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ON CONDITIONING A RANDOM WALK TO STAY NONNEGATIVE

By J. BERTOIN AND R. A. DONEY

Université Paris VI and University of Manchester

Let S be a real-valued random walk that does not drift to oo, so P(Sj, >
0 for all ) = 0. We condition S to exceed n before hitting the negative half-
line, respectively, to stay nonnegative up to time n. We study, under various
hypotheses, the convergence of these conditional laws as n — oo. First, when
S oscillates, the two approximations converge to the same probability law.
This feature may be lost when S drifts to —oc. Specifically, under suitable as-
sumptions on the upper tail of the step distribution, the two approximations
then converge to different probability laws.

1. Introduction. This paper is concerned with two different interpreta-
tions of conditioning a real-valued random walk S = (S, 2 > 0) to stay non-
negative. Our motivation comes from a continuous time analogue. More pre-
cisely, it is known that the three-dimensional Bessel process can be viewed as
a standard Brownian motion conditioned to stay nonnegative; see Doob (1957)
and McKean (1963). Deep connections between the two processes were stressed
first by Williams (1974) and Pitman (1975), and we refer to Rogers and Williams
(1987) and Revuz and Yor (1991) for recent overviews. It is therefore interesting
to search for a random walk analogue of the three-dimensional Bessel process.

When the random walk drifts to co, the event

A={S; >0forallk >0}

has positive probability, and in this case, there is just one sensible meaning for
the conditioning. Henceforth, we will concentrate on the case when S does not
drift to co, which is equivalent to P(A) = 0. The obvious thing to do is to define
conditioning with respect to A as the limit of conditioning with respect to A,,
where A, is an approximation to A. We shall focus on two natural choices for
A,.. The first is

A = {S hits [n, co) before it hits (~o0,0)},

which was considered first by Pitman (1975) in the case of the simple symmetric
random walk. Notice that this event is time homogeneous. That is, 8,(A{) = A(D
whenever S does not exit from [0, n) before time %, where 8 stands for the shift
operator. The second is

AP ={S, >0forall 0 <k <n},
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which has been considered by Keener (1992) for certain integer-valued random
walks with negative drift. In this case, time homogeneity is lost. To show that
these methods can lead to different answers, we discuss the case of the simple
random walk.

Assume here that P(S; =1)=p,P(S;=-1)=1—p, with 0 < p < 1/2. When
p = 1/2, the two methods yield the same limit; that is, the law of the Markov
chain on the nonnegative integers with transition probability g given for x > 0

by

x+2
qx,x+1) = m,
x
q(x,x - 1) - 2(x+ 1)

When p < 1/2, the two methods yield two different limits, which both are the
laws of strict homogeneous Markov chains. The transition probabilities are
given for x > 0 by

exp(wlx + 2)) — 1
exp(wix + 1)) = 1’

qPx,x+1)=p

exp(wx) — 1
exp(wx +1)) — 1’

qP@,x —1)=(1—-p)

with w = log(1/p — 1), and

(2) - X+ 2
g, x+1) __2(x+1)’
@y v 1) 5
¢ wx—1) 2x + 1)

Notice that gV is expressed in the form (h(y)/h(x)) p(x,y), x,y > 0, where p(x,y)
is the transition function of S. This means that % is a harmonic function for
the random walk killed as it enters (—oc0,0), and that ¢'¥ corresponds to an
h-transform of the killed random walk. Moreover, if S* denotes the so-called
associated random walk that has P(S} = 1) = 1 — p, P(S} = —1) = p and drifts
to oo, then one can check that ¢ coincides with the transition function of
S* conditioned to stay nonnegative. On the other hand, g®@ corresponds to an
h-transform not of S, but rather of the simple symmetric random walk. Specif-
ically, ¢ is the transition function of the simple symmetric random walk con-
ditioned to stay nonnegative, which was given previously. This was discovered
by Keener (1992); see also Good (1968).

The main object of this paper is to extend the foregoing results to a broad
class of random walks. Technically, the key step consists of showing that the
ratio P,(AP)/P(AY) converges as n — oo (where P, denotes the law of the
random walk started at x and P = P;) and expressing the limit in terms of a
certain renewal function. We find first that for any oscillating random walk,
conditioning by AL or by A2 always yields the same strict Markovian limit (in
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the sense of weak convergence of finite-dimensional distributions), and the limit
corresponds to an A-transform of S killed as it enters (—oco, 0). When the random
walk drifts to —oo, the situation is more complex. If the upper tail of the step
distribution is regularly varying, then conditioning by AY or by A2 yields the
same limit, which is now only sub-Markovian. On the other hand, if the upper
tail of the step distribution satisfies a certain exponential moment condition of
Cramér’s type, then conditioning by A" or by A yields two strictly Markovian
limits that are distinct. More precisely, conditioning by A" leads to the law of
S* conditioned to stay nonnegative, where S* is the associated random walk
that drifts to co. Conditioning by AP leads to the law of S conditioned to stay
nonnegative, where S is a certain oscillating random walk. The fact that two
different approximations of conditioning with respect to the same event of zero
probability can produce two distinct limits is already known. We refer to Knight
(1969) for another striking example arising from Brownian motion.

A different problem about conditioning a random walk to stay nonnega-
tive has been intensively treated in the literature. Specifically, motivated by
Donsker’s invariance principle, several authors have studied the convergence
of the law of the broken line process (S,;,¢ € [0, 1]) properly scaled and con-
ditioned on A?. We refer in particular to Iglehart (1974a) for the oscillating
case, and for the negative drift case, to Kao (1978) when a Cramér type con-
dition holds and to Durrett (1980) when the upper tail of the step distribution
is regularly varying. Convergence in law of a rescaled broken line process con-
ditioned on A’ was investigated by Asmussen (1982); see also Anantharam
(1989). Roughly speaking, these works are concerned with the long range effect
of conditioning to stay nonnegative, whereas the present paper focusses on the
consequences of such conditioning for the initial behaviour of the random walk.

2. Preliminaries. The purpose of this section is to introduce the nota-
tion and recall classical results in fluctuation theory for random walks. Spitzer
(1964) and Feller (1971) are the standard references; see also Gut (1988) for a
recent exposition.

For every real number x, we denote the law of the random walk S started at
x by P,. For simplicity, we put P = P,. We will always assume that 0 < P(S; >
0) < 1. The expectation under P, of a random variable X is denoted by E,(X).
More generally, if Ay,...,A; are measurable sets, then E,(X,A;,...,A;) is the
P,-expectation of 14X, where A=A; N---NA;.

The first entrance times, respectively, in (—o0, 0) and in [n, co) are denoted
by

7 =min{k > 1: S} < 0},
o(n)=min{k > 1: S, >n}.

Here, we make the convention that min §) = co. In particular, AL = {o(n) < 7}
and A? = {r > n}. Let (H,T) = (Hy, T),%k > 0) be the strict ascending ladder
point process of the reflected random walk —S. That is, Ty = 0 and

Hk = _STI,, Tk+l = min{j > Tk: _SJ > Hk})
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with the convention H;, = co when T}, = co. The variable H; (respectively, T'; = 7)
is known as the first strict ascending ladder height (respectively, epoch) of —8S.
The renewal function associated with H; is

V@)=Y PH,<x), x>0.
k=0

It is a nondecreasing right-continuous function. Its left limit at x > 0 is denoted
by V(x—).

Because this renewal function plays a crucial role in this work, we recall now
various expressions for V. First, according to the duality lemma, we have

o(0)—1
Vix) =E< Z 1{_xssj}>.
Jj=0

We say that the random walk S drifts to co if P(7 = c0) > 0. In this case,
_ Py(1 = 00)
T P(r=o0)"

The random walk S drifts to —co if —S drifts to co. In this case, E.(7) < oo for
allx > 0 and

Vix)

Ex(T)
E(r)"

Moreover, when E(S;) < oo, Wald’s identity yields also

x — E.(S;)
E(_ST) ’
Finally, the random walk S oscillates if it does not drift to co or to —co.

When S drifts to co or oscillates, the renewal function V is invariant for the
random walk killed as it enters the negative half-line. That is,

{1 <y V(Sh), k> 0}

is a P, martingale for every x > 0. When S drifts to —co, V is just superharmonic
and the preceding process is a P,-supermartingale for all x > 0.

We denote by PY the h-transform of P, by the function V. That is, PY is the
law of the homogeneous Markov chain on the nonnegative real numbers, with
transition function

Vix) =

Vix) =

Vi
p (x,y) = % plx,y), x,y>0.

(Observe that pV is strictly Markovian iff V is invariant.) Alternatively, if f(S) =
f(So,8S1,...,8;) is a functional that depends only on the % first steps of the
random walk (where £ is a fixed integer), then

1

EY(fS) = 3y Bx (VISR F(S), b < 7).
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When S drifts to oo, PV is the law of S conditioned to stay nonnegative (in
the usual sense) and the associated chain is strict Markov. When S oscillates,
the transition function pV is still honest and the chain is strict Markov. On the
other hand, when S drifts to —co, the transition function p" is defective and the
chain is sub-Markov. We refer to Tanaka (1989) and Bertoin (1993) for pathwise
constructions of Markov chains with law PV from the random walk S.

Finally, for a proper application of renewal theory, we need to distinguish
between the lattice and the nonlattice case. We say that the random walk has
a lattice distribution with span )\ > 0 if its step distribution is supported by the
centered lattice \Z = {0, £, +2), ...} and no centered sublattice thereof. We say
that S has a nonlattice distribution if its step distribution is not supported by A\Z
for any X > 0. Plainly, for every A > 0, the distribution of H; is supported by the
lattice A\Z (i.e., H1 has a lattice distribution with span that is an integer multiple
of \) iff the renewal function V is constant over the intervals [n), (n + 1))) for
all integers n > 0. By the duality lemma, this implies that the step distribution
of S is also supported by A\Z. Indeed, P(kA < S; < (& + 1)\) = 0 for all integers
k < 0; otherwise, the distribution of H; would not be supported by A\Z. Now
fix an integer £ > 0. The probability that the & + 1 first steps of S are all in
{=A,—2),...} is positive, and thus, there exists an integer 2’ > & such that

P(Sp+1=—kXNEk+1<0(0) >0.

Now, if the probability that 2\ < S; < (k + 1)\ was positive, then we would
have P(k — F)N < Spy2 < (B +1 —E)\Ek+2 < g(0)) > 0, and according to the
duality lemma, V would not be constant on ((¢' — & — 1)\, (¢’ — k))). Replacing A
by an integer multiple of \, we see that H; has a lattice distribution with span
X (resp. a nonlattice distribution) iff S has a lattice distribution with span A
(resp. a nonlattice distribution).

3. The oscillating case. We will assume throughout this section that the
random walk oscillates. It should be clear that the asymptotic behaviour of the
ratio P,(A9)/P(A®) will play a crucial role in the study of conditioning by A%
We will see that for i = 1, one can calculate the limit without evaluating each
term of the ratio.

LEMMA 1. For every x > 0, we have

1)
lim P:(An)

A p(amy U

ProoF. To begin, we show that for every fixed a > 0, the probability that S
hits [n + a, 0o) before it hits (—oo, 0) is equivalent to the probability that S hits
[, 00) before it hits (—oo, 0) as n goes to co. That is,

(¢)) P(AD,)/P(AP) — 1 asn goes to co.

n+a
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Indeed, by the Markov property, the left-hand side of (1) can be expressed as

P(Sa(n) >n+a | Aﬁ,'l)) + Pn+x(A§Ll_),,a) P(Sa(n) €n+dx | Asll)),
x€[0,a)

but
Pri2(AD,,) = P, (S hits [a, 00) before it hits (—co, —n)).

Because S oscillates, the preceding quantity goes to 1 uniformly on x € [0,a] as
n goes to oo. This implies (1).
By (1), we need only show that

@) P(S hits [n, o) before it hits (—co, —x)) ~ V(&) P(A).

Recall from Section 2 that (H,,T,) stands for the nth strict ascending lad-
der point of —S, and denote by M, = max{S, + H, _1, Tn_1 < k < Ty}, the
maximum of the nth excursion of S above its past minimum. Note that the
variables (Hq,M,),(H; — Hy,My),. .. are i.i.d. Now, we rewrite the left-hand
side of (2) as

@ P(M; >n)+Y PHy<x, My <n, My <n+Hi,...,
k=1

My <n+Hj_1, Mp,1 >n+H).
On the one hand, we deduce from (3) that
P(S hits [n, 00) before it hits (—oo, —x))

<P(My>n) + Y PHy <x,Mys1>n+Hy)
k=1

<PM;>n) + ZP(Hk <x)PMp,1>n)
k=1
< P(M, > n)V(x),

where the last inequality comes from the definition of V. Thus,
lim sup P(8S hits [n, 00) before it hits (—oo, —x)) /P(M1 > n) < V(x).

n—oo

On the other hand, (3) is greater than or equal to

[ee]
P(My>n)+ Y PH, <x, My <n, My <n,...,My<n, My,1 >n+x),
k=1
and because the (% + 1)th excursion is independent of the &-preceding, the fore-
going quantity equals

P(My >n)+P(My >n+x)y PH<x My <n,My<n,...,M; <n).
k=1 -
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Recall (1) and that A’ = {M; > n}. We deduce by monotone convergence that
ljlm ioréfP(S hits [r, c0) before it hits (—oco, —x)) /P(M1 > n) > V(x).

This proves (2). O

REMARK. The asymptotic behaviour of P(A{) is characterized in Corollary
3 of Doney (1983) when the step distribution belongs to the domain.of attraction
of a stable law. In this case, Lemma 1 gives the asymptotic behaviour of P, (A{)
for x > 0.

For i = 2, we have a weaker result (see also the remarks after the proofs of
Lemma 2 and Theorem 1), which, however, will be sufficient for our purpose.

LEMMA 2. For every x > 0, we have

P (A7)

Proor. Recall that (H, T%) denotes the kth ascending ladder point of —S.
By the Markov property for the following second inequality, we have

Pt >n)> ZP(Hk <x,Tp<n, Tpy1—Tr>n)
k=0

>P(r>n)Y P(H, <x, Ty <n).
k=0

By monotone convergence,

lim ZP(Hk <x, Tp<n)= ZP(Hk <x)
T k=0 k=0
= Vix),

which entails the lemma. O

REMARK. We also mention that in the lattice case with unit span and strong
aperiodicity, Theorem 10 of Kesten (1963) gives that the ratio P,(t = n)/P(1 = n)
converges to V(x) for every integer x > 0, which implies our Lemma 2.

Recall from Section 2 that P stands for the probability measure obtained
from the law of S killed as it enters the negative half-line by A-transformation
with A = V. The main result of this section is the following theorem.

THEOREM 1. Consider a bounded functional f(S) = f(Sp,S1,...,S:) that
depends only on the k first steps of S. Then, for i =1 or 2,

Tim E(£(S)| AY) = E7 (£(S)).



CONDITIONED RANDOM WALK 2159

ProoF. Assume first that; = 1. With no loss of generality, we may suppose
that 0 < f < 1. Applying the Markov property, we get

E(F(S), AD) > E(£(8), AL, k < o(n) A T)
> E(f(S) Ps,(AP), k < om) A 7).

Recall from Lemma 1 that Pg,(A")/P(A{) converges to V(Sy), P-a.s. It follows
from Fatou’s lemma that

liminf £(£(S) | AL) > EY (£(S)).

Replacing f by 1 — f, we get
limsup E(£(S) | ALP) = 1 -liminf E((1 - £)S) | AD)
n— oo n—oo
<1l- EV((l —-X8))
= EV(f(9)).
(Nota bene: The last equality comes from the fact that PV is conservative and
would be false otherwise.) This proves Theorem 1 for i = 1.
Assume now that i = 2. The Markov property entails that for & < n,
E(f(S),A?) = E(f(S)Ps, (A2 ,),7 > k)
> B(f(S)Ps, (AD), ™ > k).

We deduce from Lemma 2 and Fatou’s lemma that
liminf E(f(S) | A;?) > E(f(S)V(S), 7 > k)
> EV(f(S)).
The converse inequality for lim sup follows as in the casei=1. O

REMARK. The following reinforcement of Lemma 2 derives easily from The-
orem 1 and Theorem 26 on page 44 in Dellacherie and Meyer (1975). For any
fixed integer £ > 0, the ratio Pg,(r > n)/P(r > n) converges in L! to V(Sg)
as n — oo. In particular, in the 1-lattice case, lim P,(r > n)/P(r > n) = V(x)
for any integer x > 0. Finally, in the nonlattice case and when Spitzer’s con-
dition holds, the result on page 381 in Bingham, Goldie and Teugels (1987)
is available. Then the argument of Lemma 3 can be adapted to show that
lim P,(7 > n)/P(t > n) = V(x) for any real number x > 0.

4. The negative drift case. " We will assume throughout this section that
the random walk drifts to —oco. The first result of this section (Theorem 2)
claims that when the step distribution satisfies a Cramér type condition, then
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conditioning by A or by A? yields the laws of two distinct strict Markov
chains. To give a rigorous statement, we introduce the cumulant of the random
walk

x(0) = log E(exp(6Sy)) € (o0, 0] for 6 € R.

Recall that the cumulant is convex and denote by «' its derivative. We consider
the following hypotheses.

HypoTHESIS 1. There exists w > 0 such that k(w) = 0 and E(S1e*51) < .

HypPOTHESIS 2. There exists v > 0 such that x'(v) = 0 and k < oo on some
open interval that contains v.

Hypothesis 1 is known as Cramér’s condition. Hypothesis 2, together with
the assumptions that £/(0) > —oco and the step distribution of S is not supported
by any noncentered lattice, corresponds to the Class II in Doney (1989a, b) and
to the conditions of Theorem 1.2 in Keener (1992) in the integer-valued case. It
also appears as a key hypothesis in Iglehart (1974b), Veraverbeke and Teugels
(1975) and Deheuvels and Steinebach (1989); see also the references therein.
Due to the convexity of the cumulant, Hypothesis 1 always implies Hypothesis
2 (and then v < w), but the converse is false.

When Hypothesis 1 is fulfilled, one introduces the so-called associated ran-
dom walk S*; see Feller (1971), Section XII.4(b). Specifically, the transition
probability p* of S* is given by

p*(x,dy) = exp(w(y —x)) plx,dy).

Itis easy to see that S* drifts to co. We observe the following relation of absolute
continuity:

dP:l]-'(k) = exp(w(Sk — x)) dPx | Fk)+

Here, P: denotes the law of S* started at x, and F(k) is the o-field generated
by the first & steps of the random walk. Plainly, this relation also holds if the
fixed index % is replaced by a F(k)-stopping time. Finally, we denote the re-
newal function of the first strict ascending ladder height of —S* by V*, and
P*V" will stand for the corresponding A-transform of S* killed as it enters the
negative half-line. Observe that P* is an h-transform of P and, therefore, P
corresponds to an A-transform of S killed at time 7.

When Hypothesis 2 is fulfilled, one introduces similarly the transition func-
tion

plx,dy) = exp(vly — x) — k(1)) plx, dy).

It is the transition function of another random walk, S. We denote its law by P
and we notice the relation of absolute continuity

dP,| 7@ = exp(v(Sy, — x) — kx(v)) dPy| 7).
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Plainly, E(él) = 0 and, therefore, S oscillates. We denote the renewal function
of the first strict ascending ladder height of -S by V. [Warning: the reader
will check easily that the function V coincides with that denoted by e‘”"V(x) in
Doney (1989b).] Finally, let P be the correspondlng h-transform of S killed as
it enters the negative half-line. Here, Pisnot an h-transform of P, and PV does
not correspond to any h-transform of S killed at time 7.

Informally, S* can be viewed as S conditioned to drift to oo and S as S con-
ditioned to oscillate. More precisely, using Cramér’s estimate [cf. Feller (1971),
Section XII.6(d)], one can check that if Hypothesis 1 holds, then

P(- | S hits [n,0)) converges to P*, asn — oo

[see also Asmussen (1982)]. Here, the convergence is in the sense of the finite-
dimensional distributions. Similarly, using the estimate of Theorem 3(ii) in
Doney (1989a), one can check that if Hypothesis 2 holds and if the step dis-
tribution of S is not supported by any noncentered lattice (i.e., of the type
{a +bk,k € Z} with 0 < a < b), then

P(- | Sy, > 0 for some k > n) converges to P, asn— oco.

Now, we make the following claim:

THEOREM 2. Consider a bounded functional f(S) = f(Sy,...,S:) that de-
pends only on the k first steps of S.

(i) If Hypothesis 1 holds, then
nlimooE(f(S) | AD) = E*V” (f(S*)).

(ii) If Hypothesis 2 holds and the step distribution of S is not supported by
any noncentered lattice, then

lim E(f(S) | A) = EV (£(S)).
The second part of Theorem 2 was obtained by Keener (1992) in the case of

integer-valued random walks. The present approach, which is both simpler and
more general, relies on the following lemma.

LEMMA 3. (i) If Hypothesis 1 holds, then
(4) [Jim P, (AP) /P(AP) = exp (wx)V*(x).

(ii) If Hypothesis 2 holds and.the step distribution of S is not supported by
any noncentered lattice, then

(5) lim P.(AP)/P(AD) =exp ua)V ().
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Here, (4) and (5) hold for every real number x > 0 if the step distribution is not
supported by a lattice, and for every x = k), with k a nonnegative integer if the
step distribution is supported by a lattice with maximal span ).

ProoF. The first part of the lemma follows readily in the nonlattice case
from Lemma 1 of Iglehart (1972), which specifies the asymptotic behaviour of
P.(A?) when Hypothesis 1 holds. The lattice case is similar; see for instance
Lemma A of Karlin and Dembo (1992).

The second part is stated in Theorem II of Doney (1989b), except that (5)
is claimed in the nonlattice case only at continuity points of V' [Doney (1989b)
makes the additional assumption that E(S;) > —oo, but actually this is not
needed in his demonstration]. So, assume that V(x) > V(x—) and introduce
7/ = min{k > 0: S < 0}. Then, by the definition of V and with obvious notation,

V(x) - Vx—) = P;(S7 = 0)
= exp (—vx)E, (exp{—n(u)r’}, S =0, 17 < oo).

On the one hand, by the Markov property,

Pr>n)=Pyr' >n)+ Y Pur' =k,S;=0)P(r >n—k).
k=0

Moreover, P(t > n) ~ r(n) exp{nx(v)}, where r(n) is regularly varying at co; see,
for example, Doney (1989b). We deduce from Fatou’s lemma that

hmmfZP (r' =k, Sp = 0)P(r > n — k)/P(r > n)

n — oo

k=0

> P.(r' =k, S = 0)exp{—x()k}
k=0
> exp (l/x)(f}(x) - ﬁ(x—)).
Because P,(7' > n) > P,(t > n) for all y < x and because there exist continuity
points ¥ < x of V that are arbitrarily close to x, we deduce that

liminf Po(r > n)/P(r > n) > exp wa)V(x).

On the other hand, P.(7' > n) < P,(t > n) for all y > x and because there exist
continuity points y > x of V that are arbitrarily close to x, we deduce that

limsup P,(r > n)/P(r > n) < exp (vx)V(x).

n—oo

This proves that (5) holds at x, and-the proof of Lemma 3 is complete. O

REMARKS. 1. The asymptotic behaviour of P(A?)) when Hypothesis 2 holds
has been specified originally by Iglehart (1974b), Theorem 2.1.
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2. The feature that (5) holds for all x in the nonlattice case was observed
independently by D. Korshunov (private communication).

3. We also mention that Veraverbeke and Teugels (1975) have obtained an
analogous result for the asymptotic behaviour of P(n < o(x) < co) when Hy-
pothesis 2 holds.

Proor oF THEOREM 2. Theorem 2 follows from Lemma 3, arguments based
on Fatou’s lemma and the Markov property analogous to those of Theorem 1. O

REMARK. When Hypothesis 2 holds, S; is in the domain of attraction of the
normal law. This hypothesis is required in Doney (1989b) solely in order to use
classical large deviation results of Petrov to establish Lemma 4(ii) therein. We
point out that whenever S; is in the domain of attraction of a stable law of
index a € (1,2], the result of Lemma 4(ii) is valid and can be established by
using local limit theorems such as Theorems 8.4.1 and 8.4.2 of Bingham, Goldie
and Teugels (1987). Thus in all such cases, Doney’s Theorem II and hence our
Theorem 2, part 2, holds. In particular, these results are valid in certain cases
where «(6) = oo for every 6 > v, a situation which is not covered by the results
of Keener (1992).

Recall that Hypotheses 1 and 2 are only restrictions on the upper tail of the
step distribution. We do not know whether they are necessary for the conditional
probabilities P(- | AY) and P(- | AD) to converge toward the law of a strict
Markov process. However, we show in the next theorem that some restrictions
are indeed needed to get such a convergence.

THEOREM 3. Assume that —oo < E(S;) < 0 and that
P(S; > x) =x"“L(x),

where 1 < a < oo and L is slowly varying at co. Then, for every bounded
functional f(S) = f(Sy,S1,...,Sk), which depends only on the k first steps of
S, and for every 0 < K < 00, we have fori=1or 2,

lim E(f(S),S; <K | A?) =EV(f(S),Sk < K,k < ().

Recall that PV is the law of a sub-Markov chain with finite lifetime ¢. Mcre
precisely, for every & > 0, PV(k < ¢) < 1, Theorem 3 implies that if the random
walk has a negative drift and the upper tail of the step distribution is regularly
varying, then conditioning by AY (i = 1 or 2) inducesan explosion as n goes to
infinity. In the case i = 2, this explosion phenomenon is related to a result of
Durrett (1980), who considers the rescaled broken line process (S, /n,0 <t <
1) conditioned on A2

Proor. First, assume that: = 2. According to Theorem I in Doney (1989b),
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P(1 > n) is regularly varying at co with index —a. Moreover,

6) nlgr;o Pt >n)/P(t >n)=V(x)

whenever V is continuous at x if the step distribution is not supported by a
lattice, and for every x = k), where k is a nonnegative integer, if the step dis-
tribution is supported by a lattice with maximal span \. Arguments analogous
to those in Lemma 3(ii) show that (6) then holds for every x in the nonlattice
case. It follows that for each fixed integer £ > 0,

nllmoon(T >n —k)/P(t > n)=V(x).

Finally, it is easy to check that the convergence is dominated over compact
intervals. The result then follows from the Markov property.

Now assume that i = 1. We shall treat only the lattice case, because the ar-
guments can be easily adapted to the nonlattice case. With no loss of generality,
we may now assume that S has a lattice distribution with unit span. Plainly,
the proof amounts to showing that for every integer x > 0,

lim P.(A) /P(A) = V().

Let

n
Un)=> uk), n>0,

k=0
be the renewal function associated with the defective random variable S,
(that is the first weak increasing ladder height of S). Because S drifts to —oo,
the process 14 < o)y U(—S}) is a P, _,-martingale for all n > 0 and x < n. By
translation, 1{; < o) U(n — Si) is a P,-martingale. Applying Doob’s optional
sampling theorem at oc(n) A 7, we get

P, (Aﬁll)) =P;(o(n) <)
(7) 1
= mEx(U(n -8,;) - U —x), 7 < a(n)).
Because S, is defective, U(n) increases to a finite limit as n — oco. We will
prove below that

(8) u(n) ~cn=*L(n) asn — oo.
Then, for every fixed k&,
nlingo (Un+k) - U(n))n"‘L(n)‘l =ck
and, plainly, (U(n + k) — Un))n®L(n)~! < 2ck when n is large enough. Recall

that E(—S,) < co. By dominated convergence, we deduce from (7) that the ratio
PAADL)/P(APL) converges as n — oo to

X — Ex(Sr)

.S, - Vix)
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(this equality derives from Wald’s identity, as we observed in Section 2). Thus,
all that we need now is to prove (8).

First, define v(n) for all n > 0 by the relation V() = Y5 -ov(p). According to
the duality lemma,

v(n) = ZP(SP =—n, p < c(0)).

We have

P(Sy) =

8 "P"18

Z = —k, p<0(0), Sps1=n)

= Z ZP(SI =n+k)P(S, = —k, p < 0(0))

Z v(R)PSy =n +k).

Put p = E(Hy). According to the renewal theorem, v(k) converges to 1/u as
k — o0. Fix € > 0 and let K be such that |[v(k) — 1/u| < ¢ for all £ > K. We have

(l - 5>P(Sl >n+K)< Z v(R)P(S;=n+k) < (1 +3)P(Sl >n+K)
H K+1 H
and
K
Z v(R)P(S1=n+k) <cP(n <S; <n+K)=0(1)P(S; > n).
0
Thus,
(9) P(Sy0=n) ~ /%n‘”L(n) asn — o0o.

Now we show that (8) follows from (9). Denote by (Z;, % > 0) the weak ascending
ladder height process of S (so Z; = S,(g)) and put A = P(c(0) < o0). We have

oo oo
u(n) = ZP(Zk =n)= Z MNP(Z, = n),

k=0 k=0

where (Z;,, £ > 0) is a nonnegative random walk whose step distribution coin-
cides with that of S, conditioned on ¢(0) < co.

Assume now that o > 2. Because by (9), P(Z} =n) ~ ()\u)‘1 ~*L(n), E(Z}) =
' is finite. According to Doney (1989c), P(Z}, = n) ~ kP(Z} = n) as n goes to 00,
uniformly in 2 < C logn, where C > 0 can be chosen arbitrarily large. Therefore,

(10) > MPZ,=n)~PZij=n) Y kX asn— .
k<Clogn k<Clogn
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On the other hand, when C is chosen large enough,

1 D> MP@Z,=n) <1 -N)TIARE = o(n"L(n)).
k>Clogn

Now (8) follows from (9), (10) and (11).

Similar arguments apply to the case 1 < o < 2. More precisely, one has just
to show that (10) holds when E(Z]) = co. The proof follows essentially from
Corollary 1.5 of Nagaev (1979) and the arguments of Doney (1989¢). O

REMARKS. 1. The hypothesis of Theorem 3 can be weakened. We believe
that the conclusions hold provided that lim, _, ., P(S; > x + 1)/P(S; > x) = 1,
but we were not able to prove this in its full generality.

2. We observe that a proof of (4) of Lemma 3 can also be based on equation
(7). For example, in the case that S is lattice with span 1, u} — 1/m*, where
m* = E*(S}. ) < oo and u, stands for u, evaluated for the associated random
walk S*. Because u, = e "“u;, we have u, ,.;/u, — e * for each fixed %, and
using this in (7) gives

(12) P(AY,)/P(AP) — exp(—kw).

We can then adapt the argument leading from (1) to (2) to show that (12) implies
(4). Using this approach also allows us to deal with certain cases where Hypoth-
esis 1 holds except that E(S;e“5!) = co. Specifically, suppose again we have the
lattice case and P*(S} > n) = n~*L(n), where o € (%, 1). Then, by Theorem 1(b)

of Veraverbeke (1977), P*(S%. g, > n) ~ cn~*L(n) and hence u;, ~ cn=*~ 1L(n);
see Garsia and Lamperti (1963). Thus again u, ,;/u, — e~**, (12) and hence
(4) holds and the conclusion of Theorem 2, part 1, is valid.
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