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GEOMETRIC AND SYMMETRY PROPERTIES OF A
NONDEGENERATE DIFFUSION PROCESS

By M. COHEN DE LArA
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A diffusion process with smooth and nondegenerate elliptic infinites-
imal generator on a manifold M induces a Riemannian metric g on M.
This paper discusses in detail different symmetry properties of such a
diffusion by geometric methods. Partial differential equations associated
with the generator are studied likewise. With an eye to modelling and
applications to filtering, relationships between symmetries of determinis-
tic systems and symmetries of diffusion processes are delineated. The
incidence of a stochastic framework on the properties of an original
deterministic system are then illustrated in different examples. The con-
struction of a diffusion process with given symmetries is also addressed
and resulting geometric problems are raised.

1. Introduction. When dealing with a diffusion process, one is generally
given its infinitesimal generator in the first place. On the other hand, there
are practical problems where one is first given a vector field describing the
dynamics of a deterministic system and then has to model the latter as a
diffusion process. For instance, faced with a dynamical estimation problem
(tracking of a target, orbit determination,...), one often designs a stochastic
framework to formulate the original question as a filtering problem where the
state has to be recovered from at best partial observations. This is usually
done by introducing stochastic differential equations to represent the evolu-
tion of the state: one adds a stochastic term to the natural deterministic
dynamics of the state. Most of the time, this stochastic term is the increment
of a Brownian motion weighted by a noise parameter because very little is
known about the perturbations. Poorly known for poorly known, we raise the
following issue. To what extent can this stochastic term be chosen in order to
simplify the resulting filtering problem? In addressing this problem, we had
to focus attention upon the symmetry properties of diffusion processes.

The set of planar motions which keep a geometric figure invariant form a
group, the symmetry group of the figure (square, triangle, circle,...). It
measures the degree of symmetry of the figure and may help reconstitute it
from one of its parts. In the case of an algebraic equation, a symmetry group
or invariance group consists of transformations of the base space which
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permute solutions (this is one of the basic concepts of Galois theory). In some
cases, knowledge of such a group may help solve the equation, as in the
classical example of the “bisquared” equation for which x* + bx2 + ¢ = 0 if
and only if z = x2 and 2% + bz + ¢ = 0. In the case of ordinary differential
equations, it was pointed out by S. Lie that all the special techniques for
solving certain classes of ordinary differential equations (ODE’s) have their
origin in a general method related to the existence of a continuous invariance
group for these ODE’s (see the introduction of [16]). Basically, this (local)
group consists of geometric transformations of the product space “indepen-
dent variables” X “dependent variables,” and its action on functions consists
in transforming their graph as in Figure 1; these transformed graphs are
graphs of solutions of the original ODE. Continuous groups present the
advantage of being characterized by certain computational algorithms. It is
indeed a crucial point in Lie theory that the nonlinear conditions expressing
the invariance of a system of ODE’s under a group of transformations may, in
the case of continuous groups, be replaced by linear conditions, which are
equivalent but simpler. These latter conditions reflect the infinitesimal in-
variance of the system under the action of the infinitesimal generators of the
group. All this theory can be extended to partial differential equations
(PDE’s) [16, 17].

In the stochastic case, symmetry properties are also used in different
contexts. The symmetries of the Laplacian on R" are of great help for basic
properties of Brownian motion. For a given Markov process, functions of this
process that remain Markov can be captured via an analysis of the symmetry
group as done by Glover and Mitro [10] (see also [8, 9]). The diffusion
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processes having the maximal symmetry properties are characterized by Liao
[15]. In the context of PDE’s, second-order linear equations have been studied
by Ovsjannikov [17], especially the elliptic case with geometric tools, while
Rosencrans [19, 20] contributed to the parabolic case (see also [3]).

In this paper, we focus on the case of diffusion processes with (time-inde-
pendent) infinitesimal generator . on a manifold M of dimension n, when ¥
is smooth (or analytic) and nondegenerate elliptic. We discuss systematically
and in detail different symmetry properties of such a diffusion by geometric
methods. Partial differential equations associated with the generator are
studied likewise. Moreover, with an eye to modelling and applications to
filtering, we try to delineate the relationships between symmetries of deter-
ministic systems and symmetries of diffusion processes. The incidence of a
stochastic framework on the properties of an original deterministic system is
then illustrated in different examples.

In Section 2, we recall how a natural Riemannian metric g on M can be
associated with % so that .Z = 1A ¢ T B + ¢, where A, is the Laplacian on
the Riemannian manifold (M, g), B is a vector field on M and c is a smooth
function on M. :

In Section 3, we study how this geometric framework, namely, (M, g) and
B, is modified when a time change and a diffeomorphism ¢: M — M are
applied to a diffusion (¢) with generator .#. This allows us to characterize the
diffusion processes which can be transformed into Brownian motions by
diffeomorphism and time change.

Following [15], we recall that a diffeomorphism ¢: M — M is said to be an
invariance transformation of the process (¢) if the process (¢(£)), starting
from x, is identical in law with (&), starting from ¢(x), and it is said to be a
symmetry transformation of the process (¢) if the process (¢(£)), starting
from x, is identical in law with (&), starting from ¢(x), after a time change.
These transformations form groups, called invariance group and symmetry
group, and we characterize them in terms of the geometry of the Riemannian
manifold (M, g) in Section 4. We also extend these definitions and results to
time-dependent transformations. The Lie-algebraic aspect is developed in
Section 5.

Various partial differential equations are associated with the operator .2,
such as Zf=0, Z*f=0, o,f—<Zf=0, o,f—Z*f=0, ¢,f+Zf=0 and
3,f +&*f = 0. In Section 6, we study transformations of the extended spaces
M X Ror R X M X R which leave the set of solutions of the PDE’s invariant.
The analysis is done for general elliptic operators. That is, .#1 is not
necessarily zero.

We close by discussing in Section 7 several applications with an emphasis
on how the choice of a diffusion process to represent a dynamic system can
affect the symmetries of the original system. Specific discussions on gradient
vector fields and on practical filtering problems are also given. The geometric
problems raised by the construction of a diffusion process with given symme-
tries are outlined in these last cases.
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2. A Riemannian geometric framework. Let (2, %, P) be a filtered
probability space, satisfying the usual conditions. Also, let the differential

operator .# be written in a given coordinate system x,,..., x, on a manifold
M of dimension n as

1 n B 92 n
(1) Z== 3 a(x) + b

245=1 J i1
To speak of a diffusion process with infinitesimal generator .Z, we follow [12],
page 202.

Let M' = M U {8}, where § is a terminal point. By convention, any smooth
f on M extends to M’ by f(8) = § and any transformation ¢ from M to M
extends from M' to M' by ¢(8) = 8.

Let (¢) be a family (£,), c 5 of M'-valued, #-adapted stochastic processes
such that the following hold:

1. as., £,(0) = x.

2. a.s., there exists {(w) €[0, +=] such that: (a) t € [0, {(w)) = £.(8) is
continuous; (b) ¢,(¢) = 8 for ¢ > {.

3. For all smooth functions f on M,

MI(t) = F(£(6)) = F(&(0) = [(F)(&(5)) ds
is a local martingale.

The process (£,) is said to be an Zdiffusion starting at x. When the filtration
is not specified, it is that generated by the diffusion.

We make the following assumptions (which are easily seen to be indepen-
dent of the coordinate system).

AssUMPTION 2.1. The operator & is assumed to be smooth [the functions
a¥(-), b'() and c(-) are smooth] and nondegenerate elliptic [the symmetric
matrix (@”(x)), ;_; . , is positive definite for all x € M].

Thanks to this assumption, it is well known that we can introduce a
Riemannian metric g on M as follows (see [17], [12] and [15]).

LEmma 2.2. If (a;(x));;_,
(a(x)); j-1,... n» then

.....

,,,,, . denotes the inverse matrix of

n

(2) g= Y a;(x)dx;dx;
i j=1

defines a Riemannian metric g on M. Moreover, if A, is the Laplace—Beltrami

operator (Laplacian) on the Riemannian manzfold (M, g), then & can be
written

(3) Z=30,+B+c,

where B is a smooth vector field on M.
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REMARK 2.1. The vector field B depends not only on bY,...,b" in (1), but
alsoon a“,i,j=1,...,n.

DEFINITION 2.3. We shall denote by g = met(.#) the Riemannian metric g

on M associated with .. The operator . is said to be an intrinsic Laplacian
[15] if &= 3A,, that is, if B = 0 in (3).

REMARK 2.2. We recall that if g, is a Riemannian metric on M, the
diffusion (¢) is said to be a Brownian motion on (M, g,) if &= 3A 2, (see [6]).
Note that, with this definition, a usual Brownian motion on R" killed at a
stopping time still is a Brownian motion.

It can be easily proved by writing A, in local coordinates that there exists
a metric g, such that the diffusion (£¢) is a Brownian motion on (M, g,) if
and only if . is an intrinsic Laplacian [and then necessarily g, = met(Z)].

The symmetry properties of the diffusion (£) will be shown to be related to
certain geometric objects of the Riemannian manifold (M, g). This is why we
review the necessary mathematical background (our references are [13] and

[1D.

DEFINITION 2.4. Let T be an r-form [(0, r) tensor field], let X, X;,..., X,
be vector fields and let f be a smooth function on M. The Lie derivation (of
tensors) Ly is characterized by the relations

Lyf=Xf={df, X,
(4) LyX, = [X’Xl]’
LX(T(Xl,...,Xr)) = (LyT)(X,,.... X)) + Z T(X,...,LxX

PR
i=1

, X,).

The inner product iy maps r-forms into (r — 1)-forms. It is defined by

(5) (ixT)(X,,....X,) =T(X,X,,..., X,)
and is related to the Lie derivation by the Cartan formula
(6) Ly=doiy+iyed.

DEFINITION 2.5. Let X, Y and Z be vector fields [(1, 0) tensor fields], let o
be a 1-form [(0, 1) tensor field] and let f be a smooth function on M.

(1) D, denotes the covariant derivation, and A, denotes the derivation

A,=L,-D,.

(i1) A, induces a (1, 1) tensor field by A, X = —DxZ whose adjoint A% is
defined by g(A%X,Y) = g(X, A,Y).

(iii) Q, is the volume form on (M, g).

(iv) The divergence of X is the function div, X, which satisfies Ly, =
(div, X)Q,.

(v) Z' is the 1-form defined by duality by Z(X) = g(Z, X).
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(vi) o' is the vector field defined by duality by g, X) = o(X).
(vii) The gradient of f is the vector field V, f = (df ), such that gV, 1, X)
= Xf.
(viii) The Laplacian (or Laplace-Beltrami operator) A, is given by A, f =
div,(V, ).

Moreover, we will often refer to geometric identities stated in the Ap-
pendix.

3. Diffeomorphisms and time changes. Brownian motions. In this
section, we study how the diffusion (¢) is transformed into another diffusion
by state diffeomorphism and time change. To this end, we need to introduce
additional tools. We denote by D(M) the group of (global) diffeomorphisms
of M and by (M) the algebra of vector fields on M.

DEFINITION 3.1. Let ¢ € D(M), X € (M) and f€ C*(M). Let T be a
(0,r) tensor field, let X,,..., X, be vector fields and let P be any differential
operator on M. We define the following:

(7 o*(f)=fod and ¢, (f) =f¢7";

(8)  bx(X) f=¢x(X-¢*(f)) and ¢*(X) f=¢"(X"¢4(f));
(9) b (T Xy, X,) = ¢4 (T(d*(Xy),..., $*(X,)));

(10) P?-f=¢.(P-¢*(f)).

The following definitions and lemmas about time changes are well known
[15, 18].

DEFINITION 3.2. Let a: M <)0,%( be a smooth function. Then A, =
J{a(€(s)) ds is an additive functional of (&), having an inverse 7, from
[0, A,) to [0, {) which is said to be the time change with density a for the
process (£).

LEMMA 3.3. Let ¢ € F(M) and a: M =)0, +o( be a smooth function. If
the time change 7, has density a, then ($(&(1,))) defines a diffusion process
with infinitesimal generator &' given by

11 &= 1.‘?¢— 1 ¢ = ! ¢
(11) _(Z ) Cdu(a)T acglT

The following proposition describes how the geometric framework pre-
sented in the previous section is transformed under diffeomorphisms and
time changes.
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PROPOSITION 3.4. Under the assumptions of Lemma 3.3, if g = met(.¥)
and & is given by (3), then &' = ;}Ag, + B' + ¢, where
g =met(L) = ¢, (ag) = dx(a)d,(g) =(ac ¢ )d.(g),

. 1 1n-2
B =¢*(;B— ;TVgloga

(12) 1 n—2 )
= ¢*(;B) - TVg’log(aod) Y,
1 cogp!
¢ = qb*(;c) = m‘l—

PrROOF. In Lemma 2.2, it is implicit that the coefficients a’/ are compo-
nents of a contravariant tensor whose covariant components are a;;. This
implies that under the change of coordinates induced by ¢, % becomes .#*
and g becomes ¢, (g). Moreover, since (a(x)a;(x)); ;_; . , is the inverse
matrix of (1/(a(x)a’(x)); ;_,,. . ,, then met((1/a).#) = a met(#). Combin-
ing both transformations, we get the expressions in (12) for g'.

Moreover, by (123), (127) and (120) in Lemma A.1 in the Appendix, we

have

. 1 ¢ 1
T L e

1 * n-2 .
=(;Ag) + 220, (log(we 71)).

We also have ¢’ =.#"1 and the expression for B’ follows from

B =% ! A ! A ’ ! B fl A

"= - A, - =|— +|—B| - =A,. O
2°¢ "¢ T 24" o g8

This geometric decomposition of the generator .# makes it possible to

characterize the diffusion processes which can be transformed into Brownian

motions by diffeomorphism and time change. The specific case of the dimen-
sion n = 2 can be noted here (and in the sequel).

PROPOSITION 3.5. Let n # 2. The three following assertions are equivalent.

(1) There exists a metric g, and a time change 1, with density a such that
(&(7,) is a Brownian motion on (M, g,).
(ii) There exists a metric g,, a diffeomorphism ¢ and a time change T,
with density a such that (¢(£(7,))) is a Brownian motion on (M, g,).
(iii)) In (3), ¢ = 0 and the vector field B is a gradient vector field B = V.o
for the metric g = met(?).

In this last case, if B =V,¢, the time change density is given by a=
exp(4/(n — 2)¢).
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ProoF. Clearly (i) implies (ii). If (ii) is satisfied and %’ denotes the
infinitesimal generator of the diffusion ¢(&(7,)), we have, on the one hand,

Z = %Ag 0
and, on the other hand, by Proposition 3.4 and Lemma 3.3,

1 1 n—2
& = §Ag/ + d)*(zB - -—Z—;—'Vg log a| + ¢*(c)

with g’ = met(¥') = ¢, (a met(L)) = ¢, (ag).

Then, necessarily, g, = met(¥") = g’ by Remark 2.2, B — ;(n — 2)V, log a
= 0 and ¢ = 0 so that (iii) is proven.

If (iii) is satisfied with B =V, ¢, the time change density given by a =
exp(4/(n — 2)¢) is such that the infinitesimal generator of the diffusion
(x(7)) is &' = A,, by (12). Hence, (i) is proven with the metric g, = ag. O

When M = R", we can characterize the diffusion processes which can be
transformed into the usual Brownian motion up to a stopping time (see
Remark 2.2) by diffeomorphism and time change.

PROPOSITION 3.6. Let M = R"™ with n # 2. There exists a diffeomorphism ¢
and a time change T, with density a such that the process (¢(£(7,))) is a
usual Brownian motion on R" if and only if:

() In (3), ¢ = 0 and the vector field B is a gradient vector field B =V, ¢
for the metric g = met(%).
(ii) There exists ¢ € D(M) such that

b4(g) =2exp(—4/(n —2)p° ¢ ) gpn,
where g is the usual flat metric on R™.
In particular, the metric g = met(¥) is necessarily globally conformally

equivalent to the flat metric on R".

ProoF. With the notation of Proposition 3.4, (¢(&(7,))) is a usual Brown-
ian motion on R™ if and only if &’ = $A (where A is the Laplacian for the flat
metric gg» on R") if and only if

n—2
gpn=a°¢ ¢, (g) and 0=B — -—TVg log a.
Denoting ¢ = 1(n — 2)log a, this completes the proof. O

REMARK 3.1. If a diffusion process on R™ can be transformed into the
usual Brownian motion by diffeomorphism and time change, this implies
necessary conditions on the curvature tensor of the metric g = met(.%). Since
g must be globally conformally equivalent to the flat metric on R", such
conditions follow from geometric results which can be found in [7], page 152.
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ExAMPLE 3.1. On M = R™ \ {0}, consider the deterministic system

X
(13) i= s
llxll

whose trajectories are rays described from ||x(0)|| to + [since d|lx(¢)|> =
2 dt]. Let us add a small noise to (13) in the form

Xy

= 2
[EA|

(14) dx, dt + Ve dv,, x,=x,

where (v,) is a Brownian motion on R". Now, if we kill x, once it hits 0, this
defines a diffusion (¢) with generator

&£
(15) F= A+ —
2 (BT

£
= —A + Vlogllxll.

2
Here, A and V are the Laplacian and the gradient for the flat metric gg» on
R” and x/|x]|®> denotes the vector field whose action on a smooth function f
is given by (1/||x]|®){df(x), x). By (124) and (127), we also have

1 1 1
(16) Z= g8+ _Vyloglxll, where g = —gq..

Assume that n # 2 and let a(x) = ||x||*/ =22, By Proposition 3.5, (¢) can
be transformed into a Brownian motion on (M, agg.) by the time change
with density a.

For n = 2, analogous propositions exist and can be proved in the same
way.

PROPOSITION 3.7. Let n = 2. The three following assertions are equivalent.

(1) There exists a metric g, and a time change 7, with density a such that
(&(1,) is a Brownian motion on (M, g,).
(ii) There exists a metric g,, a diffeomorphism ¢ and a time change 7,
with density a such that ($(£(1,))) is a Brownian motion on (M, g,).
(iii) The vector field B and the function c in (3) are both zero. That is, the
diffusion (£¢) is a Brownian motion on (M, g), where g = met(%).

If the diffusion process (£) is a Brownian motion, it may be noted that g is
locally conformally flat by the existence theorem of isothermal coordinates
[5]. Therefore, there exists a local diffeomorphism ¢ on an open subset W
such that ¢(¢) is the restriction of a usual Brownian motion on ¢(W).

For the global case, when M = R? here is the characterization of the
diffusion processes which can be transformed into a usual Brownian motion
by diffeomorphism and time change.



1566 M. COHEN DE LARA

PROPOSITION 3.8. There exists a diffeomorphism ¢ and a time change T,

with density a such that the process (¢p(£(7,))) is a usual Brownian motion on
R? if and only if:

(i) The vector field B and the function c in (3) are both zero.
(ii) There exists ¢ € F(M) and B € C*(M), B> 0, such that ¢,.(g) =

BEr:2-

In particular, the metric g = met(¥) is necessarily globally conformally
equivalent to the flat metric on R? and the process (&) is a Brownian motion
on (M, met(¥)).

Actually, this result is not far reaching since it is shown in Example 4 in
[15] that such global diffeomorphisms only form the group generated by
Euclidean motions and dilatations on RZ.

4. Invariance group and symmetry group. In this section, we give an
extensive description in Riemannian geometric terms of the so-called invari-
ance group and symmetry group of the diffusion (£). This extends to general
diffusions the results of Liao [15] for Brownian motions (diffusions with
intrinsic infinitesimal generator). What is more, the case of time-dependent
transformations is treated.

4.1. The time-independent case. To begin with, we recall some properties
and definitions which may be found in [15].

DEFINITION 4.1. The invariance group of (¢) consists of diffeomorphisms
¢ € D(M) such that the process (¢(¢)), starting from x, is identical in law
with the process (&), starting from ¢(x).

Since (¢(¢)) is a diffusion process with infinitesimal generator .#?¢ (see
Lemma 3.3), this invariance group coincides with

(17) Inv(Z) = {¢ € D(M)|2?* =<}

DEFINITION 4.2. The symmetry group of (£) consists of diffeomorphisms
¢ € D(M) such that the process (¢(¢)), starting from x, is identical in law
with the process (¢), starting from ¢(x), after a time change (with density).

Since (&(7,)) is a diffusion process with infinitesimal generator (1/a)%
(see Lemma 3.3), the symmetry group of (£) coincides with

(18)  Sym(Z) = {p € D(M)BB € C(M), B> 0, %= pZ}.

REMARK 4.1. We restrict ourselves to time changes with density although
this hypothesis can result from topological assumptions [see [15], where Liao
considers the case of a Lie transformation group contained in the symmetry
group of (£)].

In the next proposition, we show how the symmetry properties of the
diffusion (¢) are related to the following geometric groups of the Riemannian
manifold (M, g).



SYMMETRIES OF DIFFUSION PROCESSES 1567

DEFINITION 4.3. We denote by I, (M) c D(M) the group of isometries of
(M, g), namely,

(19) I(M) = {$ € D(M)ld.(g) =&}

We denote by H (M) c D(M) the group of homothetic transformations of
(M, g), namely,

(20) H, (M) ={¢eD(M)EAr<]0, +=[, ¢.(g) = Ag}.

We denote by C,(M) c D(M) the group of conformal transformations of
(M, g), namely,

(21)  Cy(M)={peD(M)3BeC(M),B>0,b.(g) =Bs}.

PROPOSITION 4.4. The invariance and symmetry groups of the diffusion (¢)
are related to these geometric groups as follows:

Inv(Z) = {¢ € I,(M)|¢,(B) = Band $.(c) = c},

(22) Sym(<£) = {d’ € Cy(M)ld.(g) = Bgand

n—2
4

Bo«(B) + V,log B = Band Bd.(c) = c},

Proor. By Proposition 3.4, it can be seen that Inv(.¥) consists of ¢ €
D(M) such that ¢,(g) =g, ¢.(B) =B and ¢,(c) =c.

On the other hand, Sym(.%) consists of ¢ € D(M) such that there exists
a(x) > 0 with ¢.(ag) =g, ¢.(1/2)B) — 3(n — 2)V, log(a ° p~ 1) =B and
¢+((1/a)c) = c. Denoting B = 1/¢,(a), the second identity is thus proved.

O

This last proposition makes it possible to describe Inv(%¥) and Sym(%)
more precisely in the following cases.

ExampLE 4.1. If ¥ = éAg, that is, if .# is an intrinsic Laplacian (see
Definition 2.3), then

Inv(%) = I,(M),
(23) Sym(%) = C,(M) (ifn =2)
= H, (M) (ifn*2).

When M is compact or (M, g) is complete and nonflat, then H (M) = I,(M)
(see [13]). In any of these cases, we can conclude as in [15] that Sym(%) =
Inv(#) when n # 2.

EXAMPLE 4.2. If there exists ¢ € C*(M) such that &= A, + V, ¢, then
Inv(Z) = {¢> EL(M)ld(¢) =¢+ constant},
(24) Sym(%) = {¢ € C,(M)ld.(g) = Bg and
dy(@) + 1(n—2)log B=¢+ constant}.
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This is indeed a consequence of Proposition 4.4 and of the formula

Bd’*(vg‘P) = BY, *(g)d’*(‘P) = BVBg¢*((p) = ng’*(‘P),
which follows from (120) and (124) in Lemma A.1.

4.2. The time-dependent case. We denote by D,,(M) the set of mappings
¥: R X M < M such that, for all ¢ € R, (¢, ) is a diffeomorphism of M. We
also denote by 2{,(M) the algebra of time-dependent vector fields on M.

DEFINITION 4.5. For ¢ € Diy(M) and f € C*(M), we define the following:

(i) The mapping ¢ € D(R X M) by

(25) b (t,x) = (8, 9(¢, x)).
(ii) The function f & C*(R X M) by
(26) f: (¢, 2) = f(x).

(iii) The time-dependent infinitesimal generator .#¥ on M by
J [
(27) Lg(t,x) = (E +.7) ‘g(t,x), Vgel(M).

DEFINITION 4.6. The mapping ¢ € D,y(M) is said to be a td-invariance
transformation of the process (¢) if the process ((¢, £(¢))), with (&) starting
from «x, is identical in law with (¢), starting from (0, x).

The set of td-invariance transformations coincides with

(28) Invy (%) = {¥ € Dyy(M)| 2" =2).

DEFINITION 4.7. ¢ € Dy(M) is said to be a ¢d-invariance transformation
of the process (¢) if the process ((¢, £(¢)), with (£) starting from «x, is
identical in law with (¢), starting from (0, x), after a time change (with

density).
The set of td-invariance transformations coincides with

(29) Symyu(2) ={y €Dy (M)ABEC(RXM),B>0, %= BZ}.

The sets Inv,(.#) and Sym (%) can be characterized by way of the
following definition.

DEFINITION 4.8. For ¢ € Diy(M) and ¢ € R, we denote by ¢, the diffeo-
morphism (¢, ) of M.

With this notation, we have

J (2 o\ %
(30) F = (— +3’) = (—) + 7,
at at
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where (d/dt)¥ is a first-order operator identified with a time-dependent
vector field. Thanks to this remark, the following proposition can be proved as

Proposition 4.4 in the time-independent case.

PROPOSITION 4.9. We have

Inv, (%) = {w € Dy(M)N ¢, ¢, € I (M) and

J [
(2] e = Bana (.0 =,

(31) Symy (&) = {lPGDtd(M)W t, ¥, € Cy(M) and (4,) «(8) = Big and

n—2
4

J U,
(—) + B,() «(B) + ===V, log B, € Band

Jat

B(¥,) «(c) = c}.

5. Invariance algebra and symmetry algebra. In this section, we
focus on the infinitesimal generators of the groups defined above. The results
of this section could thereby be obtained as corollaries of Propositions 4.4 and
4.9. However, we choose a more direct approach with the advantage of
step-by-step introduction of some material which will also be useful in the
next section. What is more, infinitesimal tools allow precise insights into the
subject, especially in the time-dependent case.

5.1. The time-independent case. A vector field on M usually generates a
local one-parameter group of transformations on M. On the other hand, the
diffusion (¢) has values in the whole manifold M (or rather on M’). This
explains why, in the following definition, we shall only consider proper vector
fields, which generate global one-parameter groups.

DEFINITION 5.1. The vector field X on M is said to be an invariance
infinitesimal transformation of the process (¢) if:

(1) X is a proper vector field;
(ii) the global flow ®X that X generates on M belongs to the invariance
group of (¢) for all s.

Thus, invariance infinitesimal transformations are the infinitesimal coun-
terparts of the state transformations of the invariance group. They do not
usually form a Lie algebra, because of the “proper” assumption, while the
following sets do.
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LEMMA 5.2. The following set of smooth vector fields is a Lie algebra ( for
the Lie bracket) called the invariance algebra of %
(32) Hu(Z) ={XeL(M)[Z,X]=0} ={Xe2(M)ad,(X) =0},
where we recall that

adp(X) =[P,X] = PX - XP,
ad% 1(X) =adp(ad’§,(X)), VEeN,

for any linear differential operator P.

(33)

ProoF. For any linear differential operator P, we have
(34) adp([ X1, X,]) = [Xl’adP(X2)] - [Xz’ adP(Xl)]-

This proves the lemma. O

REMARK 5.1. The Lie algebra .%«(.¥) (script font) is the infinitesimal
counterpart of the invariance group Inv(.¥) (Roman font) in Definition 4.1.

We now show that the set of invariance infinitesimal transformations is
included in . %«(.%) and that both sets coincide when . %«(.%) contains nothing
but proper vector fields.

PROPOSITION 5.3. Every invariance infinitesimal transformation of (&)
belongs to %«(F). Every proper vector field of %+(%) is an invariance
infinitesimal transformation of (£).

Proor. If X is an invariance infinitesimal transformation of ( £), then, by

Definition 4.1, we have Fof =2, for all s. Therefore, by Lemma A.4 in the
Appendix, we have

d
(35)  VfeCu(M), 0=—|

(&Y)() = [2, X1f(2)
so that X € _%4(.Z). On the other hand, if X € _%4(.%), then

d . d )
ds s=r(.7¢sf)(x) = $‘5=0(3¢'*‘f)(x)

- ds
= [#*", X]f(x) [by (137)]
= [2*%, X %] f(=)

= [, X]% f(x) =0

so that Z¥'f = #%f = #f and X is an invariance infinitesimal transforma-
tion of (£). O

S=0((3¢3{)¢sxf)(x) (since q)r}-{l-s =q)rXo(I)sX)
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What we have just done extends itself to the case of the symmetry group.

DEFINITION 5.4. The vector field X on M is said to be a symmetry
infinitesimal transformation of (&) if:

(1) X is a proper vector field;
(i) the global flow ®X that X generates on M belongs to the symmetry
group of (£¢) for all s.

The symmetry algebra of % is the following algebra of smooth vector fields on
M:
(36) G (L) ={Xex(M)3peC(M),[Z, X] =pz}.

Note here that there is no condition on the sign of p (because the previous
definition deals with tangent objects) while there is one on 8 in (18) (because
Definition 4.2 deals with state transformations). As for Lemma 5.2, %»(.%)
can easily be shown to be a Lie algebra.

REMARK 5.2. The Lie algebra .%~(.%) (script font) is the infinitesimal
counterpart of the symmetry group Sym(.#) (Roman font) in Definition 4.2.

LEMMA 5.5. Every symmetry infinitesimal transformation of (&) belongs
to Hm(Z). Every proper vector field of (%) is a symmetry infinitesimal
transformation of (&).

Proor. If X is a symmetry transformation of (£), g;(hen, by Definition 4.2,
there exists a smooth function B(s, x) such that % = B(s,-).%, for all s.
Therefore, by Lemma A.4 in the Appendix, we have

B d X
(1) VFeC(M),  (0,02f(x) = 5| (£¥)(x) = [, X]f(x)

s=0
so that X € .%»%(.%). On the other hand, if X € %»(.%), then

d . )
| (F7)() =2, X]* f(x) by (137)]

= (p2)" f(%)
= (po@X,)Z%f(x).
This linear differential equation in r —.#**f(x) has a solution of the form
FUf(x) = B(r, x) (%) = B(r, x) Zf(x),
where B(r, x), being an exponential, is positive. This proves that X is a

symmetry infinitesimal transformation of (¢). O

Now we shall show how the invariance and symmetry algebras of the
diffusion (¢) are related to the geometry of the Riemannian manifold (M, g)
in terms of the following Lie algebras (see Definitions 2.4 and 2.5).
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in terms of the following Lie algebras (see Definitions 2.4 and 2.5).

DEFINITION 5.6. We denote by #,(M) the Lie algebra of parallel vector
fields of (M, g), namely,

Z,(M) = {X e #(M)|Lyg = 0 and dX" = 0}

— (X e2(M)|Ax = 0}, by (131) and (132).

We denote by .%(M) the Lie algebra of infinitesimal isometries of (M, g),
namely,

(39) F(M) ={Xex(M)|Lyg = 0}.

We denote by #,(M) the Lie algebra of infinitesimal homothetic transforma-
tions of (M, g), namely,

(40) Z(M)={Xex(M)BreR, Lyg = Ag}.

We denote by #,(M) the Lie algebra of infinitesimal conformal transforma-
tions of (M, g), namely,

(41) #,(M) = (X e2(M)3p € C*(M), Lyg = pg).

If Lyg = pg, we write p = 1,(X).

(38)

REMARK 5.3. These Lie algebras are precisely those of the Lie groups
introduced in Definition 4.3.

The following lemma is a crucial tool to relate symmetries of & with
geometric properties of (M, g). (It is proven in the Appendix.)

LEMMA 5.7. For any smooth function p, the linear partial differential
operator of order less than 2, [A o X ] - pA g» 18 in fact a first-order operator
(identified with a vector field) if and only if X € €,(M) and n,(X) = p (see
Definition 5.6). Then, necessarily, we have

n—2 n—2

(42) [Ag,X]—pAgz——2—Vgp=—

PROPOSITION 5.8. The following equalities between algebras hold:
H( L) = {X e (M)[B,X] =0 and Lyc = 0},

V1, (X).

(43) (%) = {Xe z,(M)[B,X] - n—rVgng(X) - n(X)B=0

and Lyc = —pc}.

Proor. By (32) and (3), we have
X €%u(Z) = 3[Ag,x] +[B,X]+[c,X]=0.

We know from Lemma 5.7 that [A,, X] is a vector field if and only if
X €.7%(M) (see Definition 5.6) and that necessarily [A,, X] = 0. Therefore,
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since [ B, X ] is a vector field and [¢, X] = —Lxc is a function, we have
Xeph (L) < [A,,X]ex(M)and
3[4,,X] = —-[B,X]and Lyc =0
© Xe(M)and0=3[A,,X]=-[B,X]and Lyc=0
o Xes(M)and[B,X]=0and Lyc=0.
By (36) and (3), we have
Xepn(Z) < 3ApeC(M),3[8,,X]|+[B,X] +[c, X]
= %pAg + pB + pc.

By Lemma 5.7, [A,, X] — pA, is a vector field if and only if X € &,(M) and
n,(X) = p. Then necessarily [4,, X] — pA, = — 5(n — 2)V, p and, therefore,

Xegpn(Z) < IpeC(M),[A,,X] -pA, e2Z(M),
%([Ag,X] —pAg) = —[B,X] +pBand Lyc= —pc

® Xeg,(M), _nT M (X)=—[B,X] + n(X)B

and Lyc = —pc. a

This last proposition makes it possible to describe %A(¥) and H%»(Z)
more precisely in the following cases.

ExampLE 5.1. If ¥= %Ag, that is, if .# is an intrinsic Laplacian (see
Definition 2.3), then

(L) = S(M),
(44) G(Z) = €,(M) (if n =2)
(M) (ifn # 2).

When M is compact or (M, g) is complete and nonflat, then 7, (M) = 7 (M)
(see [13]). In any of these cases, we can conclude that (%) = %.(Z) when
n+ 2.

EXAMPLE 5.2. If there exists ¢ € C*(M) such that &= 3A, + V, ¢, then
(L) = {X €S (M) Lye = constant},
S (L) = {X €&, (M)IL,¢= —i(n = 2)n,(X) + constant}.

Indeed, by Proposition 5.8, this is a simple consequence of formula (135) in
Lemma A.3.

(45)

ExaMpPLE 5.3. If ¥ = 3A, + B, where B €.%,(M), then B € % P).



1574 M. COHEN DE LARA

5.2. The time-dependent case. We denote by 2,,(M) the algebra of time-
dependent vector fields on M.

DEFINITION 5.9. We identify a time-dependent vector field Z € 2;,(M)
with a vector field Z on R X M so that 2;,( M) can be seen as a subalgebra of
Z(R X M). The vector field [9/d¢,Z] on R X M can be identified with a
time-dependent vector field that we denote 9,Z € 2,(M).

REMARK 5.3. In a given coordinate system, where Z = Y7, Zi(¢, x) d/dx;,
we have

9z (t, x
oy 2 x) (t, )0"

i-1 at Jx;

DEFINITION 5.10. The time-dependent vector field Z on M is said to be a
td-invariance infinitesimal transformation of (£) if:

() Z is a proper vector field; ‘
(i) the global flow ®Z that Z generates on R X M is such that its
projection on M is a td-invariance transformation of (¢) for all s.

The td-invariance algebra of % is the following algebra of time-dependent
vector fields on M:

(46) Swy(ZL) ={Z eZy(M)19,Z + [2,Z] = 0}.

DEFINITION 5.11. The time-dependent vector field Z on M is said to be a
td-symmetry infinitesimal transformation of (¢) if:

() Z is a proper vector field;
(ii) the global flow ®Z that Z generates on R X M is such that its
projection on M is a td-invariance transformation of (¢) for all s.

The td-symmetry algebra of Z is the following set of time-dependent vector
fields on M:

(A7) G y(ZL) ={Z eZ4y(M)Ape C(RX M), s,Z + [ £, Z] = p&).

REMARK 5.4. As subsets of vector fields on R X M, %« 4(%) and Fp (4(F)
are Lie algebras (by the same proof as in Lemma 5.2).

The following lemmas are proved as in the time-independent case by
replacing . by /9t +.% and considering equalities between time-dependent
operators on M (and not on R X M).

LEMMA 5.12. Every td-invariance infinitesimal transformation of (£) be-
longs to % 4(Z). Every proper vector field of %« (&) is a td-invariance
infinitesimal transformation of (¢).
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LEMMA 5.13. Every td-symmetry infinitesimal transformation of (¢) be-
longs to Spm (). Every proper vector field of S (&) is a td-symmetry
infinitesimal transformation of (£).

The sets % (¥) and S (¥) can be characterized by way of the
following definition.

DEFINITION 5.14. For a time-dependent vector field Z € 2,(M) and ¢ € R,
we define the time-independent vector field Z, € (M) by freezing ¢.

After noticing that, for all ¢, the time-independent vector field (4,2),
coincides with ¢,Z,, obtained by differentiating Z, (see Remark 5.3), the
following proposition can be proved as in the time-independent case.

ProPOSITION 5.15. The following equalities between algebras hold:
(L) ={Z eZy(M)N ¢, Z, €7(M) and
9,Z +[B,Z,] =0andLyc =0},

(48) % () = {z €Z M)V ¢, 2, €%,(M) and Lyc = —m,(Z,)c

n
,Z+[B,Z,] - ——

= Ven(2) ~ () =0},

Here, the description of % () and %7 (£) can be carried on. We
shall show that Z € % (%) [or e y(£)] is determined by its “initial
value” Z, and that this latter must belong to one of the following Lie
algebras.

DEFINITION 5.16. Let us introduce the algebras of vector fields on M given
by
Fp={XeZ(M)VN keN,adt(X) ex(M)},
o= {XeX(M)VEkeN,ad(X) e C (M) e (M)},
where ad’, is defined in (33).

(49)

Note that ad%(X) is a linear differential operator, the order of which is
increasing with &, and &, consists of vector fields X for which this order
remains bounded by 1. Both .7, and &, are Lie algebras by the same proof as
in Lemma 5.2.

PROPOSITION 5.17. .7, and %, are finite-dimensional Lie algebras given by
Ip={X e (M)N k€N, adk(X) €s(M)},

(50)
&y = {X €, (M)VEkEN, adf—mg(n—zwgng(o—ng(-)zs)(X) € %g(M)}'
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Moreover,

Zebwy (L) e ZyeS,andZ, =exp(—tadp)(Z,),
(51) Zeprny(¥) < Z,c%,and

Z, = exp(t ad_p. 1(0-2)v,n,00- n,08)(Zo)-
ProoF. To begin with, we prove the following implications: For Z €
Z4(M), we have
Zebwy (L) = VkeN,Vt iZers,
ZeGmy(¥) = VEeN, VL iZew,
By (46), if Z € %u4(£), we have
ady(Z,) =[%,2,1 = —9,Z e (M).

Now, successive derivations of the previous formula provide

0,Z,= —[%,2,] = —ad,(Z,),

022, = =9, 2,2, = —-9(ZLZ, - 2,%) = —(%,Z, — 3,Z, %)
—adgy(9,Z,) = ad%(Z,)

(62)

Il

0¥z, = (-1)*adk(2,), VEeN.

Since 9fZ, € (M), the first implication is proved. With similar arguments,
the second implication can be proved by induction.

This done, we can carry on. If X € 7, then in particular ad ,(X) € 2(M)
and, by Lemma 5.7, we can conclude that X €.7,(M). However, .7 (M) is at
most of dimension 1(n(n + 1)) [13, page 238] so that %, is a ﬁnlte dimen-
sional Lie algebra. Moreover, by Lemma 5.7, since X €.7, (M ), we have

ad,(X) = [, X] = [B, X] = adz(X) € 2(M).

Therefore, the vector field adz(X) belongs to .%, since it coincides with
ad(X). Now, by definition of .%, in (49), .7, is stable under the action of
ad. Then adz(X) EJ(M) and we have

ad%(X) = adg(adp(X)) = adg(adp(X)) = adj(X).

By induction, we thus prove that if X €.7,, then for all &, ad%(X) €7 (M).
The reverse inclusion is then straightforward.
Now, since %, is finite dimensional, we have, by (48),

Ze%y(¥) = Z,€5 and ¢,Z= —adg(Z,)

dz,
= ZO S and E‘ = —adB(Z,)

= Z,€5% and Z, = exp(—tadg)(Z,).
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By (46), the reverse implication is clear.
The case of .S 4(#) can be treated with similar arguments. O

This last proposition makes it possible to describe %« (%) and e 4(Z)
more precisely in the following cases.

ExampLE 54. If = %Ag, that is, if # is an intrinsic Laplacian (see
Definition 2.3), then

S (L) ={Z €eZy(M)N ¢, Z, € 7 (M)},

(53)
G y( L) ={Z eBy(M)N t,Z, € G (M)} ifn=2.

ExXampLE 5.5. If ¥ = 3A, + B, where B € %(M), then
(L) ={Z eZy(M)NV t, Z, €5, (M)}.

6. Geometry and symmetry properties of partial differential equa-
tions associated with .#. Up to now, we have focused on symmetries of
the diffusion process (¢) and, for this, we have considered transformations of
the manifold M (or R X M in the time-dependent case). In this section, we
are no longer interested in the diffusion (¢) for itself but rather in certain
PDE’s associated with .# as illustrated below.

1. A function £, a solution of #f = 0 (or of 9,f +.Zf = 0), is such that f(&(¢))
[or f(¢, £&(¢))] is a local martingale.

2. A positive function f, a solution of #*f = 0, defines an invariant measure
for the diffusion (£).

3. The density f of &(2), if it exists, satisfies 9,f —Z*f = 0.

The symmetries of these different PDE’s, when they exist, are an ingredi-
ent to calculate special solutions of these PDE’s, namely, functions with a
certain degree of symmetry (i.e., invariant under some group action). The
reader will find in [16], page 192, the basic computational procedure. In the
same spirit, the existence of symmetries is related to specific decompositions
of the generator . and thus to functions of the diffusion process (£) which
still are diffusion processes (see [10]). Moreover, it is explained by Rosencrans
[19] how to use the symmetry properties of the parabolic equation u, = Zu to
solve certain perturbed equations w, = (¢ + P)w by a process of quadrature
from the former. As an application, if (z(¢)) is a diffusion with generator
Z+ P, then in such cases there exists (x,¢') computed by quadrature from
(x, ¢) such that E, (¢(&)) = E (o(z(¢))).

The mathematical framework of this section differs from previous sections
by the fact that the object under study is no longer a stochastic process on M
(or rather on M), but a smooth function, from M to R or R X M to R, which
is a solution of one of the PDE’s &¥f = 0, &*f =0, 9,f —<%f =0, 9,f —*f =
0, 9,f—Zf=0 or 9,f +&*f = 0. Therefore, the infinitesimal symmetries
that we shall focus on here will be vector fields on M X Ror R X M X R as
will be shown subsequently.
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The PDE’s under scope in this section are all second-order linear equa-
tions, dealt with by Ovsjannikov [17]. We shall draw upon his results for the
elliptic equation #f =0 and upon our own results [3] for the parabolic
equation 4, —Zf = 0. However, our approach here consists in pointing out
and developing common intrinsic tools for the study of these PDE’s.

We start by preliminary remarks and definitions.

6.1. Preliminary remarks and definitions. In this section, and for techni-
cal reasons, not only smoothness, but also analyticity is required for .#.

AssUMPTION 6.1. The operator . is assumed to be analytic [the functions
a¥(+), b*(-) and ¢(-) in (1) are analytic] and nondegenerate elliptic.

In the above-mentioned equations Z*f =0, 9,f —<*f =0 and 9,f +Z*f
=0, the dual operator Z* is defined with respect to the Riemannian

measure Qg as follows.

DEFINITION 6.2. For any smooth differential operator P  on M, P* is
defined by duality by

54 [ (PR = [ AP R)Q, Vi fy € CR(M).

The following properties are well known.

LEmMaA 6.3. Let X, X;,..., X,, be smooth vector fields on M. Then

(55) X3 = —X, - div, X,,
(56) A=A,
(57) Z* = 1A, — B -div, B +c.

The following lemma is easy to prove [17, 3] and will be useful in the
sequel.

LEMMA 6.4. For any smooth function 6 and differential operator P, one
defines the differential operator P, by

Pf ¥e op(e’f), V¥ feCH(M).
We have
Gf = 3A,f+ Ligivef— (%Ag0+ LBO)f
+38(V,0,V,0)f + cf,
L5 f =38, + L_pivef— (38,0 — Lpb)f
+38(Y,0,Y,0)f + cf — (div, B)f.

(58)
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Two tensors associated with & will play a central role throughout this
section. Their definition requires the geometric tools introduced in Definition
2.5.

DEFINITION 6.5. If Z is given by (3), the skew-symmetric (1, 1) tensor field
K, and the function H, are defined by

K, =Ap — A%,
(59) :
H,=div, B + g(B, B) — 2c.

By Lemma A.2, K, is also characterized by

g(K,X,Y) = —dB(X,Y) or (K,X)" = —iy(dB"),
VX,YeZ(M).

(60)

In the sequel, it will prove useful to have various expressions of these
tensors. The proof of the following lemma can be found in the Appendix.

LEMMA 6.6. Let ¢ € D(M) and let a: M =)0, +( be a smooth function.
We have

met(Z*) = met(.¥), K, =-K,, H, =H,,
met(.£?) = ¢, (met(2)), Ky = ¢4 (Ky), Hyw = ¢4 (Hy),

1
(61) met(—i’) = a met(.Y), K(l/a)_Y’ =K.,
@

4

1
I{(I/a)y=;(Hy—Ag/.L—g(Vg/.L,Vg/.L)) with p = log a.

If X € ,(M), we have

(62) K,X=-m,(X)B+[B,X] +V,(8(X,B)),
and if there exists ¢ € C(M) such that B in (3) can be written
(63) B =B, + V,¢ withdiv, B, =0,

then

K, X = -n(X)By + [By, X] + V,(g(X, By)),

(64)
H,=2e (34, + By — c)e® + g(B,, By).

We end this section with the definition of a local group action on functions,
classical in symmetry groups of PDE’s (for which our references will be [16]
and [17]).

We consider a general manifold N, which will be either M or M X R in the
sequel, and define an action on functions from N to R by an action on their
graphs as follows (see Figure 1).
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PROPOSITION 6.7 [16, 17]. Let N be a manifold. Let { € (N X R), and let
f be a smooth function on an open domain Dom(f) C N containing the point
2. If the domain of f is sufficiently shrunk around z, then, for all & small
enough, the image of the graph of f under ®f is well defined and is the graph
of a function ®f-f.

This local group action induces an infinitesimal action. In the following
lemma, we see a general formula (see [20] for instance).

LEMMA 6.8. Let U(N X R) be the subalgebra of Z(N X R) of vector fields
{ of the form

J
(65) §=X+m><u5—, where X e Z(N) and m € C*(N).
u

For any { € U(N X R), let { € Z(N) & C*(N) be the linear partial differen-
tial operator of order less than 1 on N given by

(66) f=-X+m.

We have, for all z € N and f € C*(N),

((@21)®) = (X)) + m() f(=) = (£F)().

d
(67) Ie

With these tools, we can define infinitesimal symmetries of a linear PDE.

DEFINITION 6.9. Let P be a linear differential operator on N. An in-
finitesimal symmetry of the PDE
(68) Pf=0
is a vector field { € 2(N X R) such that, for all functions f satisfying (68)
and all &£ small enough, ®? - f satisfies also (68). We denote by &, C (N X R)
the set consisting of all these infinitesimal symmetries.

REMARK 6.1. Since (68) is linear, ©, contains the subalgebra &% of
Z(N X R) consisting of vector fields ¢ of the form ¢ = f(2) d/du, where f,
satisfies (68).

6.2. Geometry and symmetries of the PDE Zf = 0. The first two theorems
of this section are part of Ovsjannikov’s study [17] (we, however, give
intrinsic proofs in the Appendix). Then we develop different approaches to the
analysis of the set © of infinitesimal symmetries of the elliptic equation
Zf = 0 and give examples.

THEOREM 6.10 [17]. The set S, of infinitesimal symmetries of the elliptic
equation Zf = 0 satisfies the following properties:

(1) © is a Lie algebra which can be written as a direct sum

(69) By = (S, N U(M X R)) & &%,
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() If { € (M X R), the following equivalence is satisfied:
(70) (€8, = FpeCi(M),[2,{]=pz

This last theorem enables us to characterize &, in terms of the following
algebra 7(%) of linear partial differential operators of order less than 1 on
M. This algebra extends the definition (36) in Definition 5.4, which was
limited to first-order operators (vector fields).

DEFINITION 6.11. The symmetry algebra of . is the extension of Defini-
tion 5.4 to linear partial differential operators of order less than 1 on M,
namely,

(71) (L) ={X+meZx(M) e C(M)Ipe C*(M),
[Z, X +m] =pZ}.

We keep the same notation for both.
The symmetry algebra of . can be studied by geometric means.

THEOREM 6.12 [17]. A linear partial differential operator X + m € 2(M)
® C*(M) of order less than 1 on M belongs to X + m € %»(%) if and only if
X e &,(M) and

4

n
(72) K X + Vg(m - ne(X) —g(X,B)) =0,

(73) (Ly + m,(X)) | Ho + 4(';—_1)

R,| -0,

where R, is the scalar curvature of the Riemannian manifold (M, g). Equa-
tion (72) can be replaced by

(74) — 1, (X)B +[B,X] + V,(m — i(n - 2)n,(X)) =0
and (73) by any of the equivalent forms
i(n—2)A,m,(X) + (Lx + n,(X))Hy=0 or

(75) 1
34,m + LBm=(LX + ng(X))c.

REMARK 6.2. In a theorem [17, page 356], Ovsjannikov asserts that if
H=H,+ ((n - 2)/(4(n — D)R, # 0, then X + m €.%~»(%) implies that X
is an isometry for the metric g. In fact, if H > 0, this implies that X is an
isometry for the metric Hg since Lx(Hg) = Hn,(X)g + (LyH)g = (LxH +
n,(X)H)g = 0 by (73).

ExaMPLE 6.1. As an example, if &= %A ¢» that is, if # is an intrinsic
Laplacian (see Definition 2.3), then:
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@) If n = 2,%(2) = 5,(M) @ R.
(M If n 2 X+mepm(¥)oXe %, (M) and A,n,(X)=0 and m
= i(n — 2)n,(X) + constant.

Theorem 6.12 may take a simpler form when M is compact and two
dimensional thanks to the following decomposition found in [1], page 557.

LEMMA 6.13. When M is compact, any vector field X can be written in a
unique way as

(76) X=X, +V,e withdiv, X,=0and ¢ € C(M).

PROPOSITION 6.14. Let n = 2. Assume that M is compact, and let B in (3)
be written as

(77) B =B, + V,¢ withdiv, By =0and ¢ € C*(M).
Let X + m e Z(M) & C*(M) be a linear partial differential operator of order
less than 1 on M. We have
X+ meEGm(Z)
(78) Xeg,(M), m = Ly ¢ + constant,
T (B, X1 = n(X)By,  (Ly + m(X))H, =0,

PROOF. By (64), (74) and (73), X + m belongs to %»(%) if and only if
XE%g(M), —ng(X)BO+[BO,X]+Vg(m—LX<p)=O
and
(Ly + m(X))H, =0,
where, since div B, = 0 and div X = 7,(X) when n = 2 by (134), we have, by
(129),
div(—mn,(X)B, + [By, X]) = —Lg,n,(X) + L, div, X = 0.

By uniqueness of the decomposition (76), this ends the proof. O

6.3. Geometry and symmetries of the PDE #*f = 0. In the first proposi-
tion of this section, we show how the symmetries of the PDE Z*f = 0 are
related to those of the PDE #f = 0. Then we point out how the geometry of %
may help in computing invariant measures for the associated diffusion
process (when #1 = 0), thus extending a result of Ikeda and Watanabe [12].

ProposITION 6.15. Let X+ m € 2(M) & C*(M) be a linear partial dif-
ferential operator of order less than 1 on M. We have

2

(719) X+mefm(Z*) o —-X+m- N (X) EGm(Z).
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ProoF. By (61) in Lemma 6.6, we have met(#*) = met(¥), Ko« = — K,
H,. = H, and thus
X + me (L)
© Xeg,(M)and

n—2
-K X + Vg(m - —4——17g(X) -g(X, —B)) =0,
n-—2
TAgng(X) + (LX + T’g(X))H_?’= 0’

< Xe@,(M)and

K (—X) + Vg((m _z - ng(X))

n—2
S (-X) —e(-X,B)| - 0,

TAgng(X) + (LX + ng(X))H_?: O,

n—2
o —X+m—Tng(X) eEGm(Z). m|

The following proposition is an extension of Theorem 4.6 in [12].

PROPOSITION 6.16. Assume that, in (3), ¢ = 0 and B can be written as
(80) B =B,+ V,¢ withdiv, B, =0 and ¢ € C*(M) such that Ly ¢ = 0.

Then Z*e?¢ = 0. In particular, if [Me2‘“’Qg < +o, g diffusion process with
generator & and infinite lifetime has an invariant probability with density
(with respect to the Riemannian measure) proportional to e¢.

ProoF. By (58), we have, for any smooth function 6,
e 'F*e’ =1 = 5A,0 — Lg0 + 58(V,0,V,0) — div, B
=358,(0-2¢) — L 6+ 38(V,(0-2¢),Y,0)
so that, if we choose 6 = 2 ¢, we obtain .#*e?¢ = 0. O

6.4. Symmetries of the equations d,f +Zf =0 and J,f —<f = 0. Here,
the base space for solutions of these PDE’s is the manifold N = R X M. We
refer to Section 6.1 for the basic definitions.

The following characterization of the set & 9~z 18 adapted from [16], [17]
and [19] and can be found in [3].
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DEFINITION 6.17. Let U(R X M X R) be the subalgebra of Z(R X M X R)
of vector fields ¢ of the form (independent of the coordinate system on M)

(81) (=¢%t)o, + Z{‘(t x)a, + {"(e, x)u———

i=1

For any { € UR X M X R) and ¢ € R, let £, and 9,{, be the linear partial
differential operators of order less than 2 in R¥ ® 2(M) & C*(M) given by

n n . 0

gt = _go(t)y_ Z {‘(t,x)g + £n+1(t’x)’
(82) e ’
Gl = —9,L%(t)Z— L a,Li(t,x)d, + 3,L" (¢, x).

i=1

As in Section 5.2, we shall show that elements of ©, _., are determined by
their “initial Values §0 and that this latter must belong to the following Lie
algebra 7, of second-order differential operators on M.

THEOREM 6.18 [3]. The set ©,_, of infinitesimal symmetries of the
parabolic equation J,f —Zf = 0 satisfies the following properties:

() ©,,_» is a Lie algebra which can be written as a direct sum

(83) o= (C, s NURXMXR))®CS; .

t

(ii) The following set ., of second-order differential operators on M,
={PeR¥e2(M) o C(M)NEeN,

(84)
adk(P) e RZ®2(M) ® C*(M)),

is a finite-dimensional Lie algebra.
(i) If ¢ € U(R X M X R), the following equivalence is satisfied:

(85) (€3, o = lyeEF, and ViteR, f=exp(tad5,)(f)
(iv) ¢ = ¢, is an antiisomorphism from S, ~eNUR XM XR) to F.

Let us notice that in (85) the time ¢ can be reversed so that &/ , . can be
characterized by replacing % by —% in the following study.

With this last theorem, the analysis of infinitesimal symmetries of 9, —%
(or 9, +.%) draws heavily upon that of the Lie algebra 7, defined in (84).
Rosencrans [19] introduced the perturbation algebra of Z. It is the algebra
P, of linear partial differential operators of order less than 1 on M such that
Fy=RZePR,.

THEOREM 6.19. The operator X + m € (M) & C*(M) belongs to P, if
and only if there exists a sequence (X)), y in #Z,(M) which satisfies one of the
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following equivalent inductions:
XO = X,
[or = —m,(X,)B +[B, X,] + v,m],

86
®6)  x ., —K, X, +1V,(Ly, Hy+ 1,(X) H,)
[0" = —n(X;41)B + [B, X;.1]
+V,(g(Xi11, B) + $Ly Hy+ $0,(X,)H,)]
or
XO =X,
(87) X} = —iy(dB") +d(m — g(X,, B)),

X!, = —iy (dB") + %d(Ly H, + n,(X,)H),

where the skew-symmetric (1,1) tensor field K, and the functlon H, are
defined in (59). Moreover, we have

(88) ad® Y(X + m) = n,(X,)Z + X, + function.

Proor. Induction (86) follows Proposition 3.2 in [3], where it may be
noted that we used the metric a = 2g. The equation giving X, , differs from
that in [3], which was

(89) X, =K,X;,, + [ X,,V,Hy| + 20,(X,) V, H,.

However, they are equivalent by formula (135) in Lemma A.3 of the Ap-
pendix. Moreover, the alternative forms in brackets are a straightforward
consequence of (62) in Lemma 6.6.

The equivalent form (87) is obtained by duality, thanks to the identity (60).
Equation (88) comes from the proof of Proposition 3.2 in [3]. O

12

It may be noted that the infinitesimal symmetries of the elliptic equation
Zf = 0 are related to the infinitesimal conformal transformations of (M, g),
while those of the parabolic equation d,f —%f = 0 are related to the in-
finitesimal homothetic transformations of (M, g).

REMARK 6.3. By Theorem 6.12, if X + m € %m»(%) with X € Z, (M), then
X+mez,and X; =0for i > 1.

The previous theorem may take simpler forms thanks to the decomposition
(76).

PROPOSITION 6.20. Assume that M is compact and let B in (3) be written
as

(90) B =B, + V¢ withdiv, B, =0 and ¢ € C*(M).
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Then the linear partial differential operator of order less than 1, X + m €
Z(M) & C*(M), belongs to P, if and only if:

(1) m = Ly ¢ + constant.
(ii) The sequence (X)), . defined by

(91) Xy,=X and X, ,=[B,,X]
satisfies
(34, + By —c)e*

e’

(92) VieN, X, €7(M) and Ly = constant.

Proor. We recall that when M is compact, then Z (M) =.%(M) (see
[13]). By (64) and (86), X + m belongs to %, if and only if there exists a
sequence (X,); . in % (M) which satisfies

X0=X,
X, =[B,, X,] + (m Ly, ‘P)
Xiio=[Bo, X; 1] +V, (g( i+1,Bo) + 3Ly Hy).

Now, if X EJ(M) we have both div, X; = 0 and div, [BO, X;] =0 by (134)
and (129). Therefore by uniqueness of the decomposmon (76), X + m belongs
to 2, if and only if there exists a sequence (X)), cy in % (M) which satisfies

X, =X,
X, =[By, X,] and m — Ly ¢ = constant,
»=[By, X;,1] and g(X,,,, By) + 3Ly Hg = constant,
where
g(X;:1,By) =8([ By, X;], By)

= _g(LXl(BO)’ Bo) [by (4)]

= _%LX,(g(Bo’ By)) [by (4) since Ly g = 0]-
The expression of H,, is given by (64) and we get
(%Ag + B, — c)e‘*’

e?

1
g(X;11,By) + ELXLH.? = LXL

The following proposition can be proved in the same way.

PROPOSITION 6.21.  Assume that Z,(M) =_7(M) and that (M, g) has no
parallel vector fields [ see (88)]. If B in (3) can be written as

(93) B=B,+V,¢ withB, €%(M) and ¢ € C*(M),

then the linear partial differential operator of order less than 1, X + m €



SYMMETRIES OF DIFFUSION PROCESSES 1587

Z(M) & C*(M), belongs to P, if and only if:

(1) m = Ly + constant
(ii) The sequence (X;); .y defined by

(94) X,=X and X,,,=[B,, X;]
satisfies
(%Ag + B, — c)e“’

e’

(95) VieN, Ly = constant.

6.5. Symmetries of the equations o,f +<*f =0 and 9,f —Z*f=0. The
symmetries of the PDE 9,f —%*f = 0 (resp., d,f +Z*f = 0) are related to
those of the PDE 9, f —%f = 0 (resp., 4, f +Zf = 0) as shown in the following
proposition.

PROPOSITION 6.22. We have Py = P5.

ProOF. By (61) in Lemma 6.6, met(¥*) = met(¥), K, = —K, and
H,. = H,,. Thus, the linear differential operator of order less than 1, X + m
eZ(M) ® C*(M), belongs to Z,. if and only if there exists a sequence
(X));en in Z(M) which satisfies the induction

XO =X,
X, = -K, X, + Vg(m - g(X,, —B)),
Xiio= —KoX; 1 + %Vg(thHy"‘ ng(Xi)H.?)

if and only if —X + m belongs to %, [with corresponding sequence
(-D'X);cn in Z(M) for induction (86)]. However, (X + m)* = =X —
div, X + m, where div, X = constant by (134). O

6.6. The two-dimensional case. We assume that n = 2. Some of the previ-
ous results may take a simpler form thanks to the following definition.

DEFINITION 6.23. For any vector field Z, the scalar rot, Z is defined by
dZ" = (rot, Z)Q,.

The following lemma is straightforward application of Theorem 6.19.
LEMMA 6.24. The linear partial differential operator of order less than 1,

X+ mez(M) e C(M), belongs to P, if and only if there exists a sequence
(X)), en in Z(M) which satisfies the induction

XO =X,
(96) Xll’ = —rot, B(iXOQg) +d(m — g(X,,B)),
b .
X/, o= —rot, B(iy Q.) + 3d(Lx H, + n,(X,)Hy).



1588 M. COHEN DE LARA

PROPOSITION 6.25. Assume that Z,(M) =.%(M) and %, (M) = {0}. Then,
if B in (3) is such that rot, B = constant, we have
X €7 (M) and LyH, = constant

97 X+meR
(67) ™ E7% T\ and rot, B(ixQ,) = d(m - g(X, B)).

Moreover, if the manifold M is simply connected, there always exists a
function m satisfying rot, B(ixQ,) = d(m — g(X, B)).

ProOF. The sequence (X,);cy in % (M) of (96) is such that X; = 0 for
i > 0. Indeed, we have

dX; = —rot, Bd(iy,Q,) + d*(m — g(X,, B)) = —rot, Bdiv, X,Q,,

dX;., = —rot, Bdiv, X;,,Q,,
since, by (6), we have
d(ixQ,) = Ly Q, — iydQ, = div, XQ,.

However, div, X, = div, X;,; = 0 so that necessarily dXLl’ = 0 for { > 0. Since
Z,(M) = {0}, we conclude that X, =0 for i > 0. With this property, this
completes the proof of the first equivalence.

On the other hand, the 1-form rot, B(ix{1,) is closed since rot, B =
constant and d(ixQ,.) = div, XQ, = 0. Thus, if the manifold M is simply
connected, there exists ¢ € C*(M) such that rot, B(ixyQ,) =dy¢ and it
suffices to take m = g(X, B) + . O

7. Questions of modelling. Examples. In this section, we give various
applications of the techniques developed above. We are particularly inter-
ested in outlining how symmetries can be destroyed or created when passing
from deterministic to stochastic systems.

7.1. Review of symmetries of deterministic systems. To illustrate the con-
cepts of the Lie theory, let us start with an example. S. Lie has shown that a
one-parameter group of planar transformations ®} with infinitesimal gener-
ator Y leaves the differential equation du/dx = U(x, u)/X(x, u) invariant if
and only if the vector field Z = X 9/dx + Ud/Ju satisfies [Y, Z] = yZ, where
v is a function [11, page 144]. What is more, if Y = £9/dx + v d/Jdu, then
(X¢— Uv)™! is an integrating factor of the 1-form Xdu —udx. As an
example, calculation shows that the rotation group generated by the vector
field Y= —ud/dx + x d/Ju leaves the differential equation

du  u+x(x?+u?)

dx  x—u(x® + u?)
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invariant. The term —1/(u? + x?2) indeed is an integrating factor since
(u? + xz)_l((x —u(x® +u?))du — (u + x(2® + u?)) dx)
d( t ( u ) 1 2 2
=d|arctan| — | — — +u
x 2 (= )

and the solutions are thus part of the curves arctan(u/x) — 3(x% + u?) =
constant.

Now, let us turn to the general case of autonomous systems. Let U be any
vector field on M and consider the ordinary differential equation

(98) i=U(x).

Here, the object under study is no longer a stochastic process on M, but a
smooth function from R to M, which is a solution of the ODE (98). Therefore,
the infinitesimal symmetries upon which we focus are vector fields on R X M.

DEFINITION 7.1. An infinitesimal symmetry of the ODE (98) is a vector
field Z € 2(R X M) such that, for all functions f [= (¢ — x(¢))] satisfying

(98) and for all ¢ small enough, ®Z - f also satisfies (98).

By the specific role played by the variable # in (98), the characterization of
the infinitesimal symmetries of the ODE (98) takes the following form.

LEMMA 7.2. Let Z € Z(R X M) be written in the form
J
(99) Z=Z0(t,x)5 +Z,,

where, for all t, Z, € (M) (see Section 5.2). Then Z is an infinitesimal
symmetry of the ODE (98) if and only if

0Z°
(100) 9,Z,=U,2,] - —(—%—U.

In particular, if Z € (M) (i.e., if Z is time-independent), this reduces to
[U,Z] = 0.

Proor. We know by Exercise 2.19 in [16] that the vector field Z is an
infinitesimal symmetry of (98) if and only if there exists a function y such

that
J 0
ot ot

Using (99), this can be rewritten as
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and we get

7.2. Symmetries of deterministic systems and diffusion processes. One
way to extend the deterministic smooth system (98) to a stochastic one is by
considering a diffusion process (£) with generator & = U + ¢ X elliptic oper-
ator, for a “small” noise parameter &. If we fix a Riemannian metric g, on M,
it may be natural to choose

(101) Z=5 Za,+U

or, more generally, .7, = &(3 A, + W)+ U, where W € 2(M). We address
the following problem What propertles of (98) are preserved in the diffusion
(£) of generator %, given by (101)? The following proposition yields a partial
answer to our question.

PROPOSITION 7.3. Let %, be given by (101), and let (¢) be a diffusion with
generator %,. Let X € Z(M).

(i) Assume that there exists & > 0 such that the vector field X on M is an
infinitesimal symmetry of the diffusion process (¢) with generator Z,.

(a) If X € 7, (M), then the vector field Z = m, (X)t(3/3t) + X on R x Mis
an mﬁnzteszmal symmetry of the ODE (98).

(b) If n = 2, then the vector field Z = n, (X)t(d/dt) + X on R X M is an
infinitesimal symmetry of the ODE (98).

(ii) Assume that there exists y € C*(M) such that [U, X] = yU [so that, in
particular, the vector field yt(d/dt) + X on R X M is an infinitesimal symme-
try of the ODE (98) by Lemma 7.2].

(a) If vy = constant and X € 7%, (M) with 1,(X) = v, then, for all &= 0,
the vector field X on R X M is an infinitesimal symmetry of the diffusion
process (£) with generator Z,.

() If n =2 and X € &,(M) with 1,(X) =, then, for all &> 0, the
vector field X on R X M is an infinitesimal symmetry of the diffusion process
(&) with generator Z..

Proor. By Proposition 5.8, we know that the vector field X is an in-
finitesimal symmetry of the diffusion process (¢) with generator . if and
only if

(102) Xe#, (M) and [U,X] - n,(X)U - e—"

4 Vgongo(X)

since met(Z) = g,/ ¢.
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(i) Assume that X is an infinitesimal symmetry of the diffusion process
(¢) with generator £, for a given ¢ > 0.

(a) In this case where X €%, (M), we have V, 1z (X) = 0 and by (102) we
get [U, X]— 1, (X)U = 0. Thus Z = n (X)t(d/dt) + X satisfies (100) and
we conclude with Lemma 7.2.

(b) In'the case n = 2, we have 3(n — 2)V, 7, (X) = 0 and we conclude as
previously.

(ii) This is straightforward by (102). O

Infinitesimal symmetries of % are, in full generality, vector fields on
R X M (and not only on M as in the previous proposition). This remark
motivates the following result, which will be useful for the forthcoming
applications.

PROPOSITION 7.4. Let % be given by (101). Let also X € (M) and
m € C*(M) be given.

(1) Assume that n # 2. Then, for all ¢ >0, X+ m/e € Sym(%) if and
only if
Xexz (M), -n,(X)U+[UX]+V,m=0,
103
(109) A,m=0 and Lym=0.

(i1) Assume that n = 2. Then, for all ¢ > 0, X + m/e € Sym(Z) if and
only if

Xeg, (M), - (X)U+[U,X]+V,m=0,

(104)
A,m=0 and Lym=0.

Proor. Since met(.Z)) = g,/¢&, we know by Theorem 6.12 that X + m /¢
€ Sym(.%) if and only if

m n—2
&

Xe %gO(M)’ _ngo(X)U+ [U’X] + 8Vg0( 4 ngo(X)) =0

and

SA ~ L ~ 0
— — |+ — 1 =0.
2 g"( £ ) U( £ )

If this holds for all ¢ > 0, we get

Xeg, (M), -, (X)U+[UX]+V,m=0,

4
A,,m=0 and L;ym =0.

Mg (X) = constant,

This completes the proof. O
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7.3. Gradient dynamics with noise. Let (M, g,) be a Riemannian mani-
fold, and consider the deterministic system

(105) &= —V, V(x), whereV >0.

Here again we extend this deterministic smooth system to a stochastic one by
considering a diffusion process (£) with generator

(106) Z =s(38,,+W) -V, V, whereWe2(M).

Certain properties of the deterministic system (105) still remain in the
diffusion with generator %, given by (106).

PROPOSITION 7.5. Let %, be given by (106) and let (¢) be a diffusion with
generator %, and having infinite lifetime. The following properties hold.

(@ If LyV =0, div, W=0 and [e *"/°Q, < +o, then (£¢) has an in-
variant probability proportzonal to e 2V/¢ (wzth respect to the Riemannian
measure). In particular, the “most probable” points are those for which
e 2V/¢ is maximum, that is, the minima of V which are the stationary points
of the deterministic system (105).

(i) If V=0 and (34, + W)V < 0, then the process (V(¢)) is a nonnega-
tive supermartingale [note that V is a Lyapunov function for (105) since
(d/dt)V(x,) = =V, V(x)I? < 0].

ProOF. We just outline the proofs.

(i) It is clear from Proposition 6.16.
(i) By (106), we have £V = £(GA, + W)V — g4V, V,V, V) <0. O

It can be noted that we have a certain latitude with the metric. Indeed, if
f: R - R is such that f’ > 0, then we have, by (124),

(107) VgOV = Vf'(V)g0 (V).

Therefore, another possibility for extending the deterministic smooth system
(105) to a stochastic one is to consider a diffusion process (£) with generator

(108) Z =¢(38pwyg, T W) = Vo yg, [(V), where W e2(M).

If Ly V = 0, div,, W = 0, an invariant measure may now exist as soon as f is
such that fe~f &y ef '(V)"/ ?Q,, < +% (to be compared with the condition
[e7?V/°Q, < +in the prev10us proposition).

7.4. Modelling noises in systems for invariance purposes. In this section,
we raise the following question: Given a vector field describing the dynamics
of a deterministic system, is it possible to model this latter as a diffusion
process with specified symmetries? We illustrate this problem in a practical
situation.
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Consider a target for which we assume that the speed vector is fixed and
known (see Figure 2) and the associated tracking problem. The modelling
consists of taking linear coordinates in the plane containing both the trajec-
tory of the target and the observation point (see [14]). In the absence of noise,

the evolution equation of the target is given by
‘ :tl = _V,

(109) .

x5 = 0.

For filtering purposes, the evolution of the state vector x, is usually modelled
as a stochastic process solution of the stochastic differential equation

dx,(t) = —Vdt + Ve dvy(t),
dxy(t) = Ve duy(2),

where Ve is the standard deviation of the noise process. The related observa-
tion process y, is modelled as

(111) dy, = h(x,) dt + dw,.

Here v, and w, are assumed to be independent Brownian motions. The
conditional density p, of the state x, given the past observations (y,, s < t)

(110)

T2

.
L.
4 [}
/’ 3 )
.
.

optical system

Fic. 2. Two-dimensional tracking example.
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satisfies the so-called Zakai equation:

ed’p, £d°p, _ Ip,
0 3.2 552 TV
2 dxf 2 dx; dx,

p
dt + ), h;p,°dyl.
i=1
When the output function % is a function of the distance to the target, it
can be shown by direct computation that there exists a particular solution
with symmetry of the Zakai equation (112) as follows.

1
(112) dp, = - SlIAlPp,

PrOPOSITION 7.6. If h = (hq,..., hp)’ depends only on ||x||, there exists a
particular solution of the Zakai equation (112) of the form

v v
D%, x5) = exp(;xl)qt(‘/xf + x%) = exp(;r cos O)q,(r),

where q, satisfies the following stochastic PDE on 10, +od:
e d%q, e dq, V2 lIAl1?

p
z —q, - ——g. |dt+ Y h.q,ody.
2 9r2 | or ar  2:%t7 "o L hig, e dy,

i=1

(113) dp, = ( q,

This fact can be explained by the existence of symmetries for the filtering
problem and will be developed in a forthcoming paper (see [4]). However, we
simply want to stress here that the existence of such a symmetry results from
a fit between the state noise and the output function. Another choice of
diffusion to model the deterministic system (110) would not necessarily be
adapted to another type of output function. This is suggested by the following
proposition.

ProposITION 7.7. Let U € (M) and hy,...,h, € C*(M) be given. For
£>0andy=(y,...,y,) € R?, let us define

114 <z SA U d ¥ SA U I + f: h

( ) e_§g0+ an 5-§g0+ T i:lyi i
Let X e (M) and m € C*(M) be such that

(115) XELYgO(M), Lyh, = - =Lyh,=0, [U,X] + A, m =0,

A, m=0, L,m = 0.
Then, for all £ >0, —X + (m/e)u(d/du) is an infinitesimal symmetry of
(?tf—.i’;yf, fOT‘ all y = (yl’---ayp) € R?.

Proor. Let £>0 and y =(y,,...,y,) € R? be fixed. By Theorem 6.19,
—X + (m/&)u(d/du) is an infinitesimal symmetry of d,f — £’ f if and only if
there exists a sequence (X)), in #,(M) which satisfies the induction

X, =X,
Xl = _ngO(XO)B + [B?XO] + Vgom’
Xiio= —ngO(XM)B
+[B’ Xi+ 1] + Vgo(gO(Xi+1’ B) + %LX,H.YQ + %ngO(Xi)H_Y;y)’
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where
, p
Hysy = H‘}/E + ”h” -2 Z yihi‘
i=1

Under our assumptions, we see by Proposition 7.4 that X + m /e € Sym(%)
and, thanks to Remark 6.3, it can be seen that the sequence (X)), .y =
(X,0,...,0,...) satisfies the previous induction. O

COROLLARY 7.8. IfU = —V(3/dx,), h = h(r) and g, = gg> so that

I R L
==A-V— - —+
¢ 2 dx, 2 Y
then, forally € R and £ > 0,
s vV a
{=——— —rsinfu—
a0 e du

is an infinitesimal symmetry of the parabolic equation d,f — %7 f = 0.

PrOOF. With the notation of Proposition 7.7, we have X = J/d6 and
m = —Vrsin § = —Vx,. It can easily be checked that (115) is satisfied. O

We now apply these results to the case of bearing only measurements [2],
which is known to be a difficult problem in tracking. If the measurements are
available at discrete instants of a uniform partition 0 = ¢, < -+ <¢, < -+,
with time step 6¢ =¢,,; — ¢, we can note

z, = 0(x(ty)) = arctan( x2(fh) )

x1(ty)

Suppose that, after having measured z,, we transform it into H(z,), where
H(0) = logtan(6/2), and process the new observations H(z,),..., H(z,),... .
With our choice of continuous representation for the observations, we have
y(t,) = H(z,) and this leads to a continuous time output function %4 in (111)
given by

dy(t) =H(z.,) —H(z) = (H°0)(x(tp.1)) — (Ho0)(x(ty))
9(H o 0)
—VE——(w(t)) 8¢ + -, by (109),

X

that is, after calculation,

d(H-0) 1
h(x) = —8tV———(x) o —.
9x; r
Thus, Proposition 7.6 applies and the Zakai equation (112) may be “reduced”
to a lower dimensional state (this is developed in a forthcoming paper [4]).
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7.5. Examples. We give examples of diffusions with symmetries when the

metric associated with the generator is that of the hyperbolic plane. Let H?2
denote the hyperbolic plane M = R X ]0, 4+ o[ with metric

1
(116) gye = ?(dxf + dx3).
2

If A, div and V denote the Laplacian, the divergence and the gradient for the
useful flat metric on M, we have, by Lemma A.1,

th==x§V,
2
(117) divy: = div — — dx,,
Xo
AH2==x§A.

The infinitesimal isometries of H? are

a J a
S2(M) = R — Span , X + x ,
w2 (M) p {c?xl I&xl 2c9x2

(118)
2 2
(xl x2) + 2x]x2 ,

and it can be seen that #;:(M) =_%;:(M) and that %,:(M) = {0}.

ExampLE 7.1. Let
&= lx%(a—2 + —2) + Ax —-07——

2 ax?  gxl 2 9x,

Then met(¥) = gy and £ can be written
Z=3Ag> + My(log x,).
By Proposition 6.6, we find
K,=0 and Hg,=x;*Ag2x) = x;"x5Ax) = constant.

Therefore, by Theorem 6.12, we find that

(L) = {X + ALy log x, + constant, with X € #;:(M)}.

ExaMPLE 7.2. Let
L= %AHZ + By + A Vg2 log x,,
where

B 14 d J
=K—— + Ky| X — + X7 |.
0 1o7x1 2 I&xl 2o7x2

By Proposition 6.21, we find that B, + ALy log x, + constant € Z,,.
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. EXAMPLE 7.3. Let
L= %AHz + A, Ve log %y + Ay Vo log Xg.
If x, =rcos 6 and x, = r sin 0, we find by Proposition 6.6 that
K,=0 and H, = constant X tan? 6.

Therefore, it is a consequence of Theorem 6.12 that r(d/dr) + constant
belongs to S%~(%) and also to %, by Remark 6.3.

EXAMPLE 7.4. Let
ZL=30p2+ AVgolog r + Ay V2 h(0).
By Proposition 6.6, we find
K,=0 and H, = function(6).
We conclude as in Example 7.3.

APPENDIX

A.1. Some geometric identities. For all geometric tools introduced in
this Appendix, our reference is [13]. In this section, M is a manifold of
dimension n equipped with a Riemannian metric g.

LEMMAA.Ll. Let € DIM), X, Y e Z(M), f € C*(M) and a: M =10, + o[
be a smooth function. The following identities hold:

(119) ¢*(ag)=¢*(a)¢*(g)=ao¢‘1¢*(g),
(120) V¢*(g)f= ¢*(Vg(¢*(f)))’
(121) Q) = b4 (Qy),
(122) divy, o) X = ¢4 (div, (b4 (X))),
(123) Aporf = ¢x(8,(6%(f))) = ALS,
1
(124) Vof= V1,
(125) Q. = a"/2Q,,
div,, X = div, X + —Ly(log a)
(126) 2
= div, X + S g(X,V,(log a)),
A, —sa + 22y (log )
ag = T Cg 9q 'elios
(127) 1 n—2
= ;Ag + —2— Vag(log a).

The following properties are easily proved.
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LEMMA A.2. Let X,Y and Z be vector fields on M. Then

(128) div, Z = —trace(Ay),
(129) div,([Y,Z]) =Y (div, Z) — Z-(div, Y),
(130) AyY —A X = [X,Y],
(131) g((Az + A7) X,Y) = —(L8)(X,Y),
(132) g((Az - A X,Y) = —dZ'(X,Y),
(133) V.(g(X,Y)) = —A%Y - A} X.
LEMMA A.3. For any X € €,(M) and smooth function ¢, we have
(134) div, X - %ng(X)
and
(185) [X,V, 0] = V,(Lxe) — n,(X) V, 0.

ProorF. By (128) and (131) in Lemma A.2, we have

1
div, X = —trace(Ay) = —trace( A%) = —Etrace( Ay + A%)

1 n

= — Etrace(—ng(X)) = Eng(X).

Let Y and Z be vector fields. We have, by (4),
Lxg(Y,Z) = (Lxg)(Y,Z) +g(LxY,Z) +g(Y, LxZ).
Now, since X € &,(M) and Z =V, ¢, this gives
LyLye=m(X)Lyo + Lix yi¢ + g(Y, [X,Vg<p])
and, therefore,
g(¥,[X,Y,0]) = LyLxe - n,(X) Lye = g(Y,V,(Lx#)) = 1,(X)&(¥,V,9),
which gives the result. O
LEMMA A4. Let X be a vector field on M with local flow ®X. Then, for

every x € M and f € C*(M), the function
(136) Z¥f =2(fo 0X)o X,
is well defined in a neighborhood of x for s small enough and we have

d x
(137) —| (%) (x) = [2, X]f(x).

ds ls=0

Proor. Formula (136) is a local version of (10). For y in a neighborhood of
x, we have, for any smooth function ¢,

(e ®X)(y) = ¢(y) +se(¢,¥,5)

(138)
= p(y) +s(Xe)(y) +s%(p,y,5),
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where, for £ = 0, 1,

1(1—h)* d*lo(dX(y))
k! duk+1 u=sh

(139) (¢, 9,5) =f0
Therefore,
LV (x) =Z(f 0X) (0% (x))
= (ZF) (DX (x)) + sZ(XF) (DX, (%)) + s*(Fey(fr, ) ) (DX, ()
= (Zf)(x) = s(X(Zf)) (%) + s%(Zf, 2, —s) + s(L(Xf)) ()
= s%(ZL(Xf), x, =s) + s*(ZLe(f,, 5))(%:(x))

dh.

so that
d X
2 (V)] = —(X(Z)(x) + (L(XN)(x) = [£, X]f(x). O
A.2. Proofs.

PrROOF OF LEMMA 5.7. Thanks to the identities of Lemma A.Q, we have

[Ag, X]f= divg(Vg(Xf)) - X-div(V,f)

= divg(Vgg(X, ng)) — X div,(V,f)

= divg(—A’j,} v, f- A"eng) —- X -div,(V,f) [by(133)]

= divg(—A"}} V.f—AxV, f+AxV,f— Avng) - X-div,(V,f)

= —divg((A’§( +Ay) ng) + divg(AXng— AngX) — X - div,(Vf)

= —div, ((A% + Ax) Y, f) + div, ([ X,V, f]) — X - div,(V, 1)

[by (130)]

= —divg(( Ay + A%) ng) —-V,(div,X)-f [by (129)].

On the other hand, we have, for any smooth function p,
pAgf = pdivy(Vf) = divg(pVef) = Vep-f,
so that
(140) [Ag,X]f— pA, f= —divg((AX + A% + p) ng) +V,(p - div, X)-f.
Therefore, [A o X ] —pA ¢ 1s a vector field if and only if
Zf = divg(( Ay + A% + p) ng)

defines a first-order operator, that is, if it satisfies Zf? = 2fZf. This leads to
Ay + A%+ pI =0 or Lyg = pg by Lemma A2, that is, X € ,(M) and
p = 1,(X) (see Definition 5.6). Then, by (140) and (134), we have

n—2
V. p. m|

[AE’X]_pAgZVg(p_ding)z_ 9 g
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ProOF OF LEMMA 6.6. In (61), we just prove the last equation and leave
the rest to the reader. Let &' = (1/a)%. With g’ = ag, we have g'(K, X, Y)
= —d(B)(X,Y), where
1 n—2
g (B,X)=ag(B,X)=ag|—B- 1 V., (log a),X),
a

so that (B') = B" — 1(n — 2)d(log a) and therefore d(B') = dB" and K, =
K, since d*(log a) = 0. Moreover,

2¢
Hg = div, B’ +g'(B',B') — —
a

n 2¢
= divg B' + Eg(B’,Vg(log a)) + ag(B',B') — - [by(126)]

1 n—2
=divg( (B— ) Vgloga))

a

" (B-""2va v.(1 2e
+'2—ag( T T4 (log @), g(oga))_';

1 n—2 n—2 2c
+;g(B - —4—“ Vg(log a),B - —4—Vg(log Cl!)) - 7
1 n—2
= ;leg B - —4-&—Ag(log a)

1 B n_2Vl V(1 2¢
_;g( - . (log ), g(oga)) -

1 1
+—g(B.V,(log @) + —&(B, B)
n? 2c
g(Vg(log a),Vg(log a)) - ‘;-

+

16«
1 n—2
= ;dlvg B - —4a—Ag(log a)
(n— 2)2 1 2¢c
—m—g(Vg(log a),Vg(log a)) + ;g(B,B) - -;l—
1 n-—2 (n - 2)°
- ;HS, - TAg(log a) — ——167“——g(Vg(log a),V,(log a))

1
= _C;(H.?_ AglJ’ _g(Vg/-L’Vgl"))’

where u = 3(n — 2)log a.
The identity (62) is proved as follows:

-n,(X)B+[B,X]=-n,(X)B—-AxB +ApX [by (130)]
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=A%B +A5X + (Ag — A% X
[since Ay + A% + n,(X) = 0]
= (Ap —A5)X - V,(g(X,B)) [by(133)].

As for (64), we have B’ = B! + d, so that dB" = dB}, + d% = dB;,. For
X € ,(M), we have

. b .
K, X =iy(dB") = ix(dB}) = (Ag, — A%)X
= =, (X)B, + [ By, X] + V,(&(X, By)).
A simple calculation gives the expression of H,, with the help of (58). O

Proor oF THEOREM 6.10. The proof follows the lines of that of Proposition
2.2 in [3].

For the introduction of the formalism of jet spaces, we follow [16]. If U @ ig
the jet space of order 2 associated with smooth functions from M to R, a
generic point in U® is denoted by u® = (u,(u,,1<i<n)(u,,,1<i<
j < n)) for a given coordinate system x,,...,x,. If fis a smooth’ function
on M, the 2-jet of f (or second prolongation of f) at x, is the collection
pr®[ £1(x,) of partial derivatives of f at x up to order 2. For { € X(M X R),
the second prolongation of ¢ is a vector field pr®[{] of M X U® whose
action on a smooth function F on M X U® is given by

d 3
(P11 F)(xu®) =o=| Pl o8- f](,)),

£lem
where f is any smooth function such that pr®[fl(x) = «® and where
(x,,u,) =0 x, f(x)).
If T is the smooth (even analytic) map on M X U® given by
n

n
T(x,u®) = Y a¥(x)u,, + L b(x)u, +c(x)u,
i,j=1 i=1

it is proved in [16], Theorem 2.71, that S coincides with the Lie algebra of
infinitesimal symmetries of I' when I' is nondegenerate in the sense of
Definition 2.70 in [16]. This happens to be the case, in particular, since .¥ is
analytic and equation .Zf = 0 can be written
1 n . n .
ax21x1f=—'11_——(_ Z a”(x) ax2,x f_ Zbl(x) ax,f_c(x)f ’
a (%) \ @ pean T

namely, in Kovalevskaya form [16, page 166]. Therefore, © ., is a Lie algebra.

It follows from the study on second-order linear equations in [17] that,
since equation .Zf = 0 is not very degenerate in the sense of [17], page 345,
then the decomposition (i) is satisfied (see [17], page 347) and we have, for
any £ € U(M X R),

Ave C(MXR),VY (x,u®) € M x U®
(141) (€, { ve ) ¥ (x,u) € ’

pr@[ £ ]T(x,u®) — v(x,u)(x,u®) =0.
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At last, to prove equivalence (70), we notice that when ¢ € U(M X R) is given
by (65) we have

pr®[ L 10(x,pr®[ £1(x)) = ([2, £ | F + mzf)(x)

by (67). Therefore, if we prove that the function v in (141) does not depend on
u, then equivalence (70) derives from equivalence (141) with u® =
pr@[£I(¢, x), for any f, and p = v — m. For this purpose, we notice that
pr@[ £ 10(x, u®) is a linear form in u® since [Z, (] + mZ is a linear
differential operator. By (141), this linear form is zero as soon as the linear
form I'(x, - ) is zero and therefore these linear forms are proportional, that is,
v(x,u) = v(x). O

PrOOF OF THEOREM 6.12. By (3), we have

[Z, X +m]=p¥

1 1
= S8 X] - 5e,

1 .
_ [EAg+B+c,m] —[B+e¢,X]
+ p(B +¢)

1 1
< E[Ag,X]—EpA

;= —V,m —[B,X]+pB

1
+ Lyc + pc — EAgm —Lgm
[since [Ag, m]e=div,(mV,0+ ¢V,m) —mA, e
=2g(V,0,V,m) + A,mo]

1 1
< E[Ag,X]—EpAg=—ng—[B,X]+pB

1
and EAgm + Lym = Lyc + pc
(since [A,, X]1 - pA,1 = 0)
Xe&,(M)and p=n,(X),

n
- ——4—-—Vgng(X)= -V,m —[B,X] + n,(X)B,
1
EAgm +Lgm = Lyc + n,(X)c
(by Lemma 5.7).

Now, if Xe %’g(M) and V,m = i(n - 2)Vgng(X) +[X,B] + ng(X)B, we
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have

1
EAgm +Lgm=Lyc+ n,(X)c

1
g Edivg(ng) +8&(B,V,m)=Lxc + n,(X)c

n—2(1
1 (EAg + B)ng(X)

1
+§divg([X,B] + n,(X)B) +g(B,[X,B]) + n,(X)g(B,B)
=Lyc+ n,(X)c

n 1
PN —S—Agng(X) + E(LX + n,(X))H,=0,

where we used the identities
div, ([ X, B] + n,(X)B)
=X- (divg B)-B- (ding) + m(X)div, B+ B - ng(X)\ [by (129)]

n—2
= (X + n,(X)) - (div, B) - TB ‘m,(X) [by(134)]
and
g(B,[X,B]) = 3(¢(LxB, B) + g(B, LyB))
= 3(Lxg(B, B) — (Lxg)(B, B))
= }(Lxg(B, B) - n,(X)g(B, B)).
Therefore, at this stage we have proven that
Xe@,(M)and p=n,(X),
(P Xtm]=ps o —'14—2vgng(X) — —V,m - [B,X] + 1,(X)B,
n—2
4

This yields (74) and (75). The equality (72) is a straightforward application of
(62). To finish, it is proven in [17], page 351, that

1
(142) Agng(X) = n—'—_].(LX + ng(X))Rg,

where R, is the scalar curvature of the Riemannian manifold (M, g). This
explains (73). O

A (X) + (Ly + m,(X))H, = 0.
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