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WEAK CONVERGENCE OF MARKOV PROCESSES
WITH EXTENDED GENERATORS

By Amua Xia

University of Melbourne

In this article, we give some sufficient conditions for the weak conver-
gence of Markov processes in terms of their extended generators. For the
convergence of Markov processes with generators defined by Dynkin, nec-
essary and sufficient conditions are obtained. As an application, we will
discuss the convergence of diffusion processes with jumps.

1. Introduction. The weak convergence of Markov processes can be de-
scribed by their characteristics [see, e.g., Jacod and Shiryaev (1987)], semi-
groups and generators [see, e.g., Ethier and Kurtz (1986)]. Although the semi-
group method gives an explicit and sharp description for the convergence of
the processes, in practice, what we can get are the generators. The famous
Hille—Yosida theorem gives theoretical relations between some generators and
their semigroups. Unfortunately, it is not always possible to explicitly solve
the semigroups from the corresponding generators. The characteristics method
gives very general results [see Jacod and Shiryaev (1987)], but for Markov pro-
cesses with known generators, it seems unnecessary and may be impossible
to solve for their characteristics. Thus, it is interesting to use the properties
of generators to control the properties of the corresponding processes directly.
The generator method given in this paper is based on these ideas.

In Ethier and Kurtz (1986), it is shown that for Feller processes, the conver-
gence in some sense of their semigroups or their generators can imply the weak
convergence of the processes. Jacod and Shiryaev (1987) discussed the conver-
gence of diffusion processes with jumps. Markov chains are an important class
of Markov processes. It seems that the rigorous convergence results involv-
ing generators in Ethier and Kurtz (1986) cannot be applied to the following
example directly.

1.1. ExampLE [Ethier and Kurtz (1986), page 262]. Let & = {0,1,2,...}.
Let q;; > 0, i#j, and let ¥;;q;; = —q;; < oco. Suppose for each probability
measure 7 on & that there exists an &-valued cadlag Markov process X such
that PoX(0)~! =7 and

dim e (P{XG+0) =/ XO) - 1xo) = axes  JEE 120,
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For n =1,2,... and a probability measure 7, on &, let X;, be an €-valued cadlag
Markov process satisfying P 0 X,,(0)~! = 7, and

. -1 . , .
Jim e (P{Xn(t+e) =j| Xa(®)} — 1Xn(t)=,~) =@k JEEE0.

Then the following statements are equivalent:

(@) Vi, j, qj; = 9ij-
O V=21 X=X,
(c) Vl, lan =T= 5{1}, X, = X.

Here and in the sequel, we use the notation = to stand for “converges
weakly to.”

Thus, it seems desirable to generalize the results on convergence of gener-
ators in Ethier and Kurtz (1986). It is reasonable to require that at least the
new results should include the case of Markov chains. In Section 4 of this pa-
per, we give some conditions that are different from those in Ethier and Kurtz
(1986) and Jacod and Shiryaev (1987). On the other hand, how much further
can these results be generalized? For the convergence of Markov processes with
generators, the necessary and sufficient conditions are given in Section 5. In
particular, if the processes are continuous, then equivalent conditions involv-
ing semigroups, resolvents and generators are obtained (see Corollary 5.4). As
a preliminary, we will extend the concept of generator and discuss its properties
in Section 3.

2. Preliminaries. We assume in this paper that (€,d) is a locally compact
Polish space. It is well known that a locally compact separable metric space
is o-compact, and hence a Borel subset of a Polish space. So, at the cost of
greater complexity, the results in this paper can be extended to locally compact
separable metric spaces without any difficulties. [see Parthasarathy (1967)].

Let B(&) and U(&) be the collections of the Borel subsets and compact subsets
of (&,d), respectively. For T' € B(€), let T, I'°, I" and I'® stand for the closure,
the complement, the boundary and the interior of T, respectively. For T', G C &,
x € €, set

d(x,T) = inf{d(x, y): y € T},
d(G,T) :=inf{d(y, 2): y € G, z €T},

where in both cases the infimum of the empty set is understood to be +oo.

An important fact we will use in this paper is that if G € U(E), T’ € B(€) and
G c I'*, thend(G,T°) > 0. In fact, ifd(G,T¢) = 0, then we can find two sequences
{x.} C G and {y,} C T'¢ such that d(xy, y») — 0. Because G is compact, without
loss of generality we may assume x, — x € G. Then y, — x and it follows that
x.€ GNT¢, which contradicts GcIo.

2.1. LEMMA. For any G € B(8), define Bg,, = {x € &: d(x,G¢) > r}. Then:
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(a) (Bg,r’ D {x € &:d(x, G°) >r}.

(b) 8Bg,, C {x € & d(x,G°) =r}.

(c) Fort <r,Bg,r C(Bg,:’.

(d) Fort <r,Bg,(t) :={x € &:d(x,Bg,;) <t} CBg,,_¢-

PROOF. (a), (b) and (c) are obvious. To prove (d), let x € Bg, (¢). Then 3y, €
Bg. ., such that d(x,y,) < d(x,Bg, ;) +1/n < t+1/n. Thus, d(x,G°) > d(y,,G°) —
d(x,y,) >r—t—1/n. Letting n 1 oo gives (d). O

Let Dy, «) be the space of all cadlag functions defined on R, with values in
(&,d), and let p be the Skorokhod distance [see Ethier and Kurtz (1986)] so that
(Do, o), p) is a Polish space. Let B( D, «)) be the Borel o-field of (D¢, o), p).

For a € Dig, o) and T' € B(€), let Sr(a) = inf{t: a(t) € T¢ or a(t™) € T¢},
and Sri(a) =1lim; ¢,¢; 0 Sr(a), where a(t™) :=lims ¢ s1:als) and I'(?) == {x €
&:d(x,T) < t}. Thus, Sr(a) is the first hitting time of T'¢ and Sr.(«) is the first
entry time of (I°)°. It is clear that V¢ < Sr(a), a(2) € I'°. We will frequently use
the Sr(a) to confine processes to compact sets.

2.2. LEMMA. (a) If Sr(a) = Sr.(a), then o(Sr(a)) € Te.
(b) With respect tor, Sp,. .(a) is a decreasing and right continuous function.
(¢) Sp. (@) < Sp. ,+(a) <lim; <, ¢1,Sp; (@)

ProOF. (a) In fact, if a(Sr(a)) € I, then 36 > 0, such that o(t) € I, V¢ €
[Sr(a), Sr(a) + 6]; hence, V¢ < Sp(a) + 6. Thus, Vs > 0, S[‘(s)(a) > Sr(&) + 6,
which contradicts Sr(a) = Sr + (@).

(b) Vs < Sg,. ,(a),itis clear that C, := {a(u): 0 < u < s} C (Br,,)° is compact;
hence Cs C (Br,,)° fort (> r)near r enough, which implies s < Sp,. ,(a) <Sp;. ,(a).
Letting ¢ |  and then s 1 Sp,. ,(a) gives (b).

(c) By Lemma 2.1(d), we have Br, (v) C Br,,_, for 0 < u < r. Thus the claim
is true because Sp;. ,(a) < Sp.. ,w(a) < Sp;,_,(a). O

Let By,.(8),C(8),B(&),C?(&),C(€), and C(&) be the spaces of all Borel
measurable functions bounded on compact sets, all continuous functions, all
bounded Borel measurable functions, all bounded continuous functions, all
bounded uniformly continuous functions and continuous functions vanishing
at infinity on & with values in R, respectively. Let P(£) denote the space of all
probability measures on €.

Let LIM denote the convergence of a sequence f;, € By, (£), n > 1, to f €
Bi,c(€) uniformly on any compact set, and let LIM, f,, = f stand for LIM,, _, o f»
=fand (\/, |If»ID V IIfll < oo, where || - || is the supremum norm.

2.3. LEMMA. To each 8 € Dy, o) and T' € B(E), we associate the stopped
function Br defined by fr(t) = B¢ A Sr(B)). For ap, n > 1, a € Djy, «), assume
p(an,a) — 0 and Sr(a) = Sri(a).

i) Sr(ayn) — Sr(a).
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(ii) Suppose either o is continuous at Sr(c) or o is discontinuous at Sr(a) and
a(Sr(a)™) € I°. Then plan,r, ar) — 0 [hence d(an(Sr(ay)), a(Sr(a))) — 01
(i) If T € UW(E), fn € Bie(€), n > 1, f € C(&) and LIM,, f, =f, then Vi1 < ¢,

fu(om(s))ds — f(als)) ds.

/tz ASr(an) t2 ASr(c)
¢t ASr(ow) t1 ASr(a)

Proor. Note that p(ay,, a) — 0if any only if there exists a sequence of time
changes (\,), > 1 (a time change is a continuous and strictly increasing function
mapping [0, co) onto [0, 00)) such that VN > 0, sup, < y d(an,(A:(2)), a(?)) — 0
and sup; <  |Ax(¢) — t| — 0 [see Ethier and Kurtz (1986), page 119].

(1) Ift < Sr(a), then C; = {a(s): s <t} C I'°. Note that because C; is compact
[see Ethier and Kurtz (1986)], we have d(C;, (I"°)°) > 0. Hence

{a,, (An(s)):s < t} cre

for sufficiently large n, which implies \,(#) < Sr(ay). Let n 7 0o and then ¢ 1

Sr(a), so that lim inf,, St(c,) > Sr(a). On the other hand, if ¢ > Sr(a) = Sr.(a),

then ¢ > Sr»(a) for some r > 0. Thus 3s € [Sr(a),?], such that d(a(s),T") > 0.

Hence, d(0,(\,(s)),T") > 0 for sufficiently large n, which yields Sr(a,) < A, (s).

Thus, we get lim sup, Sr(a,) < Sr(a) be lettingn T oo first and ¢ | Sr(a) second.
(ii) It suffices to show that VN > 0,

(2.1)

If o is continuous at Sr(a), we get (2.1) easily. If « is discontinuous at Sr(a),
then a(Sr(a)™) € T°,s0 U := {a(?): 0 <t < Sr(a)} C I'°, and the compactness of
U implies {a,(£): 0 < ¢ < A,(Sr(a))} C I as well for sufficiently large n. Thus,
we have Sr(a;) > M\(St(e)) and (2.1) follows from

sup d(a(t AN o Sran)), a(t A Sr‘(a)))

t<N

= sup d(at®),a(Sr(@)) - 0.
Sr(a) <t < >:,71 o Sr(an)

(iii) For each s < Sr(a,), we have ap(s) € I'° and

(2.2) sup |fn(on(s))| < sup |fo(x)| — sup |[f(x)| < oo.
s < Sr(ay) xel xeT
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If o is continuous at s, then a,(s) — a(s) and f,(a,(s)) — f(als)). Because the
discontinuities of « are at most countable, applying (i), (2.2) and the dominated
convergence theorem gives (iii). O

For any &-valued adapted cadlag process Z on a probability space (0,7,
(F1): > 0, P) satisfying the usual conditions [see Jacod and Shiryaev (1987) page
2], let N be the collection of all P-null sets of F. Define

550 = 0{Z(s), s <t}

5 [ﬂ?sz"’]vw.

s>t

and

Then for all G € B(€), Sg(Z) is an (fﬂz )t > o stopping time. Now, we set

Vi2) = {r > 0: P[w: Sp, ,(2w) < Sp. .+ (Zw)] > 0},

Va(Z) := {r >0:P [w: Z(w) is discontinuous at Sg. , (Z(w))

and Z(Sg,,, (2w)”) € 6Bp,,J > 0},

Vr(2) := VHZ) U VE(2).
2.4. LEMMA. Vr(Z)is at most countable.
ProoF. It is sufficient to show that both V} and V2 are at most countable.
First, let Y,(w) := Sp. ,(Z(w)). Then Y is a decreasing and right continuous
process and {r: P[AY, < 0] > 0} is obviously at most countable. However, by
Lemma 2.2(c), 0 < Sg,. ,+(Z(w))—Sp,. (Z(w)) < —AY,(w), so we obtain that V}(Z)

is at most countable.
Second, for u > 0, define

2(Z(w),u) =
£} (2(w),u) = inf{t > 7 (2w),u): d(Zi- @), Z4w)) >u},  ¥p>0.

Then

vizyc | {r;P[w: t”(Z(w),r—ll) <00,

"‘yp)k=1
Z(t” (Z(w), 1) _> c 6Bp,,} > 1}.
n k

The set on the right is clearly at most countable. O
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For each n > 1, let X, be an &-valued adapted cadlag process on a proba-
bility space B" := (", F",(5;"); > 0, P") satisfying the usual conditions. We use
L(X ) to denote the induced probability measure of X, on Dyg o). The sequence
(X7n »1 is called tight if {L(X,)}, > is tight. We say that (X,,), > satisfies
the Compact Containment Condition (or CCC for abbreviation) if for every
€ >0, N > 0, there exists a compact set I'. y € U(E) such that

(2.3) linTlian"[X,,(t)eFe,N, VO<t<N]>1-c¢,
n | oo
or equivalently that there exists a sequence of compact sets {T';} C U(E) such
that
(2.4) kliTm lin}tinf P"[X,(s) €T, VO<s<N]=1, VN > 0.
o0

In fact, (2.4) is stronger in appearance than (2.3). If we take I, = Ty 3, then
(2.4) follows from (2.3) easily.

For a € Dio,«0), I € B(R,), let W(a,I) = sup; ;; d(als), t)) and Wy (e, 6)
= inf{maxlsi<, W(o, [8;_1,2)): 0=ty <t; < -+ <t =N,inf,«,_1(; — t;_1)

> 6}. The following criterion for tightness is established in Ethier and Kurtz
[(1986), pages 128-130].

2.5. LEMMA. The sequence (X,), > 1 is tight if and only if it satisfies the CCC
and Ve >0, N > 0,

(2.5) léif{)llim sup P*(Wy(X,,6) > €) = 0.

nloo

The following lemma plays an important role in the proofs of the main the-
orems.

2.6. LEMMA. The sequence (X,), > 1 converges weakly to Z if there exists a
sequence {I';};, > 1 of compact subsets of €, such that:

(i) Sr,(2) = o ask 1 co.
(ii) V&, Sr,(X,) = Sr,(2).
(ifi) VE, X1, = Zr,.

Proor. YN >0,¢>0,

%iTmliminf P” [X,,(s) €T, VO<s < N]
00 n
(2.6) > };iTm lirr}zinf P"[Sp,,(Xn) >Nand X,(s) ey, VO <s < N]
= lim liminf P" (Sr,(X,) > N) = 1,
kToo n

lim lim sup P"(Wy(X,,, 6) > ¢)
510 o
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2.7 <limsup P"(Sr,(X,) <N) + léif{)llim supP"(Wy(X, r,,6) > )
n n
=lim sup P"(Sr,(X,) < N).
n

Let & T co in (2.7), we obtain the tightness of (X,), > 1 by Lemma 2.5.
Similar arguments give that (X,), > ; converges finite dimensionally to Z. O

2.7. LeMMA [Ethier and Kurtz (1986), page 142]. Suppose that the sequence
(Xn)n > 1 satisfies the CCC and let H be a dense subset of CP(&) with respect to
LIM*. Then (X,), >11is tight if and only if (f 0 X)), > 1 is tight for each f € H.

The following lemma is a corollary of Theorem 9.4 and the proof of Ethier
and Kurtz [(1986), page 145].

2.8. LEMMA. Let L, be the Banach space of real-valued (F}); > o-progressive
processes whose norm ||Y|| = sup, > o E(|Y(#)]) < cc. Let

t
Ap = {(Y,Z) €L, x Ly Y(®) —/ Z(s)ds is an (F}) i>0 martingale}.
0 >

Let f € Cb(8). IfYN > 0, € > 0, there exist (Yy,Z,) and (Y,,Z,) € An, such that:

(i) limsup, E*[sup,¢(o n; |I:n(t) -f(X.@)| <e.
(ii) lim sup, E*[sup;¢ (o n |Ya(®) — A X, @) < e.

(iii) lim sup, E" [,/ JRCAB ds] < 0.
(iv) limsup, B*[\/ [} Z(6))?ds ] < oo.

Then (f 0 X,)p > 1 is tight.

3. Extended generators. The terminologies of extended infinitesimal
generator and extended generator have been used in Revuz and Yor (1991)
and Jacod (1979), respectively. In this paper, we use the latter one and modify
it slightly. Note that there are actually few cases in which a generator and its
domain are completely known. Here some particular subspaces of the domain
are considered.

3.1. DEFINITION. We say that A is an extended generator on C?(€) if A is a
linear operator defined on D(A) C C®(€) with values in By (€).

By the optional sampling theorem [see Ethier and Kurtz (1986)], it is nec-
essary to restrict the domain D(A) in Cb(€) for our localization method. The
following definitions are similar to that in Ethier and kurtz (1986).

3.2. DEFINITION. Suppose that A is an extended generator.

(1) Let u € P(E). An E-valued cadlag Markov process X is said to be a solution
of the local martingale problem for (A, ;1) on the probability space (Q F,P), if
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P, 0X(0)~! = y and for each f € D(A), f(X(¢)) — f(X(0)) — fOtAf(X(s))ds is an
(%), > o local martingale.

(ii) We say that uniqueness holds for solution of the local martingale problem
for (A, p) if any two solutions of (A, ) have the same finite-dimensional distri-
butions.

(iii) We say that the local martingale problem for (A, 1) is well posed if there
exists a solution of the local martingale problem for (A, 1) and uniqueness holds.

(iv) The local martingale problem for A is said to be well posed if ¥V p € P(E),
the local martingale problem for (A, ) is well posed.

3.3. REMARK. (i) Definition 3.1 permits much extension of the domain of a
generator defined in Dynkin (1965) or Ethier and Kurtz (1986). For example,
the domains of the density matrices in Example 1.1 are difficult to describe.
However, by Definition 3.1, they can be easily extended to C*(N) = B(N), where

={0,1,2,...}. The extension is very convenient for applications.

(il) From now on, all processes are assumed to be cadlag.

Note Sr(X) is a stopping time with respect to (.’7"‘:( )>0,VT € B(E). The fol-
lowing lemma is standard.

3.4. LEMMA. Let A be an extended generator. For v € P(€), assume that X
is a solution of the local martingale problem for (A,v). For all T € B(&),ifAf is
bounded on T, then

t ASr(X)
M, = F (% (®) - F(Xr(0)) — /0 AF(X(s)) ds

¢
(3.1) = f(Xr®) - £(Xr(0)) — /0 Af(X(s))1[5<sr<x>1 ds

isan (F ;Y )t >0 martingale.

Lemma 2.6 is a key lemma in the proofs of the main theorems. To use it in
the proofs, we need a kind of local uniqueness that is weaker than that in Jacod
and Shiryaev (1987) (at least in appearance), but generally stronger than the
uniqueness defined in this paper.

3.5. DEFINITION. Suppose that A is an extended generator. ' € U(E) is fixed.

(i) Let o € P(€). An E-valued cadlag process X is said to be a solution of
the stopped martingale problem for (A, u,T') on the probability space (Q, F, P),
if P o X(0)~! = y and for each f € D(A), F(X(¢ A SF(X))) — f(X(0)) — ‘AS‘ ey
Af(X(s))ds is an (F¥ i )t >0 martingale.

(i1)) We say that local uniqueness holds for a solution of the stopped martin-
gale problem for (A, 41, T') if any two solutions Y1, Y3 of (A, u1, ') satisfy L(Y1, 1) =
LYy, ).

IfA C Cb¢&) x Bi(€), then by Lemma 3.4, it is easy to see that a solu-
tion of the local martingale problem for (A, u) is a solution of the stopped
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martingale problem for (A, u,T"), VI' € U(E), and hence the local uniqueness for
(A, 4, T),VI' € U(E), implies the uniqueness for (A, 11). As pointed out in Jacod
and Shiryaev (1987), the local uniqueness is not so easy to check. Fortunately,
because of the Markov property, we can prove that, under a mild condition, it
is implied by uniqueness. Before proving this, we need the following lemma,
which is a corollary of Lemma 5.15 of Ethier and Kurtz [(1986), page 204].

3.6. LEMMA. Let 8 be a Polish space and let P1,P; be two probability mea-
sures on 8. Suppose that £1,£2:8 — & are Borel measurable and that pu =
Pyo&l 1=P,yo0 & 1 ¢ P(€). Then there exists a P € P(82) satisfying

P x By = [ Pi(Br| & = 9)Pa(Ba | &0 =)uds),

for B, By € B(8).

3.7. THEOREM. Let A be an extended generator. Assume that A ¢ C®(&) x
Bioc(E).

(i) Suppose that for each p € P(E), there exists a solution of the local martin-
gale problem for (A, ). Let T € U(E) be fixed. For each v € P(E), if Z is a solution
of the stopped martingale problem for (A, v, I), then there exists a solution X of
the local martingale problem for (A,v), such that L(Xr) = L(Zr).

(ii) Ifthe local martingale problem for A is well posed, then for all compact sets
T'and all p € P(E), local uniqueness holds for solution of the stopped martingale
problem for (A, u, T).

Proor. We use a well known technique in the theory of Markov processes
to prove this theorem. The idea is as follows. Let P; be a solution of the stopped
martingale problem and let P; be a solution of the local martingale problem
for (A, P1 0 X(Sr(X))~1). Then define a probability measure Q as the law of the
process Y obtained by pasting together at time Sr(X) the process Xr under Py,
and the process X under Py, and prove that Y is the required solution.

(i) Let Py = L(Zp),u = Py 0 Z(Sr(2))~! and P, be a solution of the local
martingale problem for (A, ). By Lemma 3.6, there exists a probability measure
Qon D[o) 00) X D[o)oo), such that VB, C € B(D[o’ oo)),

QB x C) = / P1[X € B| X(Sr(X)) = 2| Pa[X € C | X(0) = ] u(d),

where X denotes the coordinate random variable on Dyg ). Let (X7,X5) denote
the coordinate random variable on Q := Dy o) X Dig, o) and define
_ {Xl(t),v if £ < Sp(Xy),
P X (e - Sr(Xy), ift > Sr(Xy).

Then on (22, B(), Q), YT = X1, r has the same distribution as Zr. Now it remains
to show that Y is a solution of the local martingale problem for (4, v), that is
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Vf € D(A), F(Y)—f(Y,)— f; Af(Ys)dsis an (IftY)t > o-local martingale. In fact, for
anyfixedf € D(A), wehavea := sup, . 1 |Af(x)| < oo because of the compactness
of I'. Let ©; := {x: | Af(x)| < b}. Then these conclusions are easily established:

(3.2) Se,(Y) =8r(X1)+8Se,(X3) Vb >a,
and
(3.3) blim Se,(Y)=00 as.

For any fixed b > a, write © := ©, and set 17’3 =Y, A80(v)- By (8.3) and Definition
3.2, it suffices to prove that Vh; € C¥(€),i=1,...,n,t; <ty < -+ <t,,1,E9G =
0 holds, where

-~ ~ the1ASe(¥) dd ~
G = (f(th) ~f(¥.,) - /t Af(Ys)ds) 7).

nASS(Y) i=1

In order to simplify the typography, let T' = Sr(X;). Note that

~ ~ tn+l/\T ~ n ~
G = (f(Yt,.”/\T) —f(Yt,./\T) - ‘[ AT Af(Ys)dS> Hhi(Yti)

i=1
/(tn+l VT)ASe(¥)

Af(ffs)ds> [1r:()
i=1

+ (f(?t,.an) —f(?t,.vT) -
= G1+G2.

1 VTIASe(Y)

Because G, = 0if ¢, > T, it follows that

tn+l/\T

EG,) = EQ [(f(ﬁmw) ~f(¥eunr) - Af(f;)ds) 1%, AT)]

ta AT

~ ~ ¢ +1 ASr(X) - n
-EP [(,c(X,m) ~f(X,) - /t Af(Xs)ds> I (X }

n A Sr(X)
Af(Zs)ds> [T 72z ns, }

tn+l/\T0

_ E[(f(zmm) ~ (Zrons) -
= 0,

tn ATo

where Ty = Sp(Z) and X = Xr. Now, it remains to show
(3.4) EQ[G,] =
Let

&[@

= Lik/j < T < 1)1 + 001 7= 00)
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and

G = {f [XZ((t,Hl VT; —T)A Se(Xz))] - f[Xz (G VT —THA Se(Xz))]

(tn +1VTj—T)ASe(X,)
_/ Af(Xg(s)) ds} H hi(Xz(ti —T,)) H h,(Xl(t,))

(thT}—Tj)/\Se(XZ) ti>Ti ti<7?i

Because X, is right continuous and f is continuous, (3.2) yields Gé — G, a.s.
as j — oo. It is obvious that G = 0 if T} > ¢, 1. Thus,

E?[G)] = Y E%[Gilin-yp]

l<jtu+l
= Z /‘EP1 llﬂ:l/j H h,(X(t,))|X(Sr(X)) =x}
I<jtpsr t;<l/j

x EP2 [(f(X<(tn+1 —J£> /\Se(X)))
I 1
- f(X(<tn V<= —.) /\Se(X)))
J J
trs1— U/ ASe(X)
- / Af(X(s) ds)
U Vi~ 1/j) ASe(X)

X H hi (X(ti —;)) ’X(O) = x] p,(dx) = 0’

t>1j

which implies (3.4) by letting j — oo.

(ii) For all T' € U(€), suppose that Z,, Z, are two solutions of the stopped
martingale problem for (A, v,T'). Then there exist two solutions Y7, Y; of the
local martingale problem for (A, v), suchthat L(Y; ) = L(Z; 1), i = 1, 2. Because
the local martingale problem for (A,v) is well posed, we have L(Y7) = L(Y?).
Thus L(Z1,r) = L(Y1,r) = LYo, 1) = L(Zy p). O

4. Weak convergence of Markov processes with extended
generators.

4.1. THEOREM. LetA,(A,),>1 be extended generators and {, pin,n > 1} be
contained in P(E). Assume, Vn, that the local martingale problem for (A,, un)
has a solution X,,, and X is a solution of the local martingale problem for (A, p).
Suppose:

(4.1) A c C(&) x C(&).



2194 A XIA

For all compact sets T, local uniqueness holds for solutions
of the stopped martingale problem for (A, u,T).

“.3) For all f € D(A), 3f, € D(A,), such that
: LIM} f, =f, LIM, A,.f, = Af.

4.4) The initial distributions satisfy pn, = .

(4.2)

Ifthere exists a sequence {I';} C UW(E) such that Ty C (T441)°, {Xa,r,}n > 1 is tight,
VEk,and

%iTm PX; el t<N)=1 VN > 0,

then X,, = X.

Proor. For k € N, suppose that X, r, = Y and Y is defined on (¢, 5,
(FDe>0, P’) satisfying the usual conditions. Without loss of generality, we may
assume Q" = ', " = ¥, 5" = 5, P* = P and X, r, — Y P’-a.s. Because
Tp_1 C (T%), we have d(T';_1, Tx)X) > 0. Thus we can choose #, € R \Vr,(Y),
such that By, := Br, 4, O I'x _1 (see Lemma 2.4). Then applying Lemma 2.3 gives
X, B, — Y, P'-as. and Sp,(X;) — Sp,(Y)P’-a.s. For each f € D(A), take fn
D(A,) satisfying the condition (4.3); VA1,...,hm € CP(E),0 < s1 <83 < -+- <
sm <t<t+swiths;, t,t+s¢ UY):={r >0 Plw: Y(w,r) #Y(w,r7)] > 0}.
Applying Lemma 2.3(iii) yields

(t +) A Sp, (Xn)
gn = l:fn (Xn,Bk(t + S)) fn( n Bk(t)) / A, fn(Xn(u)) dujl
t A Sz, (X,)
X H hi(Xn, B,(s:))

i=1

(t+5) A S, (Y)
— €= [f(YBk(t +3)) — f(Ya,®) — / Af(Y(w)) du}

tASBk(Y)

H YBk(s, a.s.

It is clear that sup, 5 ,, Sup,cp, |Anfn(x)| < oo for ng large enough, and E"¢"
=0, Vn > ng, 80 {"}n > n, is uniformly integrable and E’¢ = 0. Note that U(Y)
is at most countable; hence Y is a solution of the stopped martingale problem
for (A, u,Bg). By (4.2), we get L(Yg,) = L(Xp,), VB > 1, and it follows that
X, B, = Xp, and Sp,(X,) = Sp,(X).

On the other hand, note that B, € U(€) and B;. C (B, 1)°, we have d(B;,
(B +1)) > 0, Vk, which implies

P(Sz,,,(X)>N) > P(X; € By, ¥t <N) > P(X; € T4 _1, Vt < N).

Let £ 1 oo and then N 1 co. We get Sp,(X) = oo as k — oo. Therefore, this
theorem follows from Lemma 2.6. O -



WEAK CONVERGENCE OF MARKOV PROCESSES 2195

4.2. REMARK. In order to get weak convergence of the processes from their
localized properties, the condition limy ;o P(X; € T, V¢t < N) = 1, YN > 0,
is reasonable. The telescopic condition I'; C (I'x,1)°, V, although it may seem
unnatural, is important here, because it implies d(T';,(T;.1)) > 0, V& > 1.
These inequalities ensure the existence of (By), > 1 and Sp,(X) = coask — 0. A
counterexample without the telescopic condition can be constructed as follows.
Let € = [0, 00) and define

Aglx) =g(0) — g (x),

A, g(x) = gx+n)—gx), forx<n-1,
8Os 0, forx >n-1,
Vg € D(A,) = D(A) = C4([0, c0)). For each g € D(A), choose
g(x), forx<n-—1,
gnx)={ g((n — D(n —%)), forn-1<x<n,
£(0), for x > n.
Then
_ ) 8(0) —glx), forx<n-1,
Angnlx) = { 0, forx >n—1,

s0 (4.3) holds. If we take u, = u = 6{0}, then the unique solution of the local
martingale problem for (A,, ji,) is X,(¢) = n.17<;, and the unique solution of
the local martingale problem for (A, u) is X(¢) = 0 V¢, where T is an exponen-
tial random variable with parameter 1. Take I', = {0}. Then (I';)¢ = &; hence,
Sr,(Xn) = Sr,(X) = 0. It is easy to check that this example satisfies all condi-
tions of Theorem 4.1 except the telescopic one, but X,, does not converge to X.

4.3. THEOREM. LetA,, u, and X, be the same as in Theorem 4.1. Let H be a
dense subset of Cb(€) with respect to LIM*. For I' € U(&), suppose Vf € H, 3 fn €
D(Ay), such that LIM,, f, = f, lim sup,, sup, cr |An fu(x)| < 0o. If {Xn, r}n>1 sat-
isfies the CCC (2.4), then it is tight.

Proor. For any fixed f € H, take f, € D(A,), such that LIM;, f, = f and

lim sup sup |A, ()| < oo.
n xel

Because f2 € Cb(€), we can find {g™} C H satisfying LIM}, g™ = f2. For each
m, let g7 € D(A,), such that LIM;, g = g™ and A

lim sup sup |4, g (x)| < oo.
n xel

The'condition (2.4) of {X,,r} is equivalent to
(4.5) kliTm limsupP"[X, r(t) ¢ T, I0<¢t<N]=0 VN >0.
oo n
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Note that

limsupE”[ sup |g™ (X, r(®) —fz(Xn,p(t))ﬂ
n tefo,N
< sup |g™(x) — f2(x)|

x€ly

+ (1721 + Vil g™ ) lim sup P* (X, r(®) ¢ Ty, 30 <t <N).

By (4.5), VN > 0, € > 0, we can choose kg, such that

(1721 \/ g™ 1) timsup (%, 16 ¢ Ty, 30 <2 <N) < &
m n
Then choose m,, such that sup, . I, |g™(x) — f2(x)| < £/2. Hence,

(4.6) lim sup E* [ sup |g™(Xn, r®) — f2(Xs, r®) |} <e.
n te[0,N]

By Lemma 3.4, we have

t
fr (Xn, r(t)) - A Anfn (Xn(s)) Lis < sp(xnds

t
g7 (X, r(®) — /0 An gy (Xa(9) 1o <spcxon ds

are (:?tX” )¢ >0 martingales for sufficiently large n. With reference to Lemma 2.8,
let

Vo) = fo (X0, r®), Yal®) = g (X, r®))
and _
Z,(s) = An fu(Xa(9)) Lis < spx001> Zn(8) = An g3 (Xn(9)) 1s < Sp(xo01-

So it remains to show that the conditions of Lemma 2.8 hold. By (4.6), we have

lim sup E”[ sup |l~’n(t)— f 2(-Xn,1"(t))|:l
n telo,N]

< e+limsup sup | g;(x) — g™ (x)|
n x €Ty

47) +(ngm°|| +v||g,:"°||) lim sup P* (X, () ¢ Ty, 30 < ¢ < N)

. (||g'"°n +\/ng:*°n) lim sup P (X, o)) ¢ T, 30 < ¢ < N).
n n
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Let i 1 oo in (4.7), we get (ii) of Lemma 2.8. On the other hand,
N ~
lim sup E® [ / [Z,.(s)]2 ds} < VN lim sup sup |Angiox)| < oo,
n 0 n xel

which implies Lemma 2.8(iv). Similar arguments give Lemma 2.8(i) and (iii).
Therefore, {f o X, r}.>1 is tight and we complete the proof by Lemma 2.7. O

4.4, THEOREM. Let A, u, X, A,, u, and X, be the same as in Theorem 4.1.
Suppose that the local martingale problem for A is well posed. If (4.1), (4.3) and
(4.4) hold, (X, 1)n>1 satisfies the CCC (2.4), VI' € U(E) [or equivalently (X,)
satisfies the CCC (2.4)] and

(4.8) D(A) is dense in Cb(E) with respect to LIM*,
then X, = X.
Proor. By the local compactness of €, every compact set has a compact

neighborhood, so we can choose {I';} C U(€) such that I';, C (I'x,1)°, V&, and
limptoo P(X; € Ty, V¢t < N) =1, VN > 0. Thus this theorem follows from

Theorems 3.7, 4.3 and 4.1. O

4.5. REMARK. It can be seen that the CCC (2.4) of (X, ), > 1 in Theorems
4.3 and 4.4 [or equivalently (4.5)] is equivalent to

(49)  Jim limsup P" [X,, (Sr(X)) ¢ T and Sp(X,,) < N] =0 VN>0,
for a sequence {I'y} C U(E).

4.6. REMARK. If €& =R™, then (4.9)is equivalent to that (u,) is tight and
Jim lim sup P" (1A%, (SH(X)| 2 b, SHX)SN| =0 VN >0,

4.7. REMARK. If {X,} are continuous processes and {4 ,} is tight, then the
CCC (2.4) of {X,, r} always holds, VI" € U(€). In fact, we can choose a sequence
of compact setsI' CI'y CI'y C - - - such that lim ; o limsup, p,((T':)¢) = 0. Note
that X, (#)eI© if 0 < ¢ < Sr(X,) and X,,(Sr(X,)) € 0T' C Iy when 0 < Sp(X,) <
00, the claim is true because

P" [X,,0(®) ¢ T4, 3t > 0] = P"[Sr(X,) = 0, X,(0) ¢ Ty] < i (T4F).

4.8. REMARK. ForH C C?(¢&), either of the following conditions implies that
H is dense in C?(&) with respect to LIM*:

(4.10) H is dense in C(€) with respect to | - ||.
(4.11) H is dense in C(€&) with respect to || - ||.
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As a matter of fact, it suffices to show that C(&) and C(¢&) are dense in Cb(€)
with respect to LIM". Clearly, if € is compact, then C(€) = C(€) = C?(€). Thus,
the claim follows from the o-compactness of € and the definition of LIM*.

4.9. REMARK. It is also worthwhile to note that the CCC (2.4) of (X,) in
Theorem 4.4. is very important. The counterexample in Remark 4.2 also shows
that except (2.4), all of the other conditions of Theorem 4.4 hold, but X,, does
not converge weakly to X.

We now prove the result in Example 1.1 to illustrate how to apply the theory
in this paper.

4.10. Proor oF ExAmMPLE 1.1. (a) = (b). The conditions (4.1)-(4.4) hold
clearly. Take I', = {0,1,...,k}. Then T'; C (T ,1)°, V& and

lim limsup P" X, (Sr,(X,) ¢ ]

< lim Limsup | ((T)) + sup 2222195 | _

Tmloo g e i<k —-q ?i '
since 72,19, = —XLoq]; — —X/L09ij = I52m+19ij- Hence (b) follows from
Remark 3.3(i), Theorem 4.3 and Theorem 4.1.

(c) = (a). Take G; = {i}. Then we have T := Sg,(X) = Sg, + (X). Thus, by
Lemma 2.3(1), T, := Sg,(X,) converges weakly to T', which yields ¢7; — g;; as
n — oo because T, and T are exponential random variables with parameters
—q?; and —g;;, respectively. On the other hand, it is clear that X(7~) = i and
(G;) = Gy, so X,,(T,) converges in distribution to X(7T') by Lemma 2.3(ii), which
gives Vj # 1,

q;; = —q;;P" [Xn(Tn) =7
— —q;;P[X(T) =j] = q;;. o

5. Weak convergence of Markov processes with generators. In this
section, we consider weak convergence of Markov processes with generators
defined in Dynkin (1965) or Ethier and Kurtz (1986). For each n = 1,2,...,1et
{Tx(¢)} and {T'(¢)} be strongly continuous contraction semigroups on C(€) with
generators A, and A, and resolvents {G,(\)}\> o and {G(\)},s . In order to
investigate necessary and sufficient conditions, we need the following technical
lemmas. )

5.1. LEMMA. For (gx)n>1,&-€ B(E), the following are equivalent:

() Vap — x, gnlatn) — glx).
(ii) g is continuous and LIM, g, = g.
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5.2. LEMMA. For the following four statements, we have (i) & (ii) = (iv) =
(iii).
(1) Vf e §(8), ¢t > 0, LIM,, T,(®)f = LIM;, T,@)f = T®).
(i1) Vf € C(&), A > 0, LIM,, G,(\)f = LIM, G,(\\)f = GO)f.
(iii) Vf € D(A), 3f, € D(A,), such that LIM}, f, = f, LIM, A, f, = Af.
(iv) Vf € D(A), 3f, € D(Ay), such that LIM,, f, = f, LIM, A, f, = Af.

PrOOF [cf. Ethier and Kurtz (1986), pages 28 and 29]. Note that ||T,,@)f||
< |Ifll- We have

LIM, T,@)f = LIM, T,(¢)f and LIM, G,(\f = LIM; G,()\)f.

It is well known that Vg € C(&),
G.(\)g = / exp(— )T, (t) g dt,
0
GOV = / exp(—AOT(®)g dt
0

[see Dynkin (1965) or Ethier and Kurtz (1986)], so we have (i) = (ii). On the other
hand, the Laplace transformation property gives (ii) = (). Thus, it remains to
show (ii) = (iv). For all f € D(A), take g = (\g — A)f € C(€) for a )¢ > 0; then

fo = Gn(Xo)g € D(A,).
Because
Anfo==00 = Andfn + Xofn = =8+ Xofr,
we have LIM;, f,, = LIM}, G,(\0)g = GO\)g = f, LIM} A, f,, = —g + Aof =Af. O

Let X denote the solution of the local martingale problem for (A, i), and let
X,, denote the solution of the local martingale problem for (A,, ).

5.3. THEOREM. The following are equivalent:

(i) Condition (i) of Lemma 5.2 holds and V., = p, (X, r) satisfies the CCC
(2.4), VI' € U(&E).
(ii) Condition (ii) of Lemma 5.2 holds and V., = u, (X, r) satisfies the CCC
(2.4), VT € U(E).
(iii) Condition (iii) of Lemma 5.2 holds and V., = p, (X, r) satisfies the CCC
(2.4), VI € U(8).
(iv) Condition (iv) of Lemma 5.2 holds and V., = p, (X, r) satisfies the CCC
(2.4), VI € U(E).
™) Vpn=p X, =X,
(vi) Vxn — x, take p =081}, =04, Xn = X.
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PROOF. Note that D(A) is dense in C(€) with respect to || - || in this case
[see Dynkin (1965), page 30, or Ethier and Kurtz (1986), pages 9-14], we have
that D(A) satisifes (4.8) by Remark 4.8. Note also that the local martingale
problem is the same as the martingale problem for this case, and it is known
that the martingale problem for A is well posed. Thus, (iii) = (v) is a corollary of
Theorem 4.4. If (vi) holds, by Lemma 5.1, we have for every bounded continuous
function A on (Dyy, ), p) that

Eh(X,) = / ER (X2 pn(da) — / ER(X5¢) u(dx) = ER(X).

Here we use X,f{"’ and X% to identify the solutions of the local martingale
problems for (A,,6,}) and (A, §y,}), respectively. So (vi) implies (v). Now, we
prove (vi) = (i). For all x, — x, note that X°w is stochastically continuous [see
Ethier and Kurtz (1986), page 181], and we have

To(®)f(x,) = Ef (X2 (8) — Ef (X0 (2) = T@®)f(x).
Thus (i) follows from Lemma 5.1, (v) and Lemma 2.5. O

By Remark 4.7, we have the following corollary.

5.4. COROLLARY. Suppose that the solution of the (local) martingale prob-
lem for (A,, 1,) is continuous, Vn, Vu, € P(E). Then the conditions (i)-~(iv) of
Lemma 5.2 and (v) and (vi) of Theorem 5.3 are equivalent.

5.5. REMARK. All of the results in this section are valid if we replace C()
with C(&).

6. Convergence of diffusion processes with jumps. As an application
of this article, we give some sufficient conditions for weak convergence of dif-
fusion processes with jumps. The conditions are slightly weaker than those in
Jacod and Shiryaev (1987).

In this section, we take &€ = R™. Let C? be the set of bourided uniformly
continuous functions defined on R™ that are of class C2. If f € C2, set

: 2
Anf)= Y BT D 1 S o T

i<m L,j<m

+/ (fx +y) — f(x)) Ny (x, dy), n=12,...,
R™

and

i 0f(x) 1 i O (x)
Af@ =3 YWHr+3 2 Wy
i<m Ljsm

+ / (F&x +) — F)) Nix, dy),
Rm
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where b,,b Borel functions: R™ — R™ and c,,c Borel functions: R — R™
® R™ with values in the set of symmetric nonnegative matrices, and N, (x, dy),
N(x, dy) are Borel transition kernels from R™ into itself with [(|y|2A1) N, (x,dy)
< oo and [(Jy|? A 1)N(x,dy) < oo.

Let A(y): R™ — R™ be a continuous truncation function, thatis, 30 < a < oo,
such that |A(y)| < |y| A a and

x, if |x| <a/2,
h(x) =
) {o, if x| > a.

Set

Bi (x) = bi(x) + / hi(y)Nax,dy),  E(x) = i) + / Ri(y)hI ()N, dy),

B = b6+ [ RN dy), P =)+ / R/ ()N, dy),
Natwf)= [ FoWNatedy), Ne= [ N Gidy).

By Lemma 5.1 and Remark 4.13 of Jacod and Shiryaev [(1987), page 516],
we have the following proposition.

6.1. ProPOSITION. The following are equivalent:

(i) For all f € C%, Yy, — %, Anf(xa) — Af(x).
(ii) Vx, — x: (@) by(x,) — bx); (b) ¢,(x,) — clx); (¢) Vf € C@R™) zero on a
neighborhood of 0, N, (xp,f) — N(x,f).

Let A, =A, Vn > 1in Proposition 6.1. We then have:
6.2. COROLLARY. Fordllf € 6‘2, Af is continuous if and only if g(x), clx)
and N(x,g) are continuous for all g € CAR™) zero on a neighbourhood of 0.

Applying Remark 4.6 and Theorem 4.4 gives the following theorem. Note that
conditions (6.3) and (6.4) of the theorem are slightly weaker than conditions 4.9
and 4.11 in Jacod and Shiryaev [(1987), page 515 and 516].

6.3. THEOREM. Let {u,pn,n > 1}CP(R™). Assume, Vn, that the local mar-
tingale problem for (A, un) has a solution X,, and X is a solution of the local
martingale problem for (A, p). If

(6.1) forallf € 62, Af is continuous,
(6.2) the local martingale-problem for A is well-posed

[see Jacod and Shiryaev (1987), pages 145 and 146],

(6.3) foreach f € 62, there exists f,, € 62, such that
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LIM, f, = f, LIM, A, f, =Af,

(6.4) lim limsup sup N, (x,1,5,) =0  Vr>0,
PToo n " f<r -

(6.5) n = W,

then X, = X.

6.4. COROLLARY. Suppose conditions (6.1), (6.2) and (6.5) hold, and

(6.6) lim sup N(x,1,5,) =0  Vr>0.
PToo<r -

If

6.7 forallf € C2, LIM,A.f=Af,

or equivalently,

©.8) LIM,b, =b, LIM,Z, =& LIMNa(,f) = N(,f)
' Vf € C(R™) zero on a neighbourhood of 0,

then X, = X.

ProoF. Itis obvious that b,¢, and N(.,f) are continuous by (6.1) and Corol-
lary 6.2. Hence, applying Lemma 5.1 and Proposition 6.1 gives that (6.7) is
equivalent to (6.8). On the other hand, (6.4) follows from (6.8) and (6.6), so the
proof is complete by Theorem 6.3. O
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