such that
(4.6) Pg, ,s(NT(B(wl,hl)) > NO) >1-6/2.
By our choice of «y,
(4.7) Pg 5(€P ¢ R*~1 x [—p—t tan ag, p +¢ tan ao] for some t) <16,
where
(4.8) p = max{max |x;|: x € D}.

Fix a width w¢ ¢ Z so that
(4.9) wd —wf>2r and arctan [(wg - wf —2r) /hl] > ay,

and let wy = (00,...,00,wd). We have chosen w¢ so that any space-time box
B = B(wg, h; o) with b > h, that does not contain B(wy, h;) has either its right-
hand side or its left-hand side in the dth coordinate direction (depending on
whether o, is positive or negative) outside the “light cone” {(x,#) € R¢xR*: —p—
ttan ag < x4 < p+ttan ap} and consequently [by (4.7)] either Pg, 5(NS+ >
N*) < 1-6.orPg 6(Ns— > N7) < 1 - 6. See Figure 2. In the proofs of the
two claims below, all of the boxes that we define will be of the form B(ws, A; o)
for A > hy and a = (0,...,0,a). It will follow from (4.7) and the way in which
these boxes will be deﬁned that we shall never have to consider angles o larger
than o in absolute value. Therefore, any such box will contain B(w;, k;) [and
hence B(wy, hg)], so we shall be able to use (4.5) to obtain information about
the numbers of particles on the sides and top of such a box.

We show first (in Claim 4.10 below) that it is possible to choose a space—time
box (unbounded in the first d — 1 spatial coordinate directions and with vertical
sides in the dth) for which (4.2) is satisfied with § deplaced by /2 and for which
at least one of the two inequalities in (4.3) is satisfied.

4.10 CLAIM. There exists hy > hy such that

(4.11) Pp,s( Nr(B(wz, hs)) = No) > 1-5/2
and either

(4.12) Pg,s( Ny (B(ws, hy)) > N')21-5
or

(4.13) Pg,s(Ns; (Bows, ho) >N~) > 16,
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hy

d
wy — 2r

Td

—wg +2r —w? -p p wd wd

FiG. 2. The choice of w‘21 in the proof of Lemma 4.1. For i = 0, 1, B; is the projection of B(w;, h;)
onto the (x4, t) plane. The heavily shaded region is S%(B), where B is a box not containing Bj.
Note that it lies completely outside the lightly shaded “light cone.” The angle labeled &g is arctan
(g — wf — 2r)/hq].

ProoF. Let us introduce some temporary notation, to be used throughout
the remainder of the proof of Lemma 4.1. Let

B(h,a) = B(co, ... ,00,wl, h; 0,...,0,q).

[As mentioned earlier, if A > h; and o € [—ap, apl, the box I§(h, a) contains
B(w, hy), by the definition of w‘?f]. Since T(B(h1,0)) D T(B(wy,hy)), it follows
from (4.6) that

(4.14) Pg,s(Nr(B(h,0)) 2 No) > 1-6/2
for A = h;. Suppose there exists & > A, for which (4.14) fails. Let
(4.15) hg =inf{h > hy: (4.14) fails}.

In the continuous-time case, the left-hand side of (4.14) is _continuous in A and
therefore there is equality in (4.14) for A = hs. So, since B(hz,0) 2 B(wy, ho),
we have by (4.5) that either (4.12) or (4.13) holds with B = E(hz, 0), and Claim
4.10 is verified in this case.

If the set in (4.15) is empty, then (4.14) holds for every A > k4, and hence the
probability that the system survives inside the d-dimensional space-time slab
B(cc,0) is at least 1 — § /2. Assume that the birth rate is such that when only
the origin is occupied, there is at least one point with nonzero dth coordinate at
which the birth rate is positive. Since we are assuming that the process survives
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when only the origin is occupied in the initial state, this assumption is true, at
least after a possible relabeling of coordinates. We shall assume that this point
has positive dth coordinate (it is obvious how to modify the argument if its
dth coordinate is negative). Then it is easy to see that, conditioned on survival
in the slab, Ng:(B(0o,0)) is infinite with probability 1. Therefore, there exists
an hy > hy such that, conditioned on survival in the slab, the probability that
ng(B(hz, 0)) > N* exceeds 1 — /2. Combined with the fact that the survival
probability is at least 1 — §/2, this yields (4.12) with B = B(hs, 0). This proves
Claim 4.10.

We now show that there exists a space—time box, infinite in the first d — 1

spatial directions and possibly tilted in the dth, so that (4.11), (4.12) and (4.13)
all hold.

4.16 CLaM. There exist h3y and a‘li so that, ifﬁ = B(co, ..., 00, wg,hg; 0,...,
0, a‘f), then the analogues of (4.11), (4.12) and (4.13) with B(ws, hy) replaced by

B all hold.

PRrROOF. In this proof we use the same temporary notation B(k, «) as in the
proof of Claim 4.10. Let us assume that A, has been chosen so that (4.11) and
(4.12) hold. By Claim 4.10, if we cannot find such an A, then we can instead find
an hy so that (4.11) and (4.13) hold, and we modify the argument accordingly.

Consider the set of nonnegative angles « for which there exists an A > h; so
that

(4.17) Py s(Nr(Blh,a)) 2 No) > 1-5/2,
(4.18) Py s( Ny (B(h,a)) > N*) > 16,

This set is not empty since, by assumption, it contains « = 0 (at & = hy). By the
definition of o [see (4.7)], the set is contained in [0, «g). Let

(4.19) of = sup{a > 0: (4.17) and (4.18) hold for some & > h;}.

Since we have chosen the width w¢ to be a noninteger, for fixed & the quantities
on the left-hand sides of (4.17) and (4.18) are constant for a near 0. It follows
that 0 < o < ay.

By the definition of a‘f, there exists a sequence of positive angles a(n) 1 a‘f
and a sequence of heights A(n) > hj so that both (4.17) and (4.18) hold when
(h,a) = (h(n), a(n)). First consider the case in which it is possible to choose
the sequence of heights A(n) so that h(n) — oo as n — co. We may assume
that a(n) > A, where A is some positive constant. For any box B(h, @) with
a > A, a particle in the box B(h, o) that survives at least 2w‘§ cot(A) time
units must hit the left side of the box. Since the maximal death rate is finite,
there is a (possibly small) quantity p > 0 such that the probability is at least
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p that any given particle in §(h,a) will survive long enough to hit the left
side of the B(h, ). It is easy to prove from this fact and the fact that survival
events are positive events that for all sufficiently large A, conditioned on the
event K = {E,?(E(h, a))# @}, the probability that Ng- (B(h,a)) > N~ is at least
1—6/2. The event E is implied by the event in (4.1517), so we conclude that for
all sufficiently large n, Pg, ,5(Nsd_(§(h(n), a(n))) > N7) is at least 1 — §. The
statement of Claim 4.16 thus holds in this case.

We now turn to the case in which we cannot choose the sequence A(n) to
tend to co. Let H be the (bounded) set of heights & > h; such that (4.17) and
(4.18) both hold when a = of. This set is nonempty, since it contains any limit
point of the sequence A(n) [the left-hand sides of (4.17) and (4.18) are jointly

continuous in ~ and « if time is continuous]. If there exists an k3 € H so that,
for (h, @) = (h3, o),

(4.20) Pp,s(Ns, (Bh,a)) >N") >1-5,

then the assertion of Claim 4.16 follows with B = B(hs, ad).

It remains to deal with the possibility that no height A3 in the bounded set H
exists such that (4.20) holds with & = k5 and o = a‘li. We show that this leads to
a contradiction, completing the proof of Claim 4.16. This part of the argument

is illustrated in Figure 3.
Define
(4.21) hy =supH =sup {h > h;: (4.17) holds when a = a‘li}.

Since the left-hand side of (4.18) is increasing in A for fixed «, the fact that H
is bounded implies that there exists 2 € (h;, co) so that (4.17) fails for o = ad.
So hy < oo. By the continuity in A of the left-hand side of (4.17), we have
that there is equality in (4.17) when a = of and h = k4. Recall that we are
assuming that A3 does not exist—in other words, that whenever (4.17) and
(4.18) hold simultaneously for o = a‘f and i > h, (4.20) fails. Therefore, since

E(h4, a‘f) 2 B(wy, hy), it follows from (4.5) that there must be strict inequality
in (4.18) for h = hy and o = o4. See Figure 3(a). Define

(4.22) of =inf{a > of: (4.18) fails when & = h,}.

By the definition of a; [see (4.7)], (4.18) fails for every A when a = ay. We also
have that (4.18) holds with strict inequality when - = hy and o = af. By the
continuity in « of its left-hand side, (4.18) holds with equality when o = ad and
h = hy. S0 of < af < . Therefore, by the definition of o<, (4.17) fails for A = hy
and a = a‘zi. Therefore, since ag € [0, ap) and hence B(hy, ag) D B(wy, hy), (4.5)
implies that (4.20) holds with strict inequality for z = A4 and o = ad. See Figure
3(b). Let

(4.23) o = sup{a > af: (4.20) fails when & = hyt.
3 2
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hy <
B, B,
—wd
(a) (®)
h4 =
B1 Bl
(.
—w‘zi
() (d)

1177

FIG. 3. A schematic representation of the contradiction reached at the end of the proof of Lemma 4.1.

In each case, the shaded region is the projection of B(wg, h) onto the (x4,t) plane.
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When i = hy, we have that (4.20) fails for o = al and that it holds with strict
1nequa11ty for a = a2 By contmulty, (4.20) holds with equahty when h =hs and
a= a3 Therefore, a¢ < ad < ad and, by the definition of od and a4, (4.18) holds
with strict inequality and (4.17) fails when A = A4 and o = a . See Figure 3(c).
Let

hs = sup{h < hy: (4.17) holds when o = agl}.

By the definition of w and because ag < ay, (4.17) holds when A = h; and
a = ad. We also have that (4.17) fails when h = h4 and a = of. By the continuity
in A of its left-hand s1de (4. 17 ) holds with equality when A = h5. Therefore,
hs € [hy, hy] and, since a3 > al, (4.18) fails for A = hs and o = a3 Hence, since

B(hs, o ) D B(wy, ho) (4.5) implies that (4.20) holds with strict inequality when
h = hs and a= a3 See Figure 3(d). Since h5 < h4 this contradicts our earlier
observation that (4.20) holds with equality when (h, a) = (hy, a3)

This completes the proof of Claim 4.16.

It follows from Claim 4.16 that, if we choose wy, ..., wy_; sufficiently large
and let B = B(wy, ..., wq—1,w%,hs; 0,...,0,al), then (4.2) and (4.3) hold. It is
clear that the coordinates of the vector (ws, ..., wy) can be chosen as large as
we wish. Just before (4.6) in the proof of Lemma 4.1, the height #, can be chosen
as large as we wish, so i3 (which is at least as large as k1) can also be chosen as
large as we wish. Thus we have established Lemma 4.1 in the continuous-time
case. O

PROOF OF LEMMA 4.1 IN THE DISCRETE-TIME CASE. In the continuous-time
case, we relied several times on the continuity in & and « of certain probabil-
ities. In discrete time, & is restricted to integer values, and for fixed 4, these
probabilities are not continuous as functions of «. However, it is easily checked
from the definitions that for fixed A, the quantities on the left-hand sides of
(4.17), (4.18) and (4.20) are upper semicontinuous as functions of . That is,

limsup f(h,a) < f(h,a')
for f equal to each such quantity. This upper semicontinuity will be useful in
the proof that now follows.

Starting from the beginning of the continuous-time proof, we now indicate
the places where modifications are needed. The first change is that we assume
(without loss of generality) that Ny > max{N*,N~}. We then choose w; =
(00,...,00,wd) and hy so that, for all boxes B’ containing B(wy, ko),

o (1~ P, s (N2(B") = 2CNo) ) (1 - Pg, s (N (B") = N¥) )
4.
x (1~ P s(Ns. (BN = N)) < 5*/4,

where C > 1is chosen large enough so that the following is true:

(4.25) Py s(|GNEP| > CN) <P s(|Gnehy| > N) +§
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for all integer times ¢ > 0, finite sets G and positive integers N. We can choose
such a constant C because of the assumption that the death probability is
bounded away from 1. Now we choose w; = (oo, . ..,00,w?) with w¢ > w? and
hy > hg, so that

(4.26) P[g’g(NT(B(Wl,hl)) > CN()) >1- %

Throughout the rest of the proof, we shall use (4.24) and (4.26) in the place of
(4.5) and (4.6).

The proof now follows the continuous-time case until the first place that con-
tinuity is used, namely in the paragraph containing (4.14) and (4.15). Replace
(4.14) by

(4.27) Pp,s(Nz(B(h,0) = CN)) > 1- Z,

which holds for 4 = h; by (4.26). Define hy accordingly. Then (4.27) fails at
h = hg, so by (4.24), either (4.12) or (4.13) holds. Since (4.27) holds at & = Ay — 1,
it follows from (4.25) that (4.11) also holds at A = k. The rest of the proof of
Claim 4.10 is unchanged.

We now move on to the proof of Claim 4.16 in discrete time. If the analogue of
the sequence {h(n)} introduced in the first paragraph after (4.19) is unbounded,
we proceed as in the continuous-time case. If this sequence is bounded, we may
assume that it is constant since time is now discrete. Now upper semicontinuity
of the left-hand sides of (4.17) and (4.18) in « for fixed & is sufficient to prove
that the set H is nonempty.

This brings us to the last part of the proof of Claim 4.16, in which we assume
that the bounded set H does not contain a height A3 such that (4.20) holds with
h=hsand o = a‘li. We define k4 as before [see (4.21)]. Lacking continuity, we
know only that (4.17) and (4.18) both hold and (4.20) fails at A = b4 and o = a‘li‘
Now consider the situation at & = k4 and angles « slightly larger than od. By
upper semicontinuity, (4.20) still fails. There are two possibilities concerning
(4.17) and (4.18): either (4.17) fails and (4.18) holds, or (4.18) fails and (4.17)
holds [they cannot both fail because of (4.24), and they cannot both hold because
of the definition of o¢]. In the second case, (4.24) and upper semicontinuity imply
that

~ 2
(4.28) Po,s(Nr(Blh,e) 2 20Ng) > 1- 2

at h = hy and o = of. At the end of this proof, we shall show that (4.28) implies
that either (4.20) holds or (4.17) holds with A replaced by A + 1. Since (4.20) fails
at h=hy and o = of, and (4.17) fails at h = hy + 1 and & = o2 (by the definition
of hy), we see that the second case leads to a contradiction.

For the moment, then, let us assume that the second case mentioned in
the preceding paragraph does not happen. That is, we assume that (4.17)
fails and (4.18) holds at 4 = h4 and angles « slightly larger than o4, and we
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continue the argument as in the continuous-time case. Namely, we define a‘zi as
before [see (4.22)], and because of our assumption, we are assured that acll < ag.
We also define ag as in the continuous-time case [see (4.23)]. Since (4.20) fails
at h = h4 and angles « slightly larger than a‘f, we have that of > acll. However,
we cannot prove, as we did in the continuous-time case, that of < of. Instead,
we merely have the trivial inequality og < ag.

Now consider the situation at height & = h4 and angles « slightly less than
of. By the definitions of the various angles od, we can find an angle od € (af, o)

such that (4.17) fails, (4.18) holds and (4.20) fails at A = A4 and o = af. Define
hs =sup {h < hy: (4.17) holds at = o }.

As in the continuous-time case, &5 > hy, and, since o > o, (4.18) fails at h = hs
and a = of. Also, as in the continuous-time case, we have by monotonicity that
(4.20) fails at this location. By the definition of A5, (4.17) fails at 2 = A5 + 1 and
a = a‘j. By (4.24), (4.28) holds at A = hs and o = aﬁ‘ Thus we have the same
contradiction as in the paragraph containing (4.28), once we show that if (4.28)
holds, then either (4.20) holds or else (4.17) holds with & replaced by A + 1.

To complete the proof, assume that (4.28) holds. Of course, it has been implicit
in our discussion that we are interested only in heights A > h; and angles
a € [0, ap]. Because we are in discrete time, we may take aq = arctanr, where
r is the range of the birth and death rates. Let B denote the box B(h, o), and
define two sets:

E=T®B)nS;B),
F =T(B)\E.

Let Ng be the cardinality of (5? (B) x {h}) UE, and let Ny be the cardinality of
(E,{’ (B) x {h}) N F. In other words, Nz counts the particles on the top of B that
are also within 27 units of the side of B in the negative dth coordinate direction,
while Ny counts particles on the top of B that are more than 2r units from that
same side, so Ng + Np = Np(B). It is obvious that N, 7 (B) > Ng. It follows that,
if the event in (4.28) occurs, then at least one of the following two events also
occurs:

A1 = {Ng_ (Bth,) =N},
Ay = {Nr > CNy}.

(We have used here the assumpton that Ny > N~.) Both A; and A, are positive
events. By (4.28), their union has probability at least 1 — §2/4. It follows from
Lemma 3.10 that either Pg §(A;) > 1 — 6 or Pg §(A3) > 1 — §/4. The first
inequality is (4.20). We claim that the second inequality implies (4.17) with
h replaced by h + 1. To see this, first note that since ap = arctanr, if we let
G = {x: (x,h) € F}, then G x {h +1} C T(B(h + 1,)). Now apply (4.25). This
completes the proof of Claim 4.16 in the discrete-time case. The rest of the proof
of Lemma 4.1 is the same as in the continuous-time case. O
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5. The basic ingredients of our main construction. We state three
propositions. Each concerns the ability of a viable process to reproduce a given
finite set D within a given target area. These will be the basis of the construc-
tion we use in proving our main results. The notation is as in Section 3. See
especially (3.7).

5.1 PROPOSITION. Suppose {¢}: ¢ > 0,A C Z%} is a spin system with trans-
lation-invariant attractive rates (3,6) with range r such that §(N!) > 0 and,
in the discrete-time case, §(®) < 1. Further suppose that £{% is viable. Fix
€ > 0. Then, possibly after making a linear change of space—time coordinates
that leaves the time coordinate fixed, one can find a finite set D C Z® and numbers
h > 0and w; > 0so that, with probability at least 1—¢, {(x,): x € £P(B(w,h))}N
R(w, h) contains a translate of D x {0}, and similarly for L(w, h).

This proposition suffices for the proof of Theorem 2.4. In order to prove Corol-
lary 2.7 and Theorem 2.8, we need the following refinement of Proposition 5.1:

5.2 PROPOSITION. Let {¢A:t > 0,A C Z%} be as in the statement of Proposi-
tion 5.1. Fix € > 0. Then, after making a linear change of space-time coordinates
that leaves the time coordinate fixed, one can find a finite set D C Z% and numbers
h > 0and w; > 0sothat, with probability at least 1—¢, {(x,t): x € ¢P(B(w, A)}N
R*(w, h) contains a translate of D x {0}, and similarly for R~ (w,h),L*(w,h)and
L~(w,h).

Proposition 5.2 is used to prove the following proposition, which constitutes
the basic building block in the construction. Translates of the event described in
this proposition will be used to construct a supercritical discrete-time process.

5.3 PROPOSITION. Suppose {¢4: ¢t > 0, A C Z%)} satisfies the hypotheses of
Proposition 5.1. Fix k > 1 and for w; > 0 and h > 0, define

BO = B(O, e ,0, Wdq—1, wd,h),

Bf=B <3kw1, ooy Bkwa_s, 2wy _ 1, 2wq, (k + 1)k;

+wy
0,...,0, arctan (?’T]T))

Choose € > 0. Then there exist a finite set D C Z%, numbers w,w; and h and a
neighborhood U of (B3, 6) in parameter space such that, for every (3',6') € U and
every (x,s) € B, with Py g -probability at least 1 — ¢, after a suitable change of

variables that leaves the time coordinate fixed, {(y,t): y € £ “"S(B,ff)} contains
a translate of D x {0} lying in the set

(5.4)

(o,...,o, ik%,kh) +B% + [-3kw,3kw]? 2 x 0 x 0 x 0.
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Let us briefly describe in words the content of the last proposition. The sets
Bi should be visualized as slanted slabs that are quite narrow in the (d — 1)st
and dth coordinate directions. The quantity & is a scaling factor which will later
be chosen to be greater than or equal to 20. The set B° is a “source” located at
the center of the bottom of the slabs B,:f and containing an occupied translate
of D x {0}. The proposition asserts that, with high probability, the process
restricted to the slabs and starting at the source copy of D x {0} will reproduce
occupied translated copies of D x {0} in some target sets located at the tops
of the slabs. These target sets are like the source set B°, except that they are
allowed to be thicker in the first d — 2 coordinate directions.

5.1. Proof of Proposition 5.1. We shall restrict our attention to the part of
the proposition concerned with finding an occupied translate of the set D in the
box R(w, k). The proof for L(w, k) is completely analogous.

Let B =B(w',h’;),D,J and o be as in Lemma 4.1, with 4’ and w’ playing
the roles of ~ and w in that lemma. The quantity 6§ of that lemma is assumed
to have been chosen suitably small, as described later in this proof. Define
h=h+J,W=w +(p,p,...,p,p+Jtan ap), where p = max{max; |x;|: x € D}
and B = BW, k; ). We - may think of the dimensions of B as large in comparison
with p and J tan a, so Bis aslightly thickened version of B. Let w = 4w, h = 3%
and B = B(w, h; ). We are going to consider processes restricted to B and B.

Let E” be the event that there exists an x € Z¢ such that D + x C £P(B).
One way in which this event can occur is for a site x in £2(B) to “produce” the
occupied set D + x after J time units. More premsely, the event ET occurs if

there exists an x € § 7(B) such that D +x C & glxh v ((D +x) x [A',h]). [Note that
ifx € £2(B), then §E{x} KD +x) x W, R C éED(B), because of (3.4) and the way

in which we have thickened up B to form B.] We shall see in a moment how to
use this fact and (3.15) to show that for any v > 0, there exists an N such that

(5.5) Pg s(E" [Np(B)>N) >1—~

for all choices of B such that the event that N(B) > N has positive probability.
The value of N can be chosen in a way that depends only on v, D, J and the
probability on the left-hand side of (3.15). Similarly, we shall indicate how to
show that if we let E* be the event that there exists a space—time point (x,s)
such that D +x C st(B) and (x,s — J) € S}(B), then, for all v > 0, there exists
an N such that

(56) Pﬂ,g(E"' |NS;(B) > N) >1-— Y

for all choices of B such that the event that Ng;(B) > N, has positive probability.
Intuitively, the idea behind both (5.5) and (5.6) is that if a space—time set con-
tains enough occupied points, then it is likely that at least one of those occupied
points will produce an occupied translate of the set D in the time J. A similar
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fact can be found in Bezuidenhout and Grimmett [(1990), proof of Lemma 18].
But the argument here is technically slightly more complicated than the one
needed in Bezuidenhout and Grimmett (1990), so we shall indicate briefly how
it goes.

We focus on the proof of (5.6). The argument for (5.5) is very similar (and
slightly easier). Let X = {(x,t) € S}(B): x € £P(B)}. In order to be systematic
when we refer to various points in X, we lexicographically order the points in
space—time, with the time dimension being given precedence over the spatial
dimensions, and with the precedence among the spatial dimensions being fixed
arbitrarily. Since S}(B) is a closed set and since the processes under considera-
tion have right-continuous paths, it is clear that, with respect to this ordering,
there is a minimal space—time point (xg, ¢y) in X, provided, of course, that X is
nonempty. Now we proceed inductively to define (x;, ) to be the minimal space—
time point such that (x; + D) x (¢, % +J] does not intersect (x; + D) x [¢;, ¢ +J]
for any j = 0,...,k — 1. Of course, from some % on, there will not exist a point
(%, t) that satisfies this definition. Let N’ equal the largest integer & such that
(%3, 1) exists. A routine argument can be used to show that N’ > aNs+ (B) for
some appropriate positive constant a. For each &, let

Ap={N'">k}n {D+xk C XD H (D +xp) x [ty th +J])}.

Thus, if N’ > k, A, is the event that the occupied site (xp,%;) produces the
set D + x;, in time J. Note that E* contains the union of the events A;. Thus,
because of the relationship between N (B) and N’, in order to prove (5.6), it is
enough to show

Pps(|JA|N'2N) > 17

for sufficiently large N. This last inequality is an immediate consequence of
the following:

(5.7) Pp s(Aps1 [N > RAS, .. AS) > b

for all £ and some positive constant b independent of £. And (5.7) follows in a
straightforward manner from the strong Markov property together with (3.5)
and (3.15). This completes our justification of (5.5) and (5.6).

If we choose v > 0 sufficiently small and then choose a sufficiently large IV so
that (5.5) and (5.6) both hold, then, by applying Lemma 4.1 with Ny = N* = N
and a sufficiently small § > 0, we see that, B, D, J and o can be chosen so that

(5.8) Py 5(ET)(Ps, 6s(ED)® > 1 —¢.

Lemma 4.1 also allows us to choose the width w), as large as we wish, so we
may assume that

(5.9) wg > 48(r + p+ J tan ayg)
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where, as above, wy = 4w/, + p + J tan op). Let us assume that the event E*
occurs. Then there exists a space—time point (x, s) near the right edge of the box
Bsuchthat D +x C §SD (B). We can choose the time s to be as small as possible,
and choose the site x in some systematic way that does not depend on what
happens after time s. We describe the situation informally by saying that “the
process has moved the set D to the right from (0, 0) to (x, s).” We employ similar
informal terminology when the event ET occurs: we say that “the process has
moved the set D up from (0, 0) to (x,4) if D +x C 5 ¢D2(B).” Again, we can choose
the site x in a systematic way that does not depend on what happens after
time A.

Assume that the process has moved the set D to the right from (0, 0) to (x, s1).
This happens with high probability. Now think of restarting the process at the
space-time point (x3,s;). Using the strong Markov property, we see that, with
high probability, the restarted, restricted process ¢2+*1:51(B + (x4,s1)) moves
the set D to the right from (x;, s;) to a point (xg, s3) near the right edge of the
box B + (x1,s1). Next, instead of moving again to the right, we move up. That
is, the process

£+ B )

moves the set D up from (x4, s3) to a point (x3, s3) at the top of the box B+(xs, s5).
And, finally, we move the set D once more to the right, this time from the point
(x3,s3) to a point (x4, s4) near the right edge of B + (X3, s3). All of this happens
with high probability. In fact, the strong Markov property and (5.8) imply that
this sequence of four movements of the set D (two to the right, followed by one
up, followed by another to the right) happens with probability greater than 1—e.

Now we observe that the bound in (5.9) and the boxes B and B have been
chosen in such a way that at least one of the sets D x {0} + (x;,s;), i = 2, 3,4,
lies inside R = R(w,h; o), where as above, w = 4w and & = 3. Note that Ris
the upper right corner box of. B. Choose j J to be the smallest value of i such that
D x {0} + (x;,s;) lies inside R. We have chosen the dimensions of the boxes so
that it is necessarily the case that the first j moves described in the preceding
paragaph all take place with processes that are restricted to subsets of the
box B.

Let us summarize. We have described a procedure whereby, with probability
at least 1 — ¢, an occupied translated copy Qf the set D lying in the set R(w, h; o)
is produced by the restricted process £~ D(B). To complete the proof, we simply
make the change of coordinates

(5.10) (X1, ..., %q,8) — (x1,...,%q_1,%qg — t tan ag, t).

Since ag,...,aq_1 are all equal to 0, the result now follows. O
5.2. Proof of Proposition 5.2. We now complete the proof of Proposition 5.2,

making use of Proposition 5.1. It follows from Proposition 5.1 that, after a
change of coordinates [as in (5.10)], there exists a box B’ = B(w’, h’) such that
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if B is the event that the set {(x,2): x € £P(B(x/,h))} N L(w',h’) contains a
translate of D x {0} and if Ef is the analogous event involving R(w’, k'), then
for the € in the statement of Proposition 5.2,

(5.11) Pﬁ,b‘(EL NEg)>1- &2,

We shall work in the transformed coordinates just described.

The strategy of the proof is to find a hyperplane that splits the two corner
boxes R(w’,h') and L(w', k') into four boxes, each of which is likely to contain
an occupied translate of the set D x {0}. The procedure for finding such a hyper-
plane is very similar to that used in the proof of Lemma 4.1. Once this procedure
is successfully carried out, a change of coordinates completes the proof.

For each real number @ and angle 6, let P(a, 6) be the hyperplane in R? x R*
that passes through the origin (0, 0) of space-time and contains the set:

Ua,0)={(y,t) € RYxR*: y;_1=a+ystanb, t=h'}

in R? x R*. Since P(a,6) = P(a,f + 7), we may restrict our attention to 6 €
[-7/2,7/2]. Each P(a,d) divides R? x R* into two half-spaces H*(a, §), where
H*(a,0) is the half-space containing (0, ...,0,a+ 1, F tan 4, 2’). Let L*(a, §) and
R*(a, ) be the respective closures of the intersections of L(w’, k') and R(w’,h’)
with H*(a, ). See Figures 4 and 5. Since at least one of these four sets is
empty for |a| > 3wy _1, we shall restrict our attention from here on to a €
[-8wq_1,3wg_1]. Let Ef(a, 9) and Efg(a, #) be the analogues of the events Eg
and E;, with L(w’, h') and R(w', k') replaced by L*(a, §) and R*(a, §). We show
that there exists a hyperplane P(a, 6) such that

(5.12) Pg 5(Ef(a,0) >1-¢ fori=L,R.

The assertion of Proposition 5.2 will follow from this after an appropriate change
of variables in space—time.

Fori =L,R, define
fE(a,0) = Pg s(EF(a,0)).

Note that each fii(a, 0) is jointly upper semicontinuous in (a,§). By (5.11) we
have that, whena = —3w, _1, f'(@,0) > 1 —¢2 > 1 —cfori=L,R. Let

™ T

(5.13) aj =sup {a > —3wg_q1: 30 € [—5,5] with f*(a,0) > 1 — ¢, i=L,R}.

The set in (5.13) is contained in [-3w, _ 1, 3w, _ 1], S0 a; is finite. Moreover,
since [—7/2,7/2] is compact and by the joint upper semicontinuity in (a, §) of
+, we have that a; is in the set of which it is the supremum.
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4 Wgd-1
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F1G. 4. The projection onto the (y4, y4-1)-plane at height h' of various regions defined in the proof
of Proposition 5.2.

Suppose there exists § > 0 for which f}(as, ) and fs(aq,60) are both greater
than or equal to 1 — ¢. If this does not occur, then there exists 6 < 0 satisfying
this condition and we modify the argument given below accordingly. Define

0, =sup{9 € [0, g] fia1,0) > 1 —¢, i=L,R}.

Note that 6 < 7/2 since f{(a, 7/2) = 0 for every a. By the upper semicontinuity
in ¢ of f*(a1,6), we have f;*(ay,6;) > 1 —e fori = L, R. By the definition of ; and
since f3 (a1, 0) is nonincreasing and f; (a1, 6) is nondecreasing as 6 increases, we
must have that f(a,,0) < 1 — ¢ if §; < § < 7/2. By Lemma 3.10 and because
Pg s(Ep) > 1 —¢* and Eg = E}(a,0) U Ex(a,0), fz (@1,60) > 1 — ¢ for such 6.
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(~wg, wg_q, h) (w:i»w:i—phl)

(—‘w;/S, _w:i -1 hl/?’) (w:i/3s —w;—v h’/3)

FiG. 5. A three-dimensional view. The regions R and L are projections of R(w’, h') and L(w', h').
The dot in the center is the origin of space-time.

Therefore, by the upper semicontinuity in 6, fg (a1,61) > 1 —¢. If f; (a1,01) >
1 — ¢, (5.12) holds with (a, 8) = (a1, 6;).

So we may suppose that f; (a1, 60;) < 1—¢. As 0 decreases, f; (a1, 6) increases.
Define

(5.14) 0s = sup{f < 01: f; (a1,0) > 1 —¢}.

The set in (5.14) is nonempty since f; (a1, —7/2) > 1 — 2. By the upper semi-
continuity in 6 of f; (a1, 6), we have that f; (a1,62) > 1 — ¢ and so 6, < 0;.
Since f; (@1, —7/2) > 1 — ¢, we also have §; > —n/2. By the definition of
b2,f; (@1,6) < 1 —¢if By < 6§ < 6. Therefore, for such 6, Lemma 3.10 implies, as
above, that f{(a1,62) > 1 — ¢. So by upper semicontinuity, f/(a;,0) > 1 —¢.
If we had that for some 8 € (6, 61), fa (a1,0) < 1 — &, then, by the upper
semicontinuity in a of f] (a, 6) and fz (a, 6), there would exist @ > a; so that
f7 @, 68) <1—efori=L,R. Since Pg 5(E; NEg) > 1 — 2, using Lemma 3.10
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as above, we would have that f*(a, 6) > 1 — ¢, violating the definition of a;.
So, if 6 € (62,61), fg (@1,0) > 1 — €. Since f3(a1,0) increases as ¢ decreases, we
have that fj(a1,60) > fi(a1,61) > 1 — ¢ for such 6. So by upper semicontinuity,
fR (a1,602) > 1 — €. So (5.12) holds with (a, ) = (a1, 85).

Assume that (5.12) holds. Make the change of variables

yi_’yl fOI’l— d -2,

Yd-1— _h’ cos9+yd_1cos6’ y4siné,

at . .
Y4 — 7 sinf +yg_1sinf —ygcosb,
t—t.

Let w; =w/for 1 <i <d -2, wg_1 =acosf+w)_;cosf+w)|sinb|, wg =
a|sinf| +w),_,|sinf| +w/, cos § and h = h’. The proof is now complete. O

5.3. Proof of Proposition 5.3. This result is the analogue of Lemma 19 in
Bezuidenhout and Grimmett (1990), and, details aside, its proof is essentially
the same as the proof of that result. The statement of Proposition 5.3 involves
two parts involving regions B,f. We prove the one involving Bj. The proof of the
other is entirely analogous.

Fix g1 > 0. Its value, depending on ¢, will be determined later. We use Propo-
sition 5.2 to choose a set D C Z? satisfying (3.15) and numbers w; and A so that
(after a suitable change of coordinates if necessary) the following is true. Let

= B(w,h), and let R* = R*(w, h) and L* = L*(w, k) be as in (3.7). Let E; be

the event that {(y,s): y € £2(B%)} contains a translate of D x {0} contamed in

R* and define Ei similarly. Then, by Proposition 5.2, we can make appropriate

choices so that Pﬁ 5(Ei) > 1—¢; fori = R,L. Note that we may assume that
w; =w, say,fort— .,d — 2, so that

= [—w,w]d‘z X [—wg_1,wqg 1] X [—wgq,wg] x [0,H],

and, for example,

R =[-w,wl? % x [-wg_1,0] x [%‘i,wd] X [%,h].
Each event ElL depends only on the configuration inside the space—time region
B% and so its probablhty depends continuously on the parameters (3, §). There-
fore, there exists a neighborhood U of (3, §) in the space of parameters so that
if(,B’, ') € U,then Py 5(E;") > 1—¢; fori = R, L. As a first step in establishing
the part of Proposition 5.3 that concerns B}, we make the following claim.

5.15 CLamM. Let B' = B(3w,...,3w,2wy_1,4wq/3,2h). Then, for every (3,
&8') € U and every (x,t) € B®, with Py 5-probability at least (1—¢1)%, {(y,s): y €

EP+4BY)) contains a translate of D x {0} contained in

2wy 4wy

(5.16) B?=[-3w,3wl® 2 x [~wg_1,wqg_1] X [_—3—, 3 ] x [k, 2h).
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Proor oF CraiM 5.15. We consider a number of space-time regions; the
space—time region B is contained in their union and four are auxiliary regions.
Fori=-2,...,3andj=1,2,3, let
bre . . d-2
T(l;.])= [_(J_l)w;(,]_l)w] X[O,Ll)d_ll

. wg [. wg] . h [ h]

- 1)—=+|0,— - 1= =
x((z )3+-,3_>x<(1 )3+O,3- ,

T~G,j) = [~ G- Dw,(j — Dw]® "% x wg_1,0]

. Wwq [ wd' . h [ h]
X<(L—1)_3—+-O,—:3—)X<(J—1)§+ 0,5-).

We consider also the auxiliary regions T%(4,2) and T*(4,3). If (x,¢) € T*(i, j)
with —2 < i < 1, we use translation invariance together with the fact that
Py 5(EE) > 1—¢; to conclude that with Pg s -probability at least 1 —¢y, {(y, s):
y € E2*%4B0 4 (x,1))} contains a translate of D x {0} contained in R¥ + (x,1).
In particular, if (x,¢) € T*(Z, 3) with —2 < i < 1, then since, for such (x, ?),

2h

B+ (x,t) C [—3w, 3wl® 2 x [~wy _ 1, 2wy _ 1] X [(i—4)%‘£,(i+3)%i—] X [ 3

,Zh]
and
_ d—-2 Wy . Wwq
R +(X)t) g [—3w73w] X [—wd—lywd—ll X |:l—3‘)(l+3)—3‘:| X [hazh])

we have that the event in the statement of Claim 5.15 occurs with Py -
probability at least 1 — ¢; in this case. If (x,¢) € T (,3) with -2 <i < 1, we
use a translate of E}, to draw a similar conclusion. Finally, for (x,#) € T*(, 3)
with 2 < i < 4, we use a translate of Ef. Thus we have that if (x,#) € T%(i,3)
with —1 < i < 4, then the event in the statement of Claim 5.15 occurs with
Py s-probability at least 1 —¢;.

Ifj = 2 and (x,¢) € T*(Z, j) and one uses a translate of the event Ef or of Ef,
depending on whether —2 <i < 1or 2 <i < 4, one finds that the region into
which the translate of D x {0} falls with large probability may not be entirely
contained in the region B2 of (5.16). However, the region obtained is contained in

4
B*u | [T*G,3)UT~(,3)].

i=—1

If the lowest translate of D in {(y, s): y € &2* (B + (x, 1))} is in T*(;, 3), then
we use the strong Markov property to restart and then use the previous step.
We conclude thatif -2 < i < 4and (x, ¢) € T*(i, 2), then, with Pg g -probability
at least (1 — )2, the event in the statement of Claim 5.15 occurs.
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Similarly, we find that if -2 < i < 3 and (x,¢) € T*(, 1), then the event in
the statement of Claim 5.15 occurs with Py s -probability at least (1 — €1)3.
This completes the proof of Claim 5.15. O

Iterating this step % times gives the result of Proposition 5.3 as long as ¢; is
chosen small enough to ensure that (1 —£;)* > 1 — ¢. This completes the proof
of Proposition 5.3.

6. Proof of the main results.

6.1. Construction of a process. Fix g > 0 and £ > 20. Assume {¢}: ¢ >
0, A C Z%)} satisfies the hypotheses of Proposition 5.1. Choose w, &, D and a
neighborhood U of (3, 6) so that the statement of Proposition 5.3 holds.

We shall define a discrete-time Markov process =, = (I,,, P,) taking values in

[{0,1) x ¢ x RM]% .

For x € Z?~1, 5,(x) will be defined only if x; _ 1 + n is even.

Before giving precise definitions, we shall give an informal description of
the various objects that are involved in the process we are about to construct.
For x € Z%~1 and n > 0 subject to the above parity restriction, the quantity
I,(x) is a random variable which can take only the values 0 and 1 and indicates
whether or not the site x is to be considered occupied at time n. The space—
time point (x,7) is identified with a space-time box in our original process
{¢4: t > 0, A C Z%}, and occupation in the new process signifies that a certain
event has occurred involving that space—time box in the original process. When
I,(x) = 1, the quantity P,(x) gives us more precise information about where in
space—time the corresponding event occurred in the original process. The kinds
of events that we shall be concerned with in the defnitions of I,, and P, will be
of the type described in Proposition 5.3. Note that the spatial dimension of the
new process is one less than that of the original process. In trying to match up
the coordinates, the reader should think of the first d — 2 coordinates of the two
processes as corresponding to each other, and the (d — 1)th coordinate of the
new process as corresponding to the dth coordinate of the old process. In our
argument, the (d — 1)th coordinate of the old process will essentially disappear,
because we shall restrict everything that happens in that coordinate direction
to the interval [—wgq_ 1, wq — 1].

For (i,n) € Z x Z* with i + n even, let

V(@,n)= <O,ik%,nkh> + [—wg_1,wg _1] X [~wg, wq] x [0, A].

Ifx =(x1,...,254_1), x4_1 +nis even and I,(x) = 1, then P,(x) will lie in

(6.1) xlx---xxd_sz(xd_l,n).
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For (u,t) € Z¢ x R* and (uq _ 1, uq,t) € V(i,n) for some i and n, define

xE(u, ) = {(v, s) e Z*xR*: ve gP+xt <<u1 . Ug— 2,0, ik%,m@h) +B,;f) }

[See (5.4) for the definition of B,f and also for the definition of B in the next dis-
play.] For such (u, #), let G*(u, t) be the event that xy*(u, ) contains a translate
of D x {0} lying inside

<u1, e Ug—2,0,(G % 1)k%‘i,(n + 1)kh) +B0 + [-8kw,3kw]® "2 x 0 x 0 x 0.

Then, by translation invariance, Proposition 5.3 and the choice of w, A, D and
U for every (3',6') € U and every (u,t) in Z¢ x R* with

(ug_1,uq,t) € U V@i, n),

i,n: n+i even
we have that
(6.2) Py 5 (GF(m,t)) > 1 — 0.

We define Z, recursively, beginning with Z;. For n = 0 and x € Z¢~ 1, define
I,,(x) to be the indicator function of x = 0 and define Py(x) = (0, 0) € Z¢ x R* for
every x € Z?~ 1, Suppose that we have defined the random variables =j(x) for
E=0,...,nand x € Z¢~ 1. Consider x € Z¢~ 1 with x;_1 + n + 1 even. Unless
there exists ay = (y1,...,yq 1) in Z¢~ ! with

lxe —ye| < 8w, fore=1,...,d -2,
(6.3)
[Xa—1-ya-1| =1,

so that I,,(y) = 1, we define I, , 1(x) = 0 and P, ,1(x) = (0,0). Suppose there
exists a y satisfying (6.3) for which I,,(y) = 1. Suppose in addition that, for some
such y,

(1) yg—1=%4-1%1,
(ii) the event GF(P,(y)) occurs,
(iii) the lowest translate of D x {0} lying inside

xT ((Pr(y)) N [(yl, o ,Y¥d—2,0,%4 _ 1kwg, (n + Dkh)

+ B0+ [=3kw, 3kw]® 2 x 0 x 0 x o]

is (D+(x1, .. .,%q_9,%q _ 1,%4)) x {t} for some (g _ 1,%q,?) € V(xg_1,n+1).
(In discrete time there may not be a unique “lowest translate,” but in
that case we can choose among the alternatives in some prescribed
deterministic way that does not depend on the future.)
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Then we define I,, . 1(x) = 1 and we choose P, , 1(x) = (z,¢) so that the lowest
translate of D x {0} contained in

X1 X - X%xg_9 X Vixg_1,n)N [X+(Pn(y)) Ux~ (Pn(y))]

for some y satisfying (6.3) is at (D + z) x {¢}.

Let F, be the o- field generated by {Z,,: 0 < m < n}. Then, for every (3, §') €
U, (En, Fn, Py ¢)is a Markov process and, in fact, the conditional distribution of
Zp +1(x) given F, depends only on the quantities Z,(y) for y such that (6.3) holds.

6.2. Proof of Theorem 2.4 and Corollary 2.7. With {Z,(x): x € Z*~1,n > 0}
as above, define random variables Z,(x) for x € Z and n > 0 with x + n even as
follows: Z,(x) = 1 if I,(x1,...,x4 _2,x) = 1 for some (x1,...,x%4_2) € Z*~2 and
Zn(x) = 0 otherwise. Then it follows from the definitions that, fori = 0, 1,

Py 5 (Zns1)=i| Fn) =Py s (Zn+l(x) =i | {Ea): [ya—1—%| = 1})
Using (6.2), we have that
Py 5(Zn1x)=1]F,) > p(Znlx — 1), Z,(x + 1)),‘

where p(0,0) = 0 and p(1,0) = p(0,1) = p(1,1) = 1 — &y. For fixed n, conditioned
on 3, the random variables Z,, , 1(x) and Z, , 1(y) are correlated only ifx = y + 2,
as long as we choose £ in the statement of Proposition 5.3 sufficiently large
(B > 20 will do). Therefore, one can modify the usual contour argument for
one-dependent oriented site percolation [see Durrett (1988), page 85] to show
that if ¢ is sufficiently small, then with positive Py s -probability, there exist
infinitely many values of n for which

6.4) {x: Z(0) = 1} # .

For any n for which (6.4) holds, we have that gn[,’eh(B(oo, ey00,2Wwq _1,00,00))#D.
So we have that, with positive Pg s -probability, £P survives inside

(6.5) B = B(oo,...,00,2wg _1,00,00).

Thus we have that if Pg, 5(£° survives) > 0 and §(N) > 0 and, in the discrete-
time case, 6() < 1, then there exists wg _ 1 and a neighborhood U of (3, §) in
the space of parameters so that for every (3',6’) € U, ¢P survives inside B [see
(6.5)] with positive Py s -probability.

We have just proved that there is a positive survival probability for a certain
open set U of parameter values, with the initial state being a certain finite
set D. It remains to prove an analogous result for the process starting at the
singleton {0}. Since the event in (3.15) depends only on the configuration inside
the finite space—time region D X [0, k], its probability is a continuous function of
the parameters. Therefore, there exists a neighborhood U’ of (3, §) in the space
of parameters so that if (3',6’) € U’, then (3.15) holds with Pg s replaced by
Py 5. It follows from this and the Markov property that if (3',6') € UN U, £°
survives inside B(co, ..., 00,2wyg _ 1,00, c0) with positive probability. Theorem
2.4 and, in fact, Corollary 2.7 now follow. O
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6.3. Proof of Theorem 2.8. 'The proof is by induction on the dimension d.
We note that we have already established the result when d = 2 and that for
general d > 2 we have constructed a discrete-time Markov process =, = (I,, P),
where I, takes values in {0, l}zd ' and P, is an auxiliary process. If x € Z¢~1
and I,,(x) = 1, then P,(x) gives the precise location of the translate of D x {0}
in the underlying process whose presence makes the “cell” in (6.1) occupied.

In order to decrease the spatial dimension once more, we would like to apply
the result of Corollary 2.7 to the process {I,: n > 0}. However, since {I,} does
not satisfy the hypotheses of that result (it is not even a Markov process), we
have to check that the proof can be modified to accommodate a wider class of
processes.

There is one respect in which the process {I,: n > 0} is easier to handle
than the original one, and that is that we can assume that the probability of
“survival” (i.e., the probability that the set of n for which

{x: LLx)=1}#9

is unbounded) starting with {x: Iy(x) = 1} = {0} is as close to 1 as desired. The
reason we can do this is that we can choose ¢ in the statement of Proposition 5.3
as small as we like. In particular, for the new process, we need not repeatedly
generate translates of a large set (D x {0} for the original process); the process
can be restarted from a single “occupied site.”

The basic ingredients needed to make the proof of the technical results lead-
ing up to the proof of Corollary 2.7 work are:

(i) the FKG inequality for events like those whose probabilities appear in
(3.12), and
(ii) a result which states that

P’@’g(E dies out‘ [{(x,n) € R: Ep(x) =1} <N) >v>0

for certain space—time regions R.

In both cases, these results are available because the events can be inter-
preted in terms of events in the underlying process, in which the analogues of
(i) and (ii) hold, and the result for the rescaled process follows. The only other
potential difficulty is that, in the proofs of Propositions 5.1 and 5.3, we use the
strong Markov property to restart the process. The process {I,: n > 0} is not
Markov. However, the process =, = (I,,P,) does satisfy the Markov property,
and this fact suffices. Keeping these observations in mind, one can check that
the proof of Corollary 2.7 carries over to the present setting.

We obtain a process

{5512)(X) = (IiZ)(x),P;Z)(X)): n>0 x€ Zd—z}’

where, if IP(x) = 1, P2 (x) gives the precise location of the lowest occupied
(rescaled) site in Z¢~1 x R* that causes I?(x) to take the value 1. As long
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as the probability that {I,: n > 0} survives is sufficiently close to 1, we have
that {I?: n > 0} survives with probability as close to 1 as we like and hence
that, for some D C Z¢ and wy _ and w, _ 1, the original process {¢P: ¢ > 0}
survives inside

(6.6) 2473 x [~wq _9,wq 2] X [~wq_1,wq_1] x Z x R,

with positive probability. As before, the fact that D satisfies (3.15) ensures that
{€9: ¢ > 0} survives inside the region (6.6) with positive probability. Since
{I?: n > 0} is the same sort of process as {I,: n > 0}, the result follows by
induction. O
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