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Suppose {3} is the filtration induced by a Wiener process W in R¢, 7
is a finite {J} stopping time (terminal time), ¢ is an J,-measurable
random variable in R¥ (terminal value) and f(-,y, z) is a coefficient
process, depending on y € R¥ and z € L(RY; RK), satisfying (y —
YUf(s, y, 2) — (s, ¥, 2)] < —aly — §1? (f need not be Lipschitz in y), and
[f(s,y, z) — (s, y, 2)| < bllz — Z||, for some real a and b, plus other mild
conditions. We identify a Hilbert space, depending on 7 and on the
number y =b? — 2a, in which there exists a unique pair of adapted
processes (Y, Z) satisfying the stochastic differential equation

dy(s) = 1(S£T}[Z(s) dw(s) — f(s,Y(s), Z(s)) ds]

with the given terminal condition Y(7) = £, provided a certain integrabil-
ity condition holds. This result is applied to construct a continuous viscos-
ity solution to the Dirichlet problem for a class of semilinear elliptic
PDE's.

1. Introduction.

1.1. Backwards stochastic differential equations. Suppose W is a Wiener
process in RY with natural complete right-continuous filtration {J,}, 7 is a
finite {3} stopping time, ¢ an J_-measurable random variable in R¥, and we
are given a coefficient

(1) f: O X R, x R¥ X L(R%; R¥) - RK,

such that f(-, y, z) is a progressively measurable process in R for each (v, z)
in R x L(RY; R¥). We wish to find a progressively measurable solution
(Y, Z) with values in R¥ x L(RY; R¥) of the equation

(2) Y(t) =&+ [ f(s,¥(s).Z(s))ds— [ Z(s)dW(s), t=0,

satisfying certain integrability criteria, to be described later. We refer to (2)
as a backwards stochastic differential equation (BSDE), with terminal time 7
and terminal value ¢.
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1.2. Classical result. The “classical” result of Pardoux and Peng (1990) is
that when 7 is replaced by a constant time T > 0, ¢ € L2((Q, 3, P); R¥), and
f is uniformly Lipschitz in y and z and satisfies (3), there exists a unique
progressively measurable solution (Y, Z) satisfying (8) and (9) below. A
concise proof by a fixed point argument is given in Barles, Buckdahn and
Pardoux (1996). For other results outside the Lipschitz context, see Pardoux
and Peng (1994) and Darling (1995).

1.3. Reasons for studying random terminal times. Pardoux, Pradeilles
and Rao (1995) have described how the value at time 0 of a solution Y of (2)
for constant terminal time may be used to construct a viscosity solution to a
system of semilinear parabolic PDE. Peng (1991) also describes how the
solution Y of (2) for an unbounded random terminal time is related to
semilinear elliptic PDE. Viscosity solutions for such equations will be con-
structed by stochastic methods below.

2. Results for constant terminal time using monotonicity in vy.

2.1. Conditions on f. The aim of this section is to establish an existence
and uniqueness result for a “classical” BSDE (in the sense that the terminal
value is given at a fixed, i.e., nonrandom, terminal time), but with coefficients
which are not necessarily Lipschitz with respect to both variables. More
precisely, we are given the following:

1. A fixed terminal time T > 0;
2. A terminal value ¢ € L2((Q, 3¢, P); R%);
3. A coefficient f as in (1) with the following five properties:

(3) E[[T|f(t,o,0)|2 dt| < o
0
(4) (y=9lf(s.y.2) —f(s, ¥, 2)] < —aly - I,
for some real (positive or negative) a;
(5) |f(s,y,z) —f(s,y,2)| <bllz -zl
for some positive b, where || z||* = Tr(zz"); and for some positive «,
(6) [f(s,y,2)| <|f(s,0,2)] + «(1+1yl);
(7) y — f(s, y, z) is continuous.

We refer to (4) as the monotonicity condition. Note that an f which is
Lipschitz in y has property (4) with a negative a, but the converse is not
generally true.

THEOREM 2.2 (Existence and uniqueness for constant terminal time). Un-
der conditions described in 2.1, the BSDE (2) has a unique progressively
measurable solution {(Y(t), Z(1)): 0 < t < T} such that

(®) e| [(lz(o I a

< 00,
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Moreover, the solution satisfies

(9) Elsup{|Y()[*:0 <t < T}| < =,
(10) E[fOTY(t) -Z(1) dW(t)} -o.

Proor. First we show how (9) and (10) follow from the existence of a
solution (Y, Z) under the given conditions. Since Y(0) is deterministic, (9)
follows from (2), (3), (5), (6), (8) and Burkholder’s inequality. Moreover the
continuous local martingale

M, = ['Y(s)-Z(s) dW(s)
0

satisfies E[{ M ){”?] < « from (8) and (9); hence it is a uniformly integrable
martingale, and so E[ M,] = O for all t (see the end of the proof of Lemma
4.3). O

2.2.1. Uniqueness. This is a special case of the proof of Section 5.1 of
Proposition 3.2, noting that the function spaces Mf(o, 7) are the same for all
v in the case of nonrandom terminal time, giving condition (8) on Z.

2.2.2. Existence. Note that (Y, Z) solves BSDE (2) if and only if (Y(t), Z(t))
= (e™Y(t), e*Z(t)) solves the BSDE

Y(t) =e'e+ fT[eASf(s, e Y (s), e MZ(s)) — A\?(s)] ds

—fo(s) dw(s).
t
If we choose A = —a, we have that
(11) f(s,y,2) = e (s, 6%y, e*2) + ay

satisfies (4) with a = 0, and (5) with the same constant b as f. Hence we can
and will assume the conditions of the theorem are satisfied with a = 0. Let us
admit for a moment the following proposition.

ProposiTION 2.3. Given an L(RY; R¥)-valued progressively measurable
process {V(1), 0 < t < T} which satisfies

el [TIV(DI* dt| <o,
L0

there exists a unique pair {Y(t), Z(t)): 0 < t < T} of progressively measurable
processes with values in R¥ X L(RY; R¥) satisfying

E| [zt dt| <=,
.70 i

Y(t) = &+ [(s,Y(s),V(s)) ds — ['Z(s) dW(s), O=<t=T.
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Using Proposition 2.3, we can construct a sequence (Y,, Z,) as follows:
(Yy, Z,) = (0,0), and for n > 1,

Yoos() = €+ [H(5,Y0u1(5), Zo(8)) ds = [ Z,.(5) AW(s),

O<t<T.

Let AY=Y,,,—-Y, and AZ=2Z ., —Z, I0s formula for X(t) =
e’ |AY(t)|* on the time interval [0, T] gives, for any 6 € R,

E[e‘“lAY(t)lz + [T (olav () +1azZ(9)[) ds}
= 28| [TV [1(5, Yy 1120) ~ (5.Y,, 2, )] 05|

< 2bE[fTe"SIAY| 1Z, = Z, 4l dS]
t

using (4) with a =0, and (5), dropping some of the s variables. For any
¢ > 0, this is

1
(12) < csz[fTef’ﬂAYF ds} + —E[fTe"SIIZn — Z, 4l ds}.
t c t
Choosing ¢ = 2 and 8 = 2b?, we deduce
E[/oTe"SIIZnH —Z. | ds} < %E[foTe"SIIZn —Z. P ds}.

Hence the sequence {Z,,} is Cauchy in L2(Q X [0, T], dP x et dt, L(RY; R¥)),
and tends to a limit Z. Choosing ¢ = 1 and 6 = 2b? in (12), we obtain

E[[Te"SIAYIZ ds} < E[fTe"SIIZn —Z P ds}/bz <c2°n
t t

and so {Y,} is Cauchy in L2(Q x [0, T], dP x et dt, R¥), and hence has a
limit Y. The methods of Step 5 of Section 5.2 prove that (Y, Z) solves (2).

ProorF oF ProposiTION 2.3. Uniqueness follows from that of 2.2.1; we
prove existence. Let us write h(s, y) in place of the random vector f(s, y, V(s)).
Our assumptions imply that

(13) |5[[0T|h(t,0)|2 dt} < o
(14) Ih(s, y)| <Ih(s,0)| + (1 +|yl);
(15) (y=9-[h(s,y) —h(s,¥)] <0

[see (11) for the rationale for taking a = 0]. We first approximate h by f;
which coincides with f for |y| < n, is bounded, and satisfies (14) and (15), and
then define

f.(ty) = (pif)(ty),
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where {p,} is sequence of smooth functions which approximate the Dirac

measure at zero; thus f, also satisfies (14) and (15) and is Lipschitz in y.
Thus by the standard result of Pardoux and Peng (1990), the BSDE

Yo() = &+ [ o5, Yo(5)) ds — ['Z,(s) dW(s)

has a unique solution (Y, Z,)) satisfying (8) and (9). Moreover,
Y+ [T1Zo(s) [ s
t
=161+ 2/ Yo(5) fa(5.Ya($)) ds = 2[¥,(5) * Zo('5) AW(S);
E[|Yn(t)|2 + [tT||zn(s)||2 ds] <E[1eP] + CE[ftT(l +Ya(9)[) ds}.
It then follows from standard estimates that

(16) sup, E[sup{|Yn(t)|2: 0O<tx< T} + fT|| Z.(s)|* ds| < .
0

Let
U,(8) = fo(s, Ya(5)).
From (13), (16) and (14) for f,, we have that

T
sup, EU |U.(s) ] ds} < o0,

0

Hence there exists a subsequence

(Yociys Znciy» Yniy)

which converges weakly in L2(Q x [0, T], dP x dt, R* x L(RY; R¥) x R¥) to
a limit (Y, Z,U). Any 5 € L2(Q, 3, P; R¥) has an It representation of the
form

n=E[n] + fOTXs dw(s),

and therefore

E[n/OTzn(j)(s) dW(s)}

E[fOTXsZn(J—)(s) ds} - E[fOTXSZ(S) ds}

el ["2(9) aws)|.

proving that /7 Z,;(s) dW(s) — [J Z(s) dW(s) weakly in L*(Q, 3, P; R¥).
The same is true for ;" Z,(s) dW(s), and we have, by taking a weak limit,

Y(t) = &+ [TU(s) ds - ['Z(s) dW(s).
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It remains to show that U(t) = h(t, Y(1)). Let {X,, 0 <t < T} be any element
of L2(Q x [0,T], dP x dt, R¥). We note that from (15) for f,,

(17) E[ LTV = X - [ ol Ya(1) = ot X)) dt] <0.
0
Also, since f (-, X) = h(-, X) strongly in L?(Q X [0,T], dP X dt, R¥),
(18) & [T — %) [1( X0 = (e, x)] ot ~ 0, e
/o

Moreover,

19 [ [0 (o (0) o] - e[l F - 1er + [Tz (0 ac

Now
Yo (0) = &+ fOTun(,.)(s) ds — foTzn(,.)(s) dw(s)

and converges weakly in L2. Since it is deterministic, Yo y(0 = Y(0) in R,
However, since the mapping

2| [Nz o

is convex and continuous on L?(Q X [0, T], dP X dt, RX), it is lower semicon-
tinuous for the weak topology, and so (19) implies

. T
lim me[fo Yo (1) “ gy (B Yoi (D) dt}

j—>oo

(20)

\

%E[lY(O)l2 —&* + fOTIIZ(t)II2 dt}

= E[fOTY(t)-U(t) dt].

Combining these results, we deduce

E[foT(Y(t) = %) [U(t) = h(t, X)] dt]

< lim infE[/oT(Yn(j)(t) = X¢) [ Fap(t Yo (1) = o (1, X0)] dt] <0,

joo
where the first inequality comes from (20) together with weak convergence,
and the second from (17) and (18). Choosing X, = Y(t) + e¢, for an arbitrary
e>0and ¢ € L2(Q X [0, T], dP x dt, R¥), dividing by ¢, and letting ¢ — 0,
we obtain

E[fngot[U(t) — h(t, Y] dt] > 0.

On taking ¢, = —[U(t) — h(t, Y], the identity U(t) = h(t, Y (1)) follows. O
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3. Results for random terminal time. In order to clarify the integra-
bility condition (25) below, we shall replace (6) by

(21) [ (s, y, 2)| <|f(s,0, 2)| + w(lyl + «"),
where k > 0, and «’ = 0 or 1, which together with (5) gives
(22) |f(s,y,2)| <|f(s,0,0)| + «lyl + bllzll + k"

3.1. Function space notation. For any real number 6, and any Euclidean
space V, MZ(0, 7; V) will denote the Hilbert space of progressively measur-
able processes X, with values in V, such that

(23) X115 = E[foTe"SI X(s)|* ds} <.

Obviously M7 (0, 7;V) 2 M2(0, 7;V) for § < p. We shall state the existence
and uniqueness results separately since their assumptions are quite differ-
ent. In all these results, we define, with reference to (4) and (5),

(24) y=Db? - 2a.
Existence and uniqueness results for BSDE with random terminal time were
given already by Peng (1991), but under stronger assumptions than ours.

ProprosiTION 3.2 (Uniqueness). If (4), (5), and (21) hold, and f(-,0,0) €
M2, 7; R¥) for all 6 <y, then (2) has at most one solution (Y, Z) in
MZ(0, 7; R¥ x L(RY; R%)).

ProposiTION 3.3 (Existence). Suppose f satisfies (4), (5), (7), and (21), with
k' =0 or 1, and that, for some p > v,

(25) Eler(1£1° + «') + fTe"SI f(s5,0,0)° ds| < .
0
Then there exists a solution (Y, Z) of (2) in Mpz(O, 7 R X L(RY; RK)).

THEOREM 3.4 (Combined existence and uniqueness for random terminal
time). Suppose f satisfies (4), (5), (7) and (21), and (25) holds for some
p > v. Then there exists a unique solution (Y, Z) of (2) in
M2(0, 7; R* x L(RY; R¥)), and this solution actually belongs to M?(0, 7; R¥ x
L(RY; RX)): moreover

(26) E[sup{e”SIY(s)Iz: 0<s< r}] < o,

Proor. Proposition 3.3 proves the existence of a solution (Y, Z) to (2) in
MZ(0, 7; R* x L(RY; R¥)). Property (26) follows from Proposition 4.3. This
solution (Y, Z) a fortiori belongs to M?*(0, 7; R* X L(R%; R%)), since p > v,
and by Proposition 3.2, (Y, Z) is the only solution in that space. O

ExampLE 3.5 (Linear coefficient: the question of nonuniqueness). Consider
the special case where A € L(R¥; R¥), B € RY, and

(27) f(t,y,z) = Ay + zB.
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Writing the time variable as a subscript, one solution to (2) under appropriate
integrability conditions is

(28) Yt=Q{1§t, Zt=Q;l(nt_{t® B),
where Q, = e'"exp{B - W, — |B|*t/2}, and
(29) & = E[Q,€I3,], QT§=§O+/OT7IS dw.

Are there other solutions outside the appropriate integrability class? Con-
sider the case where k = 1, W is one-dimensional, 7 = inf{t: W(t) = 1} <
and
f(s,y,2z) =z
Take the bounded terminal value
E=exp(—1-— 7/2).

Observe that for this example vy = 1, so although «' = 0 and f(s,0,0) = 0,
condition (25) for existence does not hold. Nevertheless, there is a trick for
finding multiple solutions to (2): if Q, = exp{W, — t/2}, 1td’'s formula shows
that M, = Q,Y, is a continuous local martingale with terminal value M, =
exp{l — 7/2}¢ = e~". Now we construct two different continuous local martin-
gales M with M_=e"7, and two corresponding Y's by the formula Y, =

Mt/Qt'

3.5.1. The unique solution in the desired integrability class. Let M, =
exp{W,/2 —t — V2}, so

Y, = exp{W,(v2 — 1) —t/2 - vy2},
which gives Y, = e V2 and dY, = Z,(dW, — dt) with
Z,=Y,(V2 - 1).
Moreover, y =1 for this example, and it is indeed true that (Y,Z) e
MZ(0, 7; R X R), since, for § = 2(y2 — 1), Fubini’s theorem gives
TS 2 _ * 1 re
E[foe Y| ds} = cfo dtf_mP(Wt >, 7> t)edr < o,

where boundedness of the integral is a straightforward calculation based on
the formula for the joint density of W, and S; = sup{W,: 0 < s < t}, given for
example in Revuz and Yor (1991). By Proposition 3.2, (Y, Z) is the only
solution in M2(0,7; R X R).

3.5.2. A continuum of solutions outside the desired integrability class. Let
M, = exp{—Wy/2 —t + 2}, so
Y = exp{—W,(v2 + 1) — t/2 + V2,
which gives Y, = /2, and dY, = Z,(dW, — dt) with
7~ V(2 +1).
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For any real a # 0, aM, + (1 — )M, likewise gives a solution different from
(Y, Z), and one which therefore cannot belong to M2(0, 7; R X R).

4. Some technical results.

4.1. 10 representation of the terminal value. Suppose that A is some real
number such that e*¥ is in L2 and admits an It representation

(30) et — E[eVg] + [()Tn(s) dw(s).
Let
(31) £(t) = E[e*€13,] = E[e'e] + [ n(s) aw(s).

LemmA 4.1.  For any 6 > 0 such that e?/2* V% js in L2, the processes / and
1 above satisfy

(32) Imll3 + 6112113 = E[lexp((6/2 + A)7) £1°] —|E[e*%]["
Proor. Let y, = exp(6t/2){(1), so that

dx; = 1(t£7}[0exp(0t/2)§(t) dt/2 + e”/?n(t) dW(t)],

and
Il =1xol + [ e (In(s)I* + el ¢(s) ) s
(33) °
+ 2" exp(05/2) x; - n(s) AW(s).
0

Let 7(n) = inf{t: | x; > N} A n A 7, and define a continuous local martingale
M" by

n_ [tA 7(n)
MP = [ exp(05/2) x. - n('s) AW ().
Evidently its quadratic variation process satisfies
(M < en? [n(s)IF ds € L(P),
0

using the fact that |yl = E[le*¢|?] — [E[e*¢]|? < o, by assumption. By
Burkholder’s inequality, M" is a uniformly integrable martingale for each n,
and hence we may take expectations in (33) to obtain

E[ [ e (In()IF + ol 2(9)F) ds]

- E[|E[exp(A7 +07(Nn)/2) €13, 0] |2] — | ul?,

where u = E[e’¢]. Let n — «, and apply monotone convergence and L?
martingale convergence of E[exp((6/2 + M7)¢I3, )] = exp((6/2 + M7)¢, to
obtain (32). O
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4.2. Some algebraic inequalities.
4.2.1. Weak bound. If (5) and (21) hold, then for any 6 > 0,

2klyl® + 2|yl(| f(s,0,0)| + blizll + kk")

IA

(34) —-2y-f(s,y,2)

alyl? + 1zl + 871 £(s,0,0)[* + (kx’)?,

IA

where a = 2k + b? + 6 + 1.

4.2.2. Strong bound. Suppose f and f both satisfy (4) and (5) with the
same constants a and b. Writing f(y, z) in place of (s, y, z), and so on, for
brevity,

2(y -9 [f(y.2) - f(7.2)]
—2(y-9)-[f(y.2) —f(y. 2) +T(y, 2) = f(y. 2) +f(y.2) - (¥, 2)]
< —2aly - ¥+ 2ly - ¥ f(y, 2) - f(y, 2)| + bllz - ZI].

For any ¢ > 0 and 6 > 0, this is less than or equal to

L lz=2 iy, 2) - f(y. )
+ + .

2 _ _~
(35  [b%(1+ &)+ 8- 2a]ly ¥l T =

In the special case where y = 0, z = 0, and f = 0, we have for any § > 0 that

25-1(s.9.2)
(36) , 2P
< [b?(1+ &) +6—2a]ly* + =

+ 81 f(s,0,0)[".

&

ProposiTION 4.3 (Integrability properties). If (2) has a solution (Y, Z) €
M2(0, 7; R* X L(RY; R¥)) for some real 6, if f satisfies f(-,0,0) € MZ(0, 7; RY),
(5) and (21), and if k'E[e’"] < «, then

(37) E|sup{e"5|Y(s)|2: 0<s< r}| < o,

and {M,, t > 0} is a uniformly integrable martingale, where

(38) M, = ["e’Y(s) - Z(s) dW(s).
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Proor. 1t0’'s formula and (34) imply that
O(t A T) 2 2
e [Y(tA )" =[Y(0)]
= [MerelY(s)[F +11Z(s) I = 2Y(s) - £(5,Y(5), Z(5))] ds
0
tAT
(39) +f0 2e%Y(s) - Z(s) dW(s)
<C[ e [IY ()] +]1Z(s) [ +|(5,0,0)[" + x| ds
0

+ [72e%v(s) - Z(s) dW(s).

Let 7(n) = inf{t: [Y(t)| = n} A n A 7. From the assumptions of the proposition
and Burkholder's inequality, it follows that

E[ sup  {e”|Y(s) |2}}

0<s<7(n)

1/2
< C{l L E (/T(“)ezesw(s)fn 2() | ds) }
0
(n) vz
<C{1+E| sup {e"S/ZIY(s)I}(/T Vets| z(s)|? ds) l
0<s<7(n) Y

0<s<r(n)

< %E\ sup {e"SIY(S)IZ}J +C +C'lIzZl.

Thus Elsupy . s .y {€1Y(s)?}] < C” and (37) follows from monotone conver-
gence, on letting n — oo. As for the second assertion, Burkholder's inequality

gives
Tt O”

1/2]

. , 1/2
sup {e”s/zlY(s)l}{foe"Sllz(s)|| ds} l

O<s<r

< %{E{ sup {e"SIY(s)IZ}J + ||zn§} <o

O<s<r

E[sup{‘ftme"sY(s) - Z(s) dW(s)

<CE

[ Iz ds

<CE

using (37), giving uniform integrability of {M,, t > 0}. O
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In the next result, we adopt the convention that, for any solution to (2),
(40)  1.4Y(s) = ¢, L5 nZ(s) =0, Lssnf(s,y,z) =0.

ProposITION 4.4 (Stability with respect to perturbations). Suppose (7, &, f)
and (7', &, f') are triples for which the conditions of Proposition 3.3 are
satisfied, with the same a, b and p > b? —2a. Let AY =Y — Y’, where
(Y,2) € M2(0, 7; R* x L(R% RY) and (Y',Z) € M2(0, 7'; R* X L(R% R¥))
are the solutions to (2) corresponding to (7, &, f) and (7', &', f'), respectively.
If b2 — 2a < 6 < p, there exist positive numbers 8, & such that

AY(0)? + BE[/O”T'ees(mv(s)f +1aZ(s)[P) ds
(41) < Elexp(0r/2)¢ — exp(67'/2) &'

+ 5—1E[[”T'e"$| f(s,Y(s),Z(s)) — f'(s,Y(s),Z(s)) [ dS}

ProoF. First note that for any stopping time o < 7 A 7/,
exp(bo/2)AY (o)
= exp(07/2) ¢ — exp(07'/2) ¢’

+fTexp(65/2)[f(s,Y(s), Z(s)) — 0Y2(s) } ds

—T'ex 0s/2)| f'(s,Y'(s),Z'(s —HY,(S) ds
[T exp(6/2)| £(5.Y'(5). 2'(5)) = —

—fTexp(OS/Z)Z(s) dw(s) + frlexp(as/Z)Z’(s) dW(s).

In view of (40), this can be written as
exp(0o/2)AY (o)

= exp(07/2) & — exp(07'/2) ¢ — fTVT,exp(Os/Z)AZ(s) dW(s)

o

+fTVT’exp(08/2)[f(S, Y(s),Z(s))

OAY(S)
2

—f'(s,Y'(s),Z'(s)) — ds.

Using It0's formula we obtain

e Y (o) [* + [T e (6aY (s)F +]aZ(s) ) ds
(42) = lexp(07/2)¢ — exp(07'/2)£'1* — 27 e AY(5) - AZ(S) AW(s)

+2[ 7T (9) - [£(5,Y(5), 2(5)) = F/(5,Y'(). Z/(9))] .
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Using (35), take § > 0 and & > 0 sufficiently small so that o > 0, where
a=60-[b%(1+ &)+ 86— 2a]; now

2(y —y') - [f(s.y,2) = (s, y", 2]

(43) A z||? f(s,vy,z) —f'(s,y, 2z 2
< (6— a)ayl? + +I( y,z) =f'(s,y )l.
1+ ¢ o

We use this inequality in the right side of (42). On taking expectations, the
stochastic integral term vanishes by Proposition 4.3, and we obtain

E[e""lAY(o-) |

&

+ &

o +f(:w’e95(oz|AY(S)|2 - (1 )llAz(s)”Z) ds]

= E[|9XP(97/2)§ — exp(0r'/2) &'
+8’1fTVT’eHS| f(s,Y(s),Z(s)) —f'(s,Y(s), Z(s))|2 ds]. O

COROLLARY 4.4.1 (Solution bounds). Under the conditions of Proposition
3.3, for any t > 0, and any 6 such that b®> — 2a < 6 < p,

&

1+ ¢

E[e" My (t A7) + E[]t;ees(aw(s)f . ( )||2(s)||2) ds]

< E[e‘”lgl2 + 6’1f7 e’ f(s,0,0)|? ds].
tAT

The proof follows from (36) (taking one of the coefficients to be 0) in the same
way that the previous proof used (35).

COROLLARY 4.4.2 (Comparison theorem). Forthecasek =1, ¢ < &', f <f’,
r=71', we have Y(t) < Y'(t) a.s.

PrROOF. Let AY"=1,_y.. (Y — Y’). By the reasoning of the last proof,

AT

E[e" 7|av* (t A r)[F] + E[/ e®*(0]AY* (9)[° + Ly ollAZ(9)IF) ds}
tATA T

= ZEUT eSAY [ f(s,Y(s),2Z(s)) —f'(s,Y'(s),Z'(3))] ds}.

Since f(s, vy, z) < f'(s,y, z), the f(s,Y(s), Z(s)) can be replaced by
f'(s, Y(s), Z(s)), and an application of (43), with f=f', =0 and ¢ =0,
shows that this is

TAT' 2 2
< E[/ e (AAY () + Ly o AZ(5)] )ds].

tATAT!

Thus AY™ is zero a.s. O
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5. Proofs of results for random terminal time.

5.1. Proof of uniqueness. Suppose (Y, Z) and (Y, Z) are two solutions in
M2, 7). Let AY =Y — Y and AZ = Z — Z. Note that (44) is still valid for
0 < v; the terminal values coincide, and f = f’, so taking 6=0 and n =
b?(1 + &) —2a— 6> 0,

&

1+¢

) E[e"(tAT)lAY(t/\ )| +/;Me(’s( )||AZ(5)|| ds}

< E[n/T e?|AY(s)|’ ds}.
tAT
Taking ¢ = 0 gives n = vy — 6, and
E[e(V"?>(“T)|AY(t A T)lz] < nE[/T e(V—n)slAY(S)lz ds}.
tAT
Now let n — 0 and use dominated convergence to obtain
E[e7 e D[aY(t A m)[F] =0

as desired. Since t was arbitrary, this proves AY = 0. Taking £ = 1 in (45)
gives

(1/2)E[f7e95||AZ( s)|? ds} < cE[fTe"slAY(s)l2 ds} =0,
0 0
showing that AZ = 0 in the appropriate sense. O

5.2. Proof of existence. Step 1. Let A = y/2, for y as in (24). Since e¢ is
in L? by (25), Theorem 2.2 supplies solutions (Y,,Z,) in MZ(0, n; Rk x
L(RY; R¥)) of the backward SDEon 0 <t < n:

~

Y. (t) = E[e¢]3,] + j;:tf[e“f(s, e sy, e”‘sfn) - AYn] ds
(46)
—anTZ\ dW,

n
tAT

where ?n(s) is abbreviated to \?n in the integrands, and so on. Extend these
processes to the whole time axis by defining, with reference to (30) and (31),

(47) Yo(t) = £(t) = E[e™¢13,],  t>n,
(48) Z.(t) =n(t), t>n.
Define for all t > O,

(49) Ya(t) = e MY (1), Zy(t) = e MZ (1),
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Since dZ(t) = n(t) dW(t), we see by Itd’s formula that

dvY,(s) =Z,(s) dW(s) —1_,f(s,Y,(s), Z,(s))ds, O<s<n,

50 dY,(s) = Z,(s) dW(s) — 1 _,AY,(s) ds, s> n.

In other words
Yo(t) = 6+ [ fu(s,Ya(9), Zu(8)) ds = [ Z,(s5) dW(s), O<t<w,
tAT tAT

where
(51) fn(S, Y, Z) = 1(55 n}f(s! Y, Z) + /\1{S> n}y-

Step 2. Fix m>n, and let AY =Y,, - Y,, AZ=Z_, — Z,, both of which
are zero when t > m. We now apply (44), taking § > 0 and & > 0 sufficiently
small so that ¢ > 0, where ¢ = p — [b?(1 + ¢) + 8 — 2a]; taking t < m, and
noting that both solutions coincide at the terminal time m A 7, we have

Jlaz(s)IF) os|

mAT &

E[ep(tAr)lAy(t A 7-)|2 +j; e”s(d)|AY(S)|2 + (1

AT + &

< E[a-lft’::%ﬂﬂ fn(S,Ya(8), Zo(S)) = (s, Ya(S), Zu($)) [ ds}

< E[a‘lfm

nA

ATepS| f(s,Ya(s), Zn(s)) — )\Yn(s)|2 ds]

(52) < cE[[mMeﬂS{K’ +Ya($)* +1Za(9)I” +1(5,0,0) 7} ds},
nNAT

using (51) and (22). The assumption (25) ensures that

(53) lim E[[m“epS{K’ +]f(s,0,0)|°} ds] - 0.

n,m-w nAT

As for the other summands in (52), take 6 = p — 2X > 0, and observe that, in
the notation of (47), (48) and (49),

el [" eI + ol Zo(5)) o]
(54)
— | [T e es) + () ) s

nA

However, by Lemma 4.1.1 and assumption (25),

(55) E[foTe(’S{l ()P + dlm(s) ) ds] _ E[er21¢P] - |E[e] [ < .
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It follows from (52)-(55) that

E[e”(t“)lAY(t AT
(56)

&

+ftr:f7e"3(¢|AY(s)|2 [ 8)||AZ(S)||2) ds] S0

as n,m — o with n < m. Thus {(Y,,, Z,)} is a Cauchy sequence in the Hilbert
space MZ(0, 7; R* x L(R?; R¥)), converging to some (Y, Z) € M2(0, 7; R* X
L(RY; RK)). Moreover AY(t A 7) = AY(t), and (56) implies that, for each t,

e“P"E[lAY(t)IZ] < E[ep(t“)lAY(t A 7)|2] -0 asn,m- »
and so for every t, {Y,(t), n = 1,2,...} has a limit in L?, and we may assume
(57) Y(t) = limY,(t) in L?forallt.
n— o

Step 3. It remains to check that (Y, Z) satisfies (2). For any o« € R, and
t > 0, we have that for n > t,

e ADY (LA T) =e"E + fT e**[f(s,Y,,Z,) —aY,]ds - fT e**Z, dw
tAT

tAT

+fT e*[AY, — f(s,Y,, Z,)] ds.

nNAT

We choose o < 0 A p/2 A p, and take 6 = p — 2a > 0, with the result that

w=1lg_ €% dt X dP is afinite measure on [0,*) X Q;

(58)
f(-,0,0) € MZ(0,7; R*) for = 2a + 8§ and for 6 = a;

(59) (Yo, Z,) = (Y, 2Z)in MZ(0, 7; R X L(RY; R¥))
for 6 = 2a + 6 and for 6 = «.

We shall combine (59) with Hdlder’s inequality to estimate [|Y,, — Y| du:
E[fTe“S|Yn(s) — Y(s)|ds]
0
, 12, 1/2
{f et 5|y (s) — Y(s)[° ds} {f g% ds} l
0 0

8 Y2Y, = Yll2ass-
The method used in the last calculation shows that

(60) -

IA

IA

/T e**Y,(s) ds — fT e**Y(s)ds in L'(P) forall t;
tAT tAT

[ ez, (s)dW > [* e™Z(s)dW in L*(P) for all t;
tAT tAT

(61) [T e [AYo(5) = (5. Y, Z,)] ds > 0 in L(P);

nNAT
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(62) [ e*[f(s, Yy Z,) —F(5.Y,.Z)|ds >0 in Li(P)forall t.
tAT

Estimate (61) uses (22), (58) and (59); estimate (62) uses (5) and (59). To
complete the proof, it suffices, in view of (62), to check that

(63) /M e’ f(s,Y,,Z) —f(s,Y,Z)|ds -0 in L'(P)forall t

or, equivalently, that X, —» 0 in L'(u), where X, = [f(-,Y,,2Z) — f(.,Y, 2)I.
For positive integers m and N, define

AT = {(y, ¥) € Rk X R*: |§| < N,Iy—ylsl/m}.

Fix £ > 0. The continuity of f in y [condition (7)] implies that, for each o, t,
and N, there exists an integer h(w, t, N) such that

(64) m > h(w,t,N)and (y, y) €A},
=|f(w, t,y,Z(t)) —f(w,t,¥,Z(t))|<e.

Next observe that the { X, } are uniformly u-integrable, since w is finite and

(65) [XZdp = E[foTe“ﬂ f(s,Y,,2) - f(s,Y,2)|* ds| < C,

using (22), (58) and (59). Now by Fubini’s theorem, for any r > 0,

o X2d
flxnl du < fo e E[ Xq(1)Lix 1< ] dt + f—“.

By (65), the second term on the right can be made arbitrarily small by
choosing r large enough, and the first term goes to zero by dominated
convergence (using the fact that o < 0) provided we can prove that, for each
fixed t, X,(t) — 0 in probability as n — «. Now

P(| Xa(t)] > &)
< P(|f(t, Y (1), Z(t)) — f(t,Y(1), Z(1))| > &, (Y,,Y) € A})
+P(IY(t)[ > N) + P(|Y,(t) = Y(t)[ > 1/m)
<P(m <h(e,t,N)) + NE[|Y ()] + m*E[|Y,(t) - Y(t)[]].

Choosing N large enough, m large enough and n large enough, in that order,
makes this arbitrarily small, using (64) and (57). Now we have proved that

e DY (tAT) ek + [ e[f(s,Y,Z) —aY]ds— [ eZdw
tAT

tAT

and so, by It0’s formula, (Y, Z) satisfies (2). O
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6. Application to semilinear PDE’s. For each x € RY we may con-
struct a Markov diffusion process with generator

2

(66) LEB'VJF(%) ,,—i_ (00™)ij

) IX; IX,

by solving the SDE

(67) X, (t) =x+ [B(X,(3)ds + [‘o(X,(s))dW(s), t=0,
0 0
where the coefficients 8: R? - R% and o: RY - L(RY; RY) satisfy 8 € CL(U)
and o € CZ(U), for some open set U containing a bounded set D of the form
D = {x: ¢(x) > 0},

for some ¢ € C2(RY). We require that |[Vo(x)| # 0 for all x & dD < {x:
¢(x) = 0}. These conditions ensure existence and uniqueness of a strong
solution to (67) at least up to the stopping times

7, = inf{t > 0: X,(t) ¢ D}.
We assume that P(r, < ) = 1 for all x € D, and that the set
(68) I'={xedD: P(r, > 0) =0}

is closed. Let g € C(R?) (hence bounded on D), and let f & C(R? X R X
L(RY; R)) be a function whose restriction to D satisfies

(69) [F(x, ¥, 2)| <[ f(x,0,2)| + x(lyl + 1);
(70) (y=Df(xy, 2) = (%, ¥, 2)] < —aly - §*
(71) [f(x,y,2) —f(x,y,Z)| <bllz-Zl.
Also assume that, for some p > b? — 2a, we have
(72) sup E[exp( pry)] < .

xeDb

REMARKS. In view of the boundedness of g and f(-,0,0) on D, condition
(25) simplifies to (72). If for instance D C {(go*),,(x) > A > 0}, then there
exists a p such that (72) holds. For more insight into the degenerate case, see
Stroock and Varadhan (1972).

We now consider, for each x € D the one-dimensional BSDE

f(X,(5), Y,(5), Z,(5)) ds

Tx

Yo(1) = g(Xu(7)) + [

tA

(73)
— [ Z,(s) dw(s),
tA Ty

which has a unique solution in Mf(o, 7; R X L(RY; R)) by Theorem 3.4 and
condition (72), where y = b2 — 2a, and define
(74) u( x) =Y,(0), x € D.
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LEMMA 6.1. The function u is bounded on D, and

sup (E[/Txepsnzx(s)ll2 ds
0

xeD

< o0,

The proof is immediate from (72), (74) and Corollary 4.4.1 (taking t to be
zero).

LEMMA 6.2. Y, (1) = u(X,(t)), 0 <t <7, as.,; hence the processes {Y,(t)}
are uniformly bounded.

Proor. The first result is a consequence of

(YXX(IATX)(S A 7-><)! ZXX(tATX)(S A 7-x)) = (Yx((t + S) A Tx)’ Zx((t + S) A Tx))

for s, t > 0, which follows from uniqueness of the solution to the BSDE (73)
on the time interval [t A 7., 7,]. The second now follows from Lemma 6.1. O

ProposITION 6.3. The function u is continuous on D.

Proor. The proof will be split into several steps, the first two consisting
of the proof of the a.s. continuity of

(75) X = T,
as x’' — x, which also proves the a.s. continuity of
(76) X = (10 Xu(75)),

using well-known spatial continuity properties of stochastic flows.

Step 1. First we shall prove that for any sequence x(n) — x in D,
(77) lim sup 7,y < 7, a.s.

n— o

Suppose (77) is false. Then
(78) P(Tx < lim sup rx(n)) > 0.

n— o

For each ¢ > 0, let
¢ = inf{t > 0: d( X, (t), D) > &}.
If (78) holds, then there exist ¢ > 0 and T such that
P(TXE < r!i%n’:osup Te(ny < T) > 0.
But since X, (1) = X,(-) uniformly on [0, T] as.,
P( lim sup 742 < 77 < lim sup ) < T) > 0,

that is, for some n, X, exits the ¢/2-neighborhood of D before exiting D,

on a set of positive probability; this is impossible. Hence (77) must be true.
Step 2. Secondly we shall prove that

(79) liminfr, >z as.

n—o
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For this we need the assumption that T [see (68)] is closed—the result would
clearly not be true otherwise. Let Q,, = {0 € Q: 7(x) < M}; since Uy o Qpm
= (), it suffices to prove that (79) holds on each Q,,, a.s.

From the result of Step 1, for almost all v € Q,, there exists n(w) such
that n > n(w) implies 7,,,(w) <M + 1. Since X, (-) = X,(-) uniformly on
[0, M + 1] as,, on Q,, X,(-) reaches

{XX(n)(Tx(n))3 ne N} cT =T

on the random interval [0, lim,,_, . inf 7, ] as. But 7, < inf{t: X,(t) € T} as,,
hence
< liminfr, ., as.onQy.

n— o

Step 3. Let us fix x, and some 6 € (b? — 2a, p). According to Proposition
4.4, there exists a positive number § such that

lu(x) = u(x")[*
= E|exp( HTX/Z)g(Xx(TX)) - exp( OTX’/Z)g(Xx’(TX’)HZ
(80) + 5—15[ L7 e H(X(5), Yul(9), Z,(9))

— (X, (), Yy(8), Z,(5))[" ds .

We shall first show U, ,. = lexp(67,/2)g( X, (1)) — exp(87,./2)g( X (1, NI
converges to 0 in LY(P) as x’ — x. It follows from the continuity of g and
from (76) that U, ,, — O a.s.as x' — x. By (72), sup, . 5 Elexp( p7,)] < =, and
therefore

(exp(67,), x < D)
is uniformly integrable. Since {g(X,.(r,))), x' € D} is bounded, an elementary
calculation shows that the random variables {U, ,., x' € D} are uniformly

integrable over x’ € D, and hence U, . — 0 in LY(P) as x’' — x. This takes
care of the first term on the right-hand side of (80).

Step 4. Let V, .(s) = [F(X,(5), Y,(5), Z,(s)) — F(X,(8), Y,(8), Z,(s)I*. We
are going to show that

(81) E[[T*“*'eﬂsvx, (s) ds]
0
tends to zero as x’ — x. Lemma 6.1 shows that
(82) E[IOTX965||ZXI|21{Zer K.} ds} -0 asn -
for compact sets {K,} increasing to L(RY; R) and let
(83) C, = 23up{| f(x,y,2)> xeD,yeu(D), z¢< Kn} < o,

Finiteness of C,, comes from the continuity of f in all variables, and the fact
that u is a bounded function, proved in Lemma 6.1. By (69), (71) and Lemma
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6.2, there is a constant C > 0 such that, omitting the time variable,
(84) Ve o = C(L+11ZJ7).

Moreover, the continuity of f in the first argument, and compactness, show
that for any &> 0 there exists v = »(n, ) > 0 such that for x, x’ € D,
y €u(D), z€ K,

Ix = x'|<v=|f(x,y,2) —f(x',y,2)| <e.
We use the identity
VX! x = VX! Xll{zxe Kn}{l{‘xx_xx'lS v} + 1{‘Xx_xx"> V)} + VX: Xrl(zxe Kn}

to deduce that the expression (81) is bounded above by

(85) E[[OT*”X’e9S{g + Colx,oxy o + C(L+ 1ZIP) 1z, e k) ds}.

This leads to a sum of three expectations; the third can be made arbitrarily
small using (82) (this involves choice of n); the first can be made arbitrarily
small by choice of &, using the finiteness of E[exp( p7,)] [this involves a choice
of v(n, £)]; the second can be made arbitrarily small using well-known
spatial continuity properties of stochastic flows, which imply that

P(sup|XX(s) — Xy(8)] > v) -0 as|x—x'|-0.
S

Thus as |x — x'| = 0, the expression (81) tends to zero, as claimed.
Step 5. Finally we must check that

Ty N\ Ty

(86) E[fTXVTX'eOSVX‘ o(3) ds} -0 as|x—x|-0.

Using (84) and the fact that Z,(s) = 0 for s > r,, we see that

TN\ Ty Ty N\ Tyr

E[foVTx'eBSVX,xr(S) ds} < CE[/TX e”*(1+]Z,(s) ") ds
and now (86) follows from (75) and Lemma 6.1. O
6.4. Viscosity solutions of PDE. For L as in (66) and f and g as in (73),
we consider the following elliptic PDE:
(87) Lu(x) + f(x,u(x), (Vu)o(x)) =0, xeD;ulsp=g9.

Let us define what we mean by a viscosity solution of the equation (87). [For
uniqueness results for viscosity solutions of such equations, see Barles and
Murat (1995) and Barles and Burdeau (1995).]

DerinITION 6.4.1. A continuous function u: D — R is called a viscosity
subsolution of (87) if, for any ¢ € C2(D), and any local maximum point x of
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u — o, itis true that
—Le(x) = f(x,u(x),(Ve)o(x)) <0 if x e D;
min{ —Le(x) — f(x,u(x), (Ve)o(x)), u(x) —g(x)} <0 if x € dD.
The function u is called a viscosity supersolution of (87) if, for any ¢ € C%(D)
and any local minimum point x of u — ¢, it is true that
—Le(x) = f(x,u(x),(Ve)o(x)) >0 if x e D;
max{ —Le(x) — f(x,u(x), (Ve)o(x)),u(x) —g(x)} =0 if x JD.
A continuous function u: D — R is said to be a viscosity solution of (87) if it is

both a viscosity subsolution and a viscosity supersolution. Now we shall prove
the main result of this section.

THEOREM 6.5. The function u: D — R given by (74) is a bounded, continu-
ous viscosity solution of the elliptic equation (87).

Proor. We prove only that u is a viscosity subsolution, the proof of the
other statement being similar. The boundedness comes from Lemma 6.1 and
the continuity from Proposition 6.3.

We consider first the case where u — ¢ achieves a local maximum (which
we assume without loss of generality to be a global maximum) at x € D U
(oD N T'°). We also assume that ¢ and its derivatives up to second order have
at most polynomial growth at infinity. Since x e D U (dD N T°), 7, > 0 as.
We can and will assume that u(x) = ¢(x). Hence u(X) < ¢(X), X € D.

For 0 < s < t, Lemma 6.2 shows that

tA T
V() = U(X(EA 7)) + [ (Xu(1), Y1), Z(r)) dr
(88) '
tA 7y
—f Z,(r)dw(r).
SA Ty
Let (Y,, Z,) be the unique solution of the following BSDE:
= tA T, =
Vi(8) = (Xt A 7)) + [ HH(X(r) Y1), Z(1)) e
(89) *
tAT =
= [ 7Z,(r) aw(r).
SA Ty
The use of Y,(r) rather than Y,(r) as the second argument of f is intentional.
Note that, from 1t@’s formula,

e(X(9)) = e(X(t A 7)) = [ Lo (X,(r)) o

Tx

— [ Vgo (X,(r)) dW(r).

SA Ty
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Define Y,(s) = Y,(s) — o(X (s)), Z,(s) = Z,(s) — Voo (X,(s)). We have

Y.(s) = LT:*[LQD(XX) + (X, Yoo 2, + Voo (X,))] dr

(90) )

tAT o>
— [ 7Z, dw,

SA Ty
omitting r in the integrands. Since u(X) < ¢(X), X € D, we may apply
Theorem 4.4.2 to (88) and (89) (think of the coefficient f as a random func-
tion of the z-argument only) to deduce that u(x) = Y,(0) < Y,(0), and since
u(x) = ¢(x), we see that Y,(0) > 0. Now (90) gives

1 A Ty ~ ?X(O)
(91) TE[[J [L(p(XX)+f(XX,YX,ZX+V¢U(XX))]dS}= . 20

Let us introduce the following lemma.

LEMMA 6.6.

1 o~

—E[ftA il Zx(s)|ds] -0 ast—0.

t 0

From (91), Lemma 6.6, and (71) (Lipschitz continuity of f in z), we deduce
tA Ty,

%E[j;tATX[Lgo(XX) +( Xy, Yy, Voo (X,)] ds] +%E[fo

We can take the limit as t — 0 in the above inequality, to obtain, by
dominated convergence,

(92) Le(x) + f(x,u(x), (Ve)o(x)) = 0.

Suppose now that u — ¢ achieves a maximum at a point x €I'. Then
u(x) = g(x), so the condition for u to be a viscosity subsolution is satisfied. O

fx(s)|ds} > 0.

ProoF oF LEMMA 6.6. Recall that D is bounded, {X,(t), 0 <t < 7} is
bounded, and by Lemmas 6.1 and 6.2 {Y,(t), 0 < t < 7,} is also bounded. From
I1t0’s formula and (90), we see that for # > 0 and s < t (dropping the index x
for brevity),

e V(s n )] + E[/Weer[emr)r e dr}

SAT

(%) = ZE[EAMe“YAm Le(x(n)

+H(X(r). Y (r), Z(r) + Voo (X(r)))] dr}.
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Using (71) and the continuity of f, we find that the last expression is less
than or equal to

(99) (b2 + DE[" T ar + B[ e || Z(0)] + ¢, ar,
SAT SAT

using all the boundedness properties mentioned above. Taking 6 = b? + 1
proves that

~ 2
(95) E[e(b2+1)(5”)|Y(s A7) ] <C(t—s).

Working from (93) again with 6 = 0 and s = 0 gives that there exist c¢; such
that

e| [ 712 [ ar|
< ZE[/O“T|Y“(r)|(c1 + bl Z(r)) dr}
> ([ [ 12 ar| + o (1900 + 1900 ) ar].

so we have, using (95), that this is
A~ 2
([ [ 120

< Czltl/z(E[fotN(r)f dr} N + E[fot|\7(r)|2 drH

1/2
cs[tl/z(fot(t —-r) dr) + jot(t -r) drl

IA

<[t + t?].
Hence
EE[ft/\f(x)|2 (s)|ds} < tl/Z{E[ftAT||2‘||2 dr]}l/z
t [Jo X B 0
[t3/2 +t2]"*
SC3T SCS(tl/4+tl/2). O
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