# WHEN IS A PROBABILITY MEASURE DETERMINED BY INFINITELY MANY PROJECTIONS? ${ }^{1}$ 

By Claude Bélisle, Jean-Claude Massé and Thomas Ransford

Université Laval
The well-known Cramér-Wold theorem states that a Borel probability measure on $\mathbb{R}^{d}$ is uniquely determined by thetotality of its one-dimensional projections. In this paper we examine various conditions under which a probability measure is determined by a subset of its $(d-1)$-dimensional orthogonal projections.

1. Introduction. Let $\mu$ be a probability measure on the class $\mathscr{B}^{d}$ of Borel sets in $\mathbb{R}^{d}, d \geq 2$, and denote by $\phi_{\mu}$ its characteristic function. Let $L$ be a subspace of $\mathbb{R}^{d}$, and write $\pi_{L}: \mathbb{R}^{d} \rightarrow L$ for the orthogonal projection of $\mathbb{R}^{d}$ on $L$. Then the orthogonal projection of $\mu$ on $L$ is defined as the probability measure

$$
\mu_{L}(B)=\mu\left(\pi_{L}^{-1}(B)\right), \quad B \in \mathscr{B}^{d} .
$$

The Cramér-Wold theorem ([1], page 291) states that a probability measure on $\mathbb{R}^{d}$ is uniquely determined by its one-dimensional projections, or equivalently, a probability measure is uniquely determined by the probabilities it assigns to half-spaces. This result is an immediate consequence of the next proposition and its corollary.

Proposition 1.1. Let $\mu$ be a Bord probability measure and let $L$ be a subspace of $\mathbb{R}^{d}$. Then

$$
\phi_{\mu_{L}}(t)=\phi_{\mu}\left(\pi_{L}(t)\right), \quad t \in \mathbb{R}^{d} .
$$

Proof. From the change of variable formula and the definition of orthogonal projection, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} \exp (i t \cdot y) d \mu_{L}(y) & =\int_{\mathbb{R}^{d}} \exp \left(i t \cdot \pi_{L}(x)\right) d \mu(x) \\
& =\int_{\mathbb{R}^{d}} \exp \left(i \pi_{L}(t) \cdot x\right) d \mu(x) .
\end{aligned}
$$

Corollary 1.2. Let $\mu$ and $\nu$ be Borel probability measures on $\mathbb{R}^{d}$ and let $L$ be a subspace of $\mathbb{R}^{d}$. Then $\mu_{L}=\nu_{L}$ if and only if $\phi_{\mu}=\phi_{\nu}$ on $L$.

[^0]Another easy consequence of Corollary 1.2 is the following extension due to Rényi.

Theorem 1.3 (Rényi [5], page 136). A Borel probability measure on $\mathbb{R}^{d}$ is uniquely determined by its projections on a set of subspaces of arbitrary dimensions which together cover the whole space.

Again, from Corollary 1.2 and the continuity of $\phi_{\mu}$, it follows that if ( $L_{n}$ ) is a countable family of $(d-1)$-dimensional subspaces such that $\cup_{n} L_{n}$ is dense in $\mathbb{R}^{d}$, then $\mu$ is uniquely determined by its projections on the $L_{n}$. It is natural to ask whether $\mu$ is uniquely determined by its projections on any infinite family of distinct ( $d-1$ )-dimensional subspaces. Gilbert [3] showed that, in general, the answer is no. This raises the following question: under what conditions is a Borel probability measure uniquely determined by proper subfamilies of its lower dimensional projections? To our knowledge, only four articles have treated this general problem, all of them going back to the 1950's. These papers were by Rényi [5], Gilbert [3], Heppes [4] and Ferguson [2]. We shall see some of their results throughout this paper.

Heppes [4], page 408, showed that if a probability distribution on $\mathbb{R}^{2}$ has a density function which is positive on a disk, then this distribution is not determined by finitely many of its orthogonal projections on straight lines through the origin. For that reason, this article will be concerned solely with projections on infinitely many subspaces. Specifically, this paper addresses the following question: When is a Bord probability measure on $\mathbb{R}^{d}$ determined by its projections on infinitely many $(d-1)$-dimensional subspaces?

The main theoretical results of the paper are in Section 2. Their proofs are given in Section 3. Section 4 shows that in some cases a stronger form of determination can be obtained. In addition, using the sophisticated tool of quasi-analytic classes, we are able to extend some of the results of Section 2. Section 5 introduces three counterexamples which demonstrate that, in the absence of some of the hypotheses of Section 2 and Section 4, the results of these sections may fail. Finally, Section 6 briefly examines the problem of determination for discrete probability measures.

Notation. Throughout this paper, $\mathscr{L}$ denotes an infinite family of ( $d-1$ )dimensional subspaces of $\mathbb{R}^{d}$. Each $L \in \mathscr{L}$ determines a pair of unit vectors $\pm u \in L^{\perp}$, and vice versa. Some of the hypotheses below are to be understood with this identification of $\mathscr{L}$ as a subset of the unit sphere in $\mathbb{R}^{d}$. In particular, to say that a sequence $\left(L_{n}\right)$ converges to $L$ in $\mathscr{L}$ means that there exist unit vectors $u_{n} \in L_{n}^{\perp}$ for each $n$ and a unit vector $u \in L^{\perp}$ such that $u_{n} \rightarrow u$ as $n \rightarrow \infty$.

If $\mu$ is a Borel probability measure on $\mathbb{R}^{d}$, the support of $\mu$ is denoted by $\operatorname{supp}(\mu)$. We write

$$
C_{\mu}=\left\{t \in \mathbb{R}^{d}: \int_{\mathbb{R}^{d}} e^{t \cdot x} d \mu(x)<\infty\right\} .
$$

N ote that $0 \in C_{\mu}$. Also, using Hölder's inequality, it follows that $C_{\mu}$ is convex.

If $A \subset \mathbb{R}^{d}$, we write $\operatorname{int}(A), \bar{A}$ and $\operatorname{co}(A)$ for the interior, the closure and the convex hull of $A$, respectively. If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a continuous function, we define its support as $\operatorname{supp}(f)=\overline{\left\{x \in \mathbb{R}^{d}: f(x) \neq 0\right\}}$. The Euclidean norm of $t=\left(t_{1}, \ldots, t_{d}\right) \in \mathbb{R}^{d}$ is denoted by $|t|$.
2. Main theorems. The following result is the most basic. Its proof is presented in the next section.

Theorem 2.1. Let $\mu$ and $\nu$ be Bore probability measures on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of $(d-1)$-dimensional subspaces of $\mathbb{R}^{d}$. Assume that $\mathscr{L}$ has an accumulation point $L^{*}$ (in the unit sphere of $\mathbb{R}^{d}$ ) such that there exist $a \in L^{*}$ and $b \notin L^{*}$ with $a \pm b \in C_{\mu} \cap C_{\nu}$. If $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Remark. In view of the convexity of $C_{\mu}$ and $C_{\nu}$, the condition in the theorem is equivalent to the existence in $C_{\mu} \cap C_{\nu}$ of a segment centered on $L^{*}$, but not contained in $L^{*}$.

Corollary 2.2. Let $\mu$ and $\nu$ be Borel probability measures on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of ( $d-1$ )-dimensional subspaces of $\mathbb{R}^{d}$. Suppose that the moment generating functions of $\mu$ and $\nu$ are finitein a neighborhood of the origin. If $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Proof. The hypothesis implies that there exists $\delta>0$ such that $\{t \in$ $\left.\mathbb{R}^{d}:|t| \leq \delta\right\} \subset C_{\mu} \cap C_{\nu}$. Moreover, since the unit sphere in $\mathbb{R}^{d}$ is compact, $\mathscr{L}$ must have an accumulation point $L^{*}$. Taking $a=0$ and $b \notin L^{*}$ with $|b| \leq \delta$, Theorem 2.1 applies.

In particular, Corollary 2.2 implies the theorem of Rényi ([5], Theorem 1), which says that if a Borel probability measure on $\mathbb{R}^{2}$ has compact support, then it is determined by infinitely many of its one-dimensional projections. A more general result is the next corollary. It is an extension to $\mathbb{R}^{d}$ of a result obtained by Ferguson [2].

Corollary 2.3. Let $\mu$ and $\nu$ be Borel probability measures on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of ( $d-1$ )-dimensional subspaces of $\mathbb{R}^{d}$. Assume that there exist an accumulation point $L^{*}$ of $\mathscr{L}$ and a onedimensional subspace $J \nsubseteq L^{*}$, such that $\mu_{J}$ and $\nu_{J}$ have finite moment generating functions in a neighborhood of the origin. If $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Proof. By hypothesis there exists $\delta>0$ such that $\{y \in J:|y| \leq \delta\} \subset$ $C_{\mu} \cap C_{\nu}$. Now, Theorem 2.1 can be applied if we use $a=0$ and $b \in J \backslash L^{*}$ with $|b| \leq \delta$.

$$
\text { If } S \subset \mathbb{R}^{d} \text {, we write } S^{\circ}=\left\{y \in \mathbb{R}^{d}: t \cdot y \leq 0 \text { for all } t \in S\right\} \text {. }
$$

Corollary 2.4. Let $\mu$ and $\nu$ be Borel probability measures on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of ( $d-1$ )-dimensional subspaces of $\mathbb{R}^{d}$. Suppose that there exists $S \subset \mathbb{R}^{d}$ such that we have the following conditions.
(i) $\operatorname{supp}(\mu) \cup \operatorname{supp}(\nu) \subset S \cup(-S)$;
(ii) $\mathscr{L}$ has an accumulation point $L^{*}$ such that $L^{*} \cap \operatorname{int}\left(S^{\circ}\right) \neq \varnothing$.

If $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.
Proof. First suppose that $\operatorname{supp}(\mu) \cup \operatorname{supp}(\nu) \subset S$. Take $a \in L^{*} \cap \operatorname{int}\left(S^{\circ}\right)$ and $b \notin L^{*}$ with $|b|$ small enough so that $a \pm b \in S^{\circ}$. Then, since $S^{\circ} \subset C_{\mu} \cap C_{\nu}$, Theorem 2.1 applies.

Now consider the general case, and note that for $L \in \mathscr{L}$ close enough to $L^{*}$, we have $L \cap \operatorname{int}\left(S^{\circ}\right) \neq \varnothing$. Pick $y \in L \cap \operatorname{int}\left(S^{\circ}\right)$. Then $y \cdot t<0$ for all $t \in S \backslash\{0\}$, and $y \cdot t>0$ for all $t \in-S \backslash\{0\}$, therefore $\pi_{L}(S \backslash\{0\}) \cap \pi_{L}(-S \backslash\{0\})=\varnothing$. Now let $\mu^{(1)}$ and $\mu^{(2)}$ be the restrictions $\mu^{(1)}=\mu \mid(S \backslash\{0\})$ and $\mu^{(2)}=\mu \mid(-S \backslash\{0\})$, and define $\nu^{(1)}$ and $\nu^{(2)}$ likewise. Defining the projections just as for probability measures, we have $\operatorname{supp}\left(\mu_{L}^{(1)}\right) \cap \operatorname{supp}\left(\mu_{L}^{(2)}\right)=\varnothing$, and similarly for $\nu$, hence $\mu_{L}^{(1)}=\nu_{L}^{(1)}$ and $\mu_{L}^{(2)}=\nu_{L}^{(2)}$. Thus the above special case implies that $\mu^{(1)}=\nu^{(1)}$ and $\mu^{(2)}=\nu^{(2)}$. Finally, since $\mu$ and $\nu$ necessarily coincide on $\{0\}$, we conclude that $\mu=\nu$.

By relaxing the condition on $C_{\mu} \cap C_{\nu}$ and strengthening the condition on $\mathscr{L}$, we obtain the following companion to Theorem 2.1. Again the proof is presented in the next section.

Theorem 2.5. Let $\mu$ and $\nu$ be Bord probability measures on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of ( $d-1$ )-dimensional subspaces of $\mathbb{R}^{d}$. Assume that the following hold.
(i) $\mathscr{L}$ has positive measure (in the unit sphere of $\mathbb{R}^{d}$ ).
(ii) There exists $c \in C_{\mu} \cap C_{\nu}, c \neq 0$.

If $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.
Remarks.
(a) Clearly condition (i) in Theorem 2.5 could be replaced by the weaker condition that the closure of $\mathscr{\ell}$ has positive measure.
(b) Since $C_{\mu} \cap C_{\nu}$ is convex and contains 0 , condition (ii) is satisfied if and only if $C_{\mu} \cap C_{\nu}$ contains a nontrivial segment.

Corollary 2.6. Let $\mu$ and $\nu$ beBorel probability measures on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of ( $d-1$ )-dimensional subspaces of $\mathbb{R}^{d}$. Suppose that $\mathscr{L}$ has positive measure and that $\operatorname{supp}(\mu) \cup \operatorname{supp}(\nu) \subset H$, where $H$ is a half-space of $\mathbb{R}^{d}$. If $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Proof. Let $H=\left\{x \in \mathbb{R}^{d}: c \cdot x \leq \alpha\right\}$ for some $c \in \mathbb{R}^{d}, c \neq 0$ and $\alpha \in \mathbb{R}$. Then $c \in C_{\mu} \cap C_{\nu}$, and therefore Theorem 2.5 applies.
3. Proofs of the main theorems. Throughout this section, we assume that $\mu$ and $\nu$ are Borel probability measures on $\mathbb{R}^{d}$. Moreover, $\mathscr{L}$ is assumed to be an infinite family of $(d-1)$-dimensional subspaces such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$. Set $\psi(t)=\phi_{\mu}(t)-\phi_{\nu}(t), t \in \mathbb{R}^{d}$. Originally defined on $\mathbb{R}^{d}, \psi$ can be extended to a subset of $\mathbb{C}^{d}$. Indeed, if $t \in \mathbb{R}^{d}$ and $u \in C_{\mu} \cap C_{\nu}$, we can write

$$
\psi(t-i u)=\int_{\mathbb{R}^{d}} e^{i(t-i u) \cdot x} d(\mu-\nu)(x)=\int_{\mathbb{R}^{d}} e^{i t \cdot x} e^{u \cdot x} d(\mu-\nu)(x)
$$

Two lemmas are needed for the proof of Theorem 2.1.
Lemma 3.1. If $L \in \mathscr{L}$, then $\psi(t-i u)=0$ for all $t \in L$ and $u \in L \cap C_{\mu} \cap C_{\nu}$.
Proof. For all $t \in L$ and $u \in L \cap C_{\mu} \cap C_{\nu}$,

$$
\begin{aligned}
\psi(t-i u) & =\int_{\mathbb{R}^{d}} e^{i t \cdot x} e^{u \cdot x} d(\mu-\nu)(x) \\
& =\int_{\mathbb{R}^{d}} e^{i t \cdot \pi_{L}(x)} e^{u \cdot \pi_{L}(x)} d(\mu-\nu)(x) \\
& =\int_{\mathbb{R}^{d}} e^{i t \cdot y} e^{u \cdot y} d\left(\mu_{L}-\nu_{L}\right)(y) \\
& =0
\end{aligned}
$$

Lemma 3.2. Let $t, a, b \in \mathbb{R}^{d}$ and supposethat $a \pm b \in C_{\mu} \cap C_{\nu}$. Let $D=\{\zeta \in$ $\mathbb{C}:|\Im \zeta|<1\}$ and define $f: \bar{D} \rightarrow \mathbb{C}$ by

$$
f(\zeta)=\psi(t-i a-\zeta b), \quad \zeta \in \bar{D}
$$

Then $f$ is bounded and continuous on $\bar{D}$ and holomorphic on $D$.
Proof. We have

$$
\left|e^{i(t-i a-\zeta b) \cdot x}\right|=e^{a \cdot x} e^{(\Im \zeta) b \cdot x} \leq e^{(a+b) \cdot x}+e^{(a-b) \cdot x}, \quad \zeta \in \bar{D} .
$$

Since $a \pm b \in C_{\mu} \cap C_{\nu}$, it follows that

$$
|f(\zeta)| \leq \int_{\mathbb{R}^{d}}\left[e^{(a+b) \cdot x}+e^{(a-b) \cdot x}\right] d|\mu-\nu|(x)<\infty, \quad \zeta \in \bar{D}
$$

This shows that $f$ is well defined and bounded on $\bar{D}$. These inequalities also allow us to apply the dominated convergence theorem to deduce that $f$ is continuous on $\bar{D}$.

Now let $T$ be a triangle in $D$. By Fubini's theorem

$$
\int_{T} f(\zeta) d \zeta=\int_{\mathbb{R}^{d}} \int_{T} e^{i(t-i a-\zeta b) \cdot x} d \zeta d(\mu-\nu)(x)=0
$$

since the inner integral vanishes by virtue of Cauchy's theorem. As this holds for every such triangle $T$, M orera's theorem ([7], Theorem 10.17) implies that $f$ is holomorphic on $D$.

Proof of Theorem 2.1. Since $L^{*}$ is an accumulation point of $\mathscr{L}$, there exists a sequence $\left(L_{n}\right)$ in $\mathscr{L}$ such that $L_{n} \rightarrow L^{*}, L_{n} \neq L^{*}$ for all $n$. This means that there exist unit vectors $\left(u_{n}\right), u^{*}$ in $\mathbb{R}^{d}$ such that $L_{n}=u_{n}^{\perp}, L^{*}=u^{* \perp}$, $u_{n} \rightarrow u^{*}, u_{n} \neq u^{*}$ for all $n$.

Let $a, b$ be as in the statement of the theorem. Then $a \cdot u_{n} \rightarrow a \cdot u^{*}=0$ since $a \in L^{*}$, and $b \cdot u_{n} \rightarrow b \cdot u^{*} \neq 0$ since $b \notin L^{*}$. Thus if $n$ is large enough, then $b \cdot u_{n} \neq 0$ and $\left|\left(a \cdot u_{n}\right) /\left(b \cdot u_{n}\right)\right|<1$. Without loss of generality, we can suppose that this is true for all $n$. Put

$$
A_{n}=\left\{t \in \mathbb{R}^{d}: \frac{t \cdot u_{n}}{b \cdot u_{n}}=\frac{t \cdot u^{*}}{b \cdot u^{*}}\right\} .
$$

Since $u_{n} \neq u^{*}$, each $A_{n}$ is a $(d-1)$-dimensional subspace of $\mathbb{R}^{d}$.
Now fix $t \in \mathbb{R}^{d} \backslash \cup_{n} A_{n}$. By Lemma 3.2, if we define $D=\{\zeta \in \mathbb{C}:|\Im \zeta|<1\}$ and $f(\zeta)=\psi(t-i a-\zeta b), \zeta \in D$, then $f$ is holomorphic on $D$. Also, by Lemma 3.1, $f(\xi+i \eta)=0$ if there exists $L \in \mathscr{L}$ such that $t-\xi b \in L$ and $a+\eta b \in L \cap C_{\mu} \cap C_{\nu}$. Thus if we set

$$
\xi_{n}=\frac{t \cdot u_{n}}{b \cdot u_{n}} \quad \text { and } \quad \eta_{n}=-\frac{a \cdot u_{n}}{b \cdot u_{n}}
$$

then we have the following.
(i) $\left|\eta_{n}\right|<1$, so $\xi_{n}+i \eta_{n} \in D$;
(ii) $t-\xi_{n} b \in L_{n}$ and $a+\eta_{n} b \in L_{n} \cap C_{\mu} \cap C_{\nu}$, so $f\left(\xi_{n}+i \eta_{n}\right)=0$;
(iii) $\xi_{n}+i \eta_{n} \rightarrow \xi^{*} \in D$, where $\xi^{*}=\left(t \cdot u^{*}\right) /\left(b \cdot u^{*}\right)$;
(iv) $\xi_{n}+i \eta_{n} \neq \xi^{*}$ for all $n$, since we chose $t \notin \cup_{n} A_{n}$.

Therefore, by the principle of isolated zeros for holomorphic functions [7], Theorem 10.18, it follows that $f \equiv 0$ on $D$. In particular $f(0)=0$, which tells us that

$$
\psi(t-i a)=\int_{\mathbb{R}^{d}} e^{i t \cdot x} e^{a \cdot x} d(\mu-\nu)(x)=0, \quad t \in \mathbb{R}^{d} \backslash \bigcup_{n} A_{n} .
$$

Now put $d \lambda(x)=e^{a \cdot x} d(\mu-\nu)(x)$. Then $\lambda$ is a finite signed measure on $\left(\mathbb{R}^{d}, \mathscr{B}^{d}\right)$ whose Fourier transform vanishes on $\mathbb{R}^{d} \backslash \cup_{n} A_{n}$. As this set is dense in $\mathbb{R}^{d}$ and the Fourier transform is continuous, it follows that the latter vanishes on $\mathbb{R}^{d}$, and therefore $\lambda=0$. Since

$$
|\lambda|(B)=\int_{B} e^{a \cdot x} d|\mu-\nu|(x), \quad B \in \mathscr{B}^{d},
$$

we conclude that $\mu=\nu$.
We now proceed with three lemmas used in the proof of Theorem 2.5.
Lemma 3.3. Let $E$ be a Borel subset of the unit sphere of $\mathbb{R}^{d}$ of positive ( $d-1$ )-dimensional measure, and let $v_{1}, v_{2}$ be linearly independent vectors in $\mathbb{R}^{d}$. If

$$
F=\left\{\frac{u \cdot v_{1}}{u \cdot v_{2}}: u \in E, u \cdot v_{2} \neq 0\right\},
$$

then $F$ is a subset of $\mathbb{R}$ of positive onedimensional measure.

Proof. Since $E$ has positive ( $d-1$ )-dimensional measure in the sphere, it clearly follows that

$$
E_{1}=\{\lambda u: u \in E, \lambda>0\}
$$

has positive $d$-dimensional measure. As $v_{1}, v_{2}$ are linearly independent, we can extend them to a basis $v_{1}, v_{2}, \ldots, v_{d}$ of $\mathbb{R}^{d}$. Put

$$
E_{2}=\left\{\left(x \cdot v_{1}, x \cdot v_{2}, \ldots, x \cdot v_{d}\right): x \in E_{1}\right\} .
$$

Then $E_{2}$ has positive $d$-dimensional measure, since a linear isomorphism of $\mathbb{R}^{d}$ onto $\mathbb{R}^{d}$ maps sets of positive measure to sets of positive measure. Now put

$$
E_{3}=\left\{\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right) \in E_{2}: \xi_{2} \neq 0\right\}
$$

Then $E_{3}$ still has positive $d$-dimensional measure, because we have subtracted off a subset of a ( $d-1$ )-dimensional subspace. Finally let

$$
\boldsymbol{E}_{4}=\left\{\left(\xi_{1} / \xi_{2}, \xi_{2}, \ldots, \xi_{d}\right):\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right) \in E_{3}\right\} .
$$

Then $E_{4}$ also has positive $d$-dimensional measure, because the J acobian of the $\operatorname{map}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{d}\right) \rightarrow\left(\xi_{1} / \xi_{2}, \xi_{2}, \ldots, \xi_{d}\right)$ is nowhere zero on $E_{3}$ (see e.g., [7], Theorem 7.28).

Now, as is easily checked, $E_{4} \subset F \times \mathbb{R}^{d-1}$, and so it follows that $F$ must have positive one-dimensional measure.

Lemma 3.4. Let $t \in \mathbb{R}^{d}$ and $c \in C_{\mu} \cap C_{\nu}$. Let $D=\{\zeta \in \mathbb{C}: 0<\Im \zeta<1\}$ and define $f: \bar{D} \rightarrow \mathbb{C}$ by

$$
f(\zeta)=\psi(t-\zeta c), \quad \zeta \in \bar{D}
$$

Then $f$ is bounded and continuous on $\bar{D}$, and holomorphic on $D$.
Proof. Applying Lemma 3.2 with $a=b=c / 2$, we see that $\zeta^{\prime} \mapsto \psi(t-$ $i c / 2-\zeta^{\prime} c / 2$ ) is continuous and bounded on $\left\{\zeta^{\prime} \in \mathbb{C}:\left|\Im \zeta^{\prime}\right| \leq 1\right\}$, and hol omorphic on $\left\{\zeta^{\prime} \in \mathbb{C}\right.$ : $\left.\left|\Im \zeta^{\prime}\right|<1\right\}$. To conclude, it suffices to make the change of variable $\zeta=\zeta^{\prime} / 2+i / 2$.

Lemma 3.5. Let $D=\{\zeta \in \mathbb{C}: 0<\Im \zeta<1\}$, and let $f: \bar{D} \rightarrow \mathbb{C}$ be a function continuous on $\bar{D}$ and holomorphic on $D$. If $f(\xi)=0$ for all $\xi \in F$, where $F$ is a subset of $\mathbb{R}$ of positive onedimensional measure, then $f \equiv 0$ on $\bar{D}$.

Proof. Choose an interval $I \subset \mathbb{R}$ of length 1 such that $I \cap F$ has positive one-dimensional measure. Let $V$ be the open semidisc in $D$ whose base is $I$. Then there is a conformal mapping $\gamma$ of $V$ onto the unit disc $U$ which extends to a homeomorphism of their closures. Put $\tilde{f}=f \circ \gamma^{-1}$. Then $\tilde{f}$ is continuous on $\bar{U}$ and holomorphic on $U$, and $\tilde{f}=0$ on a subset of $\partial U$ [namely $\gamma(I \cap F)$ ] of positive one-dimensional measure. By [7], Theorem 17.18, it follows that $\tilde{f} \equiv 0$ on $U$ : in other words, $f \equiv 0$ on $V$. The principle of isolated zeros then implies that $f \equiv 0$ on $D$, hence, by continuity, on $D$ too.

Proof of Theorem 2.5. Choose $c$ as in the statement of the theorem, that is, $c \in C_{\mu} \cap C_{\nu}, c \neq 0$, and let $t \in \mathbb{R}^{d}, t$ not a multiple of $c$. By assumption, there is a subset $E$ of the unit sphere in $\mathbb{R}^{d}$ of positive $(d-1)$-dimensional measure such that $u^{\perp} \in \mathscr{L}$ for all $u \in E$. Set

$$
F=\left\{\frac{t \cdot u}{c \cdot u}: u \in E, c \cdot u \neq 0\right\} .
$$

Applying Lemma 3.3 with $v_{1}=t$ and $v_{2}=c$, we see that $F$ has positive one-dimensional measure.

Now put $D=\{\zeta \in \mathbb{C}: 0<\Im \zeta<1\}$ and define $f: \bar{D} \rightarrow \mathbb{C}$ by

$$
f(\zeta)=\psi(t-\zeta c), \quad \zeta \in \bar{D} .
$$

By Lemma 3.4, $f$ is continuous on $\bar{D}$ and holomorphic on $D$. Also, by Lemma $3.1 f(\xi)=0$ if $\xi \in \mathbb{R}$ and there exists $L \in \mathscr{L}$ such that $t-\xi c \in L$. It follows that $f(\xi)=0$ for all $\xi \in F$. Hence by Lemma 3.5, $f \equiv 0$ on $\bar{D}$. In particular $f(0)=0$, which tells us that $\psi(t)=\phi_{\mu}(t)-\phi_{\nu}(t)=0$. Since the characteristic functions $\phi_{\mu}$ and $\phi_{\nu}$ coincide everywhere except on the multiples of $c$, continuity of these functions implies that they are equal everywhere, and therefore $\mu=\nu$.
4. Two refinements.
4.1. Strong determination. All the theorems and corollaries of Section 2 are of the form: "Suppose that $\mu$ and $\nu$ both satisfy condition ( $C_{1}$ ), and that $\mathscr{L}$ satisfies condition $\left(C_{2}\right)$. If $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$." In this section we consider the following stronger type of determination: "Suppose that $\mu$ satisfies condition $\left(C_{1}\right)$ and that $\mathscr{L}$ satisfies condition $\left(C_{2}\right)$. If $\nu$ is a Borel probability measure such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$."

The two theorems of this section are easily deduced from the next lemma.
Lemma 4.1. Let $\mu$ and $\nu$ be Bord probability measures on $\mathbb{R}^{d}$. Suppose $\mathscr{L}$ is an infinite family of $(d-1)$-dimensional subspaces such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$. Then

$$
\operatorname{co}\left(C_{\mu} \cap \overline{\bigcup_{L \in \mathscr{A}} L}\right) \subset C_{\mu} \cap C_{\nu} .
$$

Proof. Take $t \in C_{\mu} \cap \overline{\bigcup_{L \in \mathscr{L}}}$. Then there exists a sequence $\left(L_{n}\right)$ in $\mathscr{L}$ such that $\operatorname{dist}\left(t, L_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. By compactness, some subsequence ( $L_{n_{j}}$ ) converges, say to $\tilde{L}$. Necessarily, $t \in \tilde{L}$. Now $\mu_{L_{n_{j}}}=\nu_{L_{n_{j}}}$ for all $j$, so $\phi_{\mu}(y)=\phi_{\nu}(y), y \in L_{n_{j}}, j \geq 1$, and by continuity $\phi_{\mu}(y) \xlongequal{=} \phi_{\nu}(y), y \in \tilde{L}$, which implies that $\mu_{\tilde{L}}=\nu_{\tilde{L}}$. Hence, since $t \in \tilde{L}$,

$$
\int_{\mathbb{R}^{d}} e^{t \cdot x} d \nu(x)=\int_{\tilde{L}} e^{t \cdot y} d \nu_{\tilde{L}}(y)=\int_{\tilde{L}} e^{t \cdot y} d \mu_{\tilde{L}}(y)=\int_{\mathbb{R}^{d}} e^{t \cdot x} d \mu(x),
$$

and this last integral is finite because $t \in C_{\mu}$. Thus we have shown that $C_{\mu} \cap \overline{\bigcup_{L \in \mathscr{\ell}} L} \subset C_{\mu} \cap C_{\nu}$. Finally, as $C_{\mu} \cap C_{\nu}$ is convex, it contains the convex hull of $C_{\mu} \cap \overline{\bigcup_{L \in \mathscr{A}} L}$.

As an immediate consequence, we deduce the following strong-determination version of Theorem 2.1.

Theorem 4.2. Let $\mu$ be a Borel probability measure on $\mathbb{R}^{d}$. Let $\mathscr{L}$ be an infinite family of $(d-1)$-dimensional subspaces of $\mathbb{R}^{d}$. Assume that $\mathscr{L}$ has an accumulation point $L^{*}$ such that there exist $a \in L^{*}$ and $b \notin L^{*}$ with $a \pm b \in$ $\operatorname{co}\left(C_{\mu} \cap \overline{\bigcup_{L \in \mathcal{A}}} L\right)$. If $\nu$ is a Borel probability measure on $\mathbb{R}^{d}$ such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.
"Strong" versions of Corollaries 2.2, 2.3 and 2.4 will now be stated, respectively, as Corollaries 4.3, 4.4 and 4.5.

Corollary 4.3. Suppose that $\mu$ has a finitemoment generating function in a neighborhood of the origin. Le $\mathscr{L}$ bean infinitefamily of $(d-1)$-dimensional subspaces of $\mathbb{R}^{d}$. If $\nu$ is a Bored probability measure on $\mathbb{R}^{d}$ such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Proof. By compactness, $\mathscr{L}$ has an accumulation point $L^{*}$. By hypothesis, for some $\delta>0,\{y:|y| \leq \delta\} \subset C_{\mu}$. Take then $a=0$, and $b \in L \backslash L^{*}$ with $|b| \leq \delta$, where $L$ is any element of $\mathscr{L}, L \neq L^{*}$.

Corollary 4.4. Let $\mu$ be a Borel probability measure on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of ( $d-1$ )-dimensional subspaces of $\mathbb{R}^{d}$. Suppose that there exist an accumulation point $L^{*}$ of $\mathscr{L}$ and a onedimensional subspace $J \nsubseteq L^{*}$, such that $J \subset \overline{\bigcup_{L \in \mathcal{A}} L}$ and $\mu_{J}$ has a finite moment generating function in a neighborhood of the origin. If $\nu$ is a Borel probability measure on $\mathbb{R}^{d}$ such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Proof. Let $\delta>0$ be such that $\int_{J} e^{t \cdot x} d \mu_{J}(x)<\infty$ for all $t \in J,|t| \leq \delta$. In Theorem 4.2 we take $a=0$ and $b \in J,|b| \leq \delta$.

Remark. Corollary 4.4 can also be seen as the special case of Corollary 2.3 where $J \subset \overline{\bigcup_{L \in \mathscr{A}} L}$.

Corollary 4.5. Let $\mu$ be a Borel probability measure on $\mathbb{R}^{d}$ and let $\mathscr{\ell}$ be an infinite family of ( $d-1$ )-dimensional subspaces of $\mathbb{R}^{d}$. Suppose that there exists a set $S$ in $\mathbb{R}^{d}$ such that $\operatorname{supp}(\mu) \subset S \cup(-S)$. Suppose also that $\mathscr{\ell}$ has an accumulation point $L^{*}$ and that there exist subspaces $L_{1}$ and $L_{2}$ in $\mathscr{L}$, such that we can draw within $\operatorname{int}\left(S^{\circ}\right)$ a segment which meets $L^{*}$ and whose endpoints belong, respectively, to $L_{1} \backslash L^{*}$ and $L_{2} \backslash L^{*}$. If $\nu$ is a Borel probability measure on $\mathbb{R}^{d}$ such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Proof. The hypotheses imply that there exist $a \in L^{*}$ and $b \notin L^{*}$ such that $a+\alpha b \in L_{1} \cap \operatorname{int}\left(S^{\circ}\right), a-\beta b \in L_{2} \cap \operatorname{int}\left(S^{\circ}\right)$ for some $\alpha, \beta>0$. Without loss of generality, we may suppose that $\beta \leq \alpha$. Take $\lambda=(1+\beta / \alpha) / 2$ and $c=(\lambda-1) a+\beta b$. Then $\lambda a \in L^{*}$ and $c \notin L^{*}$. Moreover, it can be seen that
$\lambda a+c=(a+\alpha b) \beta / \alpha \in L_{1} \cap \operatorname{int}\left(S^{\circ}\right)$ and $\lambda a-c=a-\beta b \in L_{2} \cap \operatorname{int}\left(S^{\circ}\right)$. Therefore $\lambda a \pm c \in C_{\mu} \cap \overline{\bigcup_{L \in \mathscr{\ell}} L}$. We can now apply Theorem 4.2 with $a$ replaced by $\lambda a$ and $b$ by $c$.

Next, we state strong-determination versions of Theorem 2.5 and Corollary 2.6. The proof of the theorem is a straightforward application of Lemma 4.1.

Theorem 4.6. Let $\mu$ be a Borel probability measure on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of $(d-1)$-dimensional subspaces of $\mathbb{R}^{d}$. Suppose that we have the following.
(i) $\mathscr{L}$ has positive measure (in the unit sphere of $\mathbb{R}^{d}$ ).
(ii) There exists $c \in \operatorname{co}\left(C_{\mu} \cap \overline{\bigcup_{L \in \mathcal{A}} L}\right), c \neq 0$.

If $\nu$ is a Bord probability measure on $\mathbb{R}^{d}$ such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Remark. J ust as noted in remark (a) following Theorem 2.5, condition (i) in Theorem 4.6 could be replaced by the weaker condition that the closure of $\mathscr{L}$ has positive measure.

Corollary 4.7. Let $\mu$ be a Borel probability measure on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of $(d-1)$-dimensional subspaces of $\mathbb{R}^{d}$. Suppose that $\mathscr{L}$ has positive measure and that $\operatorname{supp}(\mu) \subset H$, where $H$ is a half-space $\{x \in$ $\left.\mathbb{R}^{d}: c \cdot x \leq \alpha\right\}$ for some $c \in \overline{\bigcup_{L \in \mathscr{A}} L} \backslash\{0\}$ and $\alpha \in \mathbb{R}$. If $\nu$ is a Borel probability measure on $\mathbb{R}^{d}$ such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Proof. The hypotheses imply that $c \in C_{\mu} \cap \overline{\bigcup_{L \in \mathscr{A}} L}$, hence Theorem 4.6 applies.

Remark. In all the theorems considered thus far, the sets $C_{\mu}$ and $C_{\nu}$ are nontrivial. Yet, it is possible to exhibit an example of weak determination where no such assumption is made. Indeed, suppose that $\mu$ and $\nu$ are spherically symmetric probability measures on $\mathbb{R}^{d}$ (possibly with $C_{\mu}=C_{\nu}=\{0\}$ ). In this case, it is plain that if $\mu_{L}=\nu_{L}$ for at least one nontrivial subspace $L$, then $\mu=\nu$. It would be interesting to see if more could be said for the case where $C_{\mu}=C_{\nu}=\{0\}$.
4.2. Conditions involving quasi-analyticity. The proofs of Section 3 relied heavily on two tools: the analyticity of an extension of the characteristic function and the principle of isolated zeros. In fact, the critical property that we needed in these proofs was that an analytic function is determined in its domain once we know its value and the values of its derivatives at some fixed point of the domain. Functions belonging to quasi-analytic classes have the same property without necessarily being analytic.

To define quasi-analytic classes, let ( $M_{n}$ ) be a sequence of positive numbers and let $C\left\{M_{n}\right\}$ denote the class of all complex-valued functions $f \in C^{\infty}(\mathbb{R})$ satisfying the inequalities

$$
\sup _{x \in \mathbb{R}}\left|f^{(n)}(x)\right| \leq \beta_{f} B_{f}^{n} M_{n}, \quad n \geq 0,
$$

for some positive constants $\beta_{f}$ and $B_{f}$ depending on $f$ but not on $n$. A class $C\left\{M_{n}\right\}$ is said to be quasi-analytic if, given any $x_{0} \in \mathbb{R}$ and $f \in C\left\{M_{n}\right\}$, the condition $f^{(n)}\left(x_{0}\right)=0$ for all $n \geq 0$ implies that $f \equiv 0$ [7], Definition 19.8. Note that a complex-valued function belongs to $C\left\{M_{n}\right\}$ if and only if both its real and imaginary parts do.

Functions belonging to $C\left\{M_{n}\right\}$ are bounded. Within the class of complexvalued functions, $C\{n!\}$ coincides with the class of functions $f$ to which there corresponds a $\delta>0$ such that that $f$ can be extended to a bounded holomorphic functions in the strip defined by $\{z \in \mathbb{C}:|\Im z|<\delta\}$ ([7], Theorem 19.9). Example 4.10 will show that there exists a non-analytic characteristic function belonging to a quasi-analytic class.

The following lemma extends to functions belonging to quasi-analytic classes a well-known property of analytic functions.

Lemma 4.8. Let $f_{1}$ and $f_{2}$ be two functions belonging to the same quasianalytic class $C\left\{M_{n}\right\}$. If $\left(x_{j}\right)$ is a bounded sequence of distinct points of $\mathbb{R}$ such that $f_{1}\left(x_{j}\right)=f_{2}\left(x_{j}\right)$ for all $j$, then $f_{1} \equiv f_{2}$.

Proof. Write $f=f_{1}-f_{2}$, and let $x_{0} \in \mathbb{R}$ be the limit of some subsequence $\left(x_{j_{k}}\right)$. Then $f\left(x_{0}\right)=f\left(x_{j_{k}}\right)=0$ for all $k$, implying that $f^{\prime}\left(x_{0}\right)=0$. By repeated application of Rolle's theorem to the real and imaginary parts of $f$ and its derivatives, it follows that $f^{(n)}\left(x_{0}\right)=0$ for all $n \geq 0$. Since $f_{1}$ and $f_{2}$ belong to the same quasi-analytic class, it follows that they necessarily coincide.

The following theorem is a strong-determination anal ogue of Corollary 2.3. First, we recall that if $\left(m_{n}\right)$ is the sequence of moments of a Borel probability measure $\lambda$ on $\mathbb{R}$, then $\left(m_{n}\right)$ is said to satisfy the Carleman condition if $\sum_{n}\left(m_{2 n}\right)^{-1 / 2 n}=\infty$. It is known that the Carleman condition is sufficient to ensure that $\lambda$ is determined by its moments ([8], page 19).

Theorem 4.9. Let $\mu$ be a Borel probability measure on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of $(d-1)$-dimensional subspaces of $\mathbb{R}^{d}$. Supposethat there exist an accumulation point $L^{*}$ of $\mathscr{L}$ and a onedimensional subspace $J \nsubseteq L^{*}$, such that $\mu_{J}$ has finite moments of all orders satisfying the Carleman condition. If $\nu$ is a Bord probability measure on $\mathbb{R}^{d}$ such that $\mu_{J}=\nu_{J}$ and $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then $\mu=\nu$.

Proof. Without loss of generality, we may assume that

$$
J=\{(\overbrace{0, \ldots, 0}^{d-1}, s): s \in \mathbb{R}\} .
$$

Let us show that for every $r \in \mathbb{R}^{d-1}$ the function $s \rightarrow \phi_{\mu}(r, s)$ belongs to a quasi-analytic class. Indeed $\phi_{\mu}(r, s)=E\left[e^{i(r \cdot U+s V)}\right]$, where $U$ and $V$ are respectively $(d-1)$-dimensional and one-dimensional random vectors, and ( $U, V$ ) has the probability distribution $\mu$. Writing $M_{n}=E\left[|V|^{n}\right], \phi_{\mu}(r, s)$ is infinitely differentiable in $s$ and

$$
\sup _{s \in \mathbb{R}}\left|\frac{\partial^{n} \phi_{\mu}}{\partial s^{n}}(r, s)\right| \leq M_{n}, \quad n \geq 0
$$

meaning that, for all $r \in \mathbb{R}^{d-1}$, the function $s \mapsto \phi_{\mu}(r, s)$ belongs to the class $C\left\{M_{n}\right\}$. Since the sequence of moments satisfies the Carleman condition, the Denjoy-Carleman theorem ([7], Theorem 19.11) implies that $C\left\{M_{n}\right\}$ is a quasi-analytic class.

Since $\mu_{J}=\nu_{J}$, in the same way as above it can be shown that $s \mapsto \phi_{\nu}(r, s)$ belongs to $C\left\{M_{n}\right\}$ for every $r \in \mathbb{R}^{d-1}$. In $\mathbb{R}^{d-1} \times \mathbb{R}$, choose $\left(r^{*}, s^{*}\right) \in L^{*}$ where $r^{*} \neq 0$, and assume that $\left(L_{j}\right)$ is a sequence of distinct elements of $\mathscr{L}$ converging to $L^{*}$. For each $j$ we can find $s_{j} \in \mathbb{R}$ such that $\left(r^{*}, s_{j}\right) \in L_{j}$ and $\left(r^{*}, s_{j}\right) \rightarrow\left(r^{*}, s^{*}\right)$. Since by hypothesis $\phi_{\mu}\left(r^{*}, s_{j}\right)=\phi_{\nu}\left(r^{*}, s_{j}\right)$ for all $j$, Lemma 4.8 implies that $\phi_{\mu}\left(r^{*}, \cdot\right) \equiv \phi_{\nu}\left(r^{*}, \cdot\right)$. This being true for every nonzero $r^{*}$, we conclude that $\mu=\nu$.

Example 4.10. This example will show that Theorem 4.9 sometimes applies when Corollary 2.3 does not. Let $\mu$ be the probability distribution of a pair $(X, Y)$ of random variables, where $Y$ has moments satisfying the Carleman condition and a moment generating function which is infinite for all $t>0$. For the existence of such a distribution, see for example [9], page 95. Let $J$ be the $y$-axis, and let $\nu$ be a Borel probability measure on $\mathbb{R}^{2}$ such that $\mu_{J}=\nu_{J}$. Suppose that $\mathscr{L}$ is an infinite family of one-dimensional subspaces such that $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, and that there exists an accumulation point $L^{*} \neq J$. Then the hypotheses of Theorem 4.9 are fulfilled but those of Corollary 2.3 are not. Note also that the characteristic function of the distribution of $Y$ is nonanalytic, and yet it belongs to the quasi-analytic class $C\left\{M_{n}\right\}$, where $M_{n}$ is the absolute moment of order $n$ of $Y$.

Finally, let us mention the following strong determination theorem obtained by Gilbert for Borel probability measures on $\mathbb{R}^{2}$ that are determined by their moments. Inasmuch as the proof does not use analyticity or quasi-analyticity, this theorem stands alone among all results about nondiscrete probability measures. The extension to $\mathbb{R}^{d}$ is straightforward.

Theorem 4.11 (Gilbert, [3], page 196). Let $\mu$ be a Borel probability measure on $\mathbb{R}^{d}$ having finitemoments of all orders, and assumethat these moments determine $\mu$. Let $\mathscr{L}$ be an infinite family of ( $d-1$ )-dimensional subspaces of $\mathbb{R}^{d}$. If $\nu$ is a Borel probability measure such that $\mu_{L}=\nu_{L}$ for all $L \in \mathscr{L}$, then $\mu=\nu$.

In view of Gilbert's theorem, one may ask the following question: does The orem 4.9 still hold if we merely assume that $\mu_{J}$ is determined by its moments? Example 5.3 in the next section provides a partial answer. That example will show that Theorem 4.9 is sharp in the following sense: if $\lambda$ is a Borel probability measure on $\mathbb{R}^{d}$ whose moments do not satisfy the Carleman condition, then there exist Borel probability measures $\mu$ and $\nu$ on $\mathbb{R}^{d}$, with moments bounded by those of $\lambda$, such that $\mu_{L}=\nu_{L}$ for infinitely many $L$, but $\mu \perp \nu$.

## 5. Counterexamples.

Example 5.1. Ferguson (private communication) presented the following example to illustrate the fact that distinct Borel probability measures on $\mathbb{R}^{2}$ may have infinitely many identical projections. Let $\mu$ be the probability distribution of a vector of the form $(W, W)$, where $W$ is a standard Cauchy random variable. Let $\nu$ be the probability distribution of a vector of two independent standard Cauchy random variables. Then, for $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$,

$$
\phi_{\mu}\left(t_{1}, t_{2}\right)=e^{-\left|t_{1}+t_{2}\right|} \quad \text { and } \quad \phi_{\nu}\left(t_{1}, t_{2}\right)=e^{-\left|t_{1}\right|-\left|t_{2}\right|},
$$

so that $\phi_{\mu}\left(t_{1}, t_{2}\right)=\phi_{\nu}\left(t_{1}, t_{2}\right)$ if $t_{1}$ and $t_{2}$ have the same sign. Therefore, if $\mathscr{L}$ is the infinite family of straight lines through the origin filling the first and the third quadrants, then $\mu_{L}=\nu_{L}$ for all $L \in \mathscr{L}$. However $\mu \neq \nu$.

This example actually shows that we may have weak determination without having strong determination. To see this, let $J=\{(x,-x): x \in \mathbb{R}\}$. Then $\mu_{J}=\delta_{0}$, and therefore $\mu_{J}$ has a finite moment generating function. Thus, if the condition $\left(C_{1}\right)$ on $\mu$ mentioned at the beginning of Section 4 is that $\mu_{J}$ has a finite moment generating function and if the condition $\left(C_{2}\right)$ is that no accumulation point $L^{*}$ of $\mathscr{L}$ contains $J$, then we do not have strong determination. On the other hand, if $\tau$ is a Borel probability measure such that $\tau_{J}$ has a finite moment generating function in the neighborhood of the origin and $\mu_{L}=\tau_{L}$ for all $L \in \mathscr{L}$, then Corollary 2.3 implies that $\mu=\tau$.

Example 5.2. This counterexample will show that several of the results of Section 2 may fail if some of their hypotheses are not satisfied. Again the construction is based on the example of Ferguson already used in Example 5.1. Let $X$ be a two-dimensional random vector whose components are independent standard Cauchy random variables, and let $Y$ be a two-dimensional random vector of the form ( $W, W$ ), where $W$ is a standard Cauchy random variable. Let $Z$ be a nonnegative random variable, independent of $X$ and $Y$, and denote by $\mu$ and $\nu$, respectively, the probability distributions of ( $X, Z$ ) and $(Y, Z)$. Then, for $\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{R}^{3}$,

$$
\phi_{\mu}\left(t_{1}, t_{2}, t_{3}\right)=e^{-\left|t_{1}\right|-\left|t_{2}\right|} \phi_{Z}\left(t_{3}\right) \quad \text { and } \quad \phi_{\nu}\left(t_{1}, t_{2}, t_{3}\right)=e^{-\left|t_{1}+t_{2}\right|} \phi_{Z}\left(t_{3}\right),
$$

so that $\phi_{\mu}\left(t_{1}, t_{2}, t_{3}\right)=\phi_{\nu}\left(t_{1}, t_{2}, t_{3}\right)$ if and only if $t_{1}$ and $t_{2}$ have the same sign. Write $A=\left\{\left(t_{1}, t_{2}, 0\right) \in \mathbb{R}^{3}: t_{i} \geq 0, i=1,2\right\}$. To each $a \in A$ there corresponds the subset of the unit sphere

$$
B_{a}=a^{\perp} \cap\left(\mathbb{R}^{2} \times\{0\}\right) \cap\{x:|x|=1\} .
$$

Let $B=\bigcup_{a \in A} B_{a}$. For each $b \in B$, write $L_{b}=\left\{u \in \mathbb{R}^{3}: u \cdot b=0\right\}$. Then, according to Corollary 1.2, the foregoing comparison of $\phi_{\mu}$ and $\phi_{\nu}$ shows that $\mu_{L}=\nu_{L}$ for all $L \in \mathscr{L}$, where $\mathscr{L}=\left(L_{b}\right)_{b \in B}$. Since $B \subset \mathbb{R}^{2} \times\{0\}, \mathscr{L}$ is an infinite null set in the unit sphere of $\mathbb{R}^{3}$, which is why Theorem 2.5 does not apply. Furthermore, take $L^{*}$ to be any accumulation point of $\mathscr{L}$. Then, this example also shows that Theorem 2.1 may fail if $a, b$ both belong to $L^{*}$. Next, let

$$
J=\left\{\left(0,0, t_{3}\right): t_{3} \in \mathbb{R}\right\} .
$$

We note that $J \subset L^{*}$. Then, if $Z$ has a finite moment generating function in a neighborhood of the origin, $\mu_{J}=\nu_{J}$ has finite moment generating function, but Corollary 2.3 fails. Finally $\operatorname{supp}(\mu) \cup \operatorname{supp}(\nu) \subset S$, where $S=\left\{t \in \mathbb{R}^{3}: t_{3} \geq 0\right\}$, but $L^{*} \cap \operatorname{int}\left(S^{\circ}\right)=\varnothing$ and Corollary 2.4 fails.

Example 5.3. Thus far, we have presented two examples of pairs of distinct probability measures having infinitely many identical projections: the example of Gilbert, mentioned in Section 1, and the example of Ferguson used in Examples 5.1 and 5.2. In both cases the characteristic functions of the measures are nondifferentiable at 0 , and therefore the measures do not have finite moments. Our third example exhibits two Borel probability measures that are mutually singular, even though infinitely many of their $(d-1)$-dimensional projections coincide and all their moments are finite and coincide.

First we recall some notation and terminology associated with derivatives of functions of $d$ variables. A multiindex is an ordered $d$-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ of nonnegative integers. Each multiindex determines a differential operator

$$
\partial^{\alpha}=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{d}}\right)^{\alpha_{d}}
$$

whose order is $|\alpha|=\sum_{1}^{d} \alpha_{i}$. If $|\alpha|=0$, we define $\partial^{\alpha} f=f$. Moreover, for $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$ we write $x^{\alpha}=\prod_{i=1}^{d} x_{i}^{\alpha_{i}}$.

Theorem 5.4. Let $K$ be a closed ball in $\mathbb{R}^{d}$ such that $0 \notin K$, and let ( $M_{n}$ ) bea positive sequence satisfying

$$
\begin{equation*}
M_{0}=1, \quad M_{n}^{2} \leq M_{n-1} M_{n+1}, \quad n \geq 1 \quad \text { and } \quad \sum_{n=1}^{\infty} M_{n}^{-1 / n}<\infty . \tag{*}
\end{equation*}
$$

Then there exist Borel probability measures $\mu$ and $\nu$ on $\mathbb{R}^{d}$ with $\mu \perp \nu$ such that
(i) $\mu_{L}=\nu_{L}$ for all ( $d-1$ )-dimensional subspaces $L$ with $L \cap K=\varnothing$;

$$
\begin{equation*}
\max \left\{\left(\int|x|^{2 n} d \mu(x)\right)^{1 / 2},\left(\int|x|^{2 n} d \nu(x)\right)^{1 / 2}\right\} \leq M_{n} \quad \text { for all } n \geq 0 ; \tag{ii}
\end{equation*}
$$

(iii) $\int x^{\alpha} d \mu(x)=\int x^{\alpha} d \nu(x)$ for every multiindex $\alpha$.

The proof will follow from three technical lemmas. First, we recall that if $f \in L^{1}\left(\mathbb{R}^{d}\right)$, its Fourier transform is defined as

$$
\widehat{f}(t)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} e^{-i t \cdot x} f(x) d x, \quad t \in \mathbb{R}^{d}
$$

Lemma 5.5. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function satisfying: $f \geq 0, f \in C^{\infty}, S=$ $\operatorname{supp}(f)$ is compact and $0 \notin S+S$. Let $\sigma$ be the signed Bord measure on $\mathbb{R}^{d}$ defined by

$$
\sigma(B)=\int_{B} \Re\left(\widehat{f}(x)^{2}\right) d x, \quad B \in \mathscr{B}^{d} .
$$

Then we have the following.
(a) $\widehat{\sigma} \in L^{1}\left(\mathbb{R}^{d}\right)$ and $\|\widehat{\sigma}\|_{1}=\|f\|_{1}^{2}$, where $\widehat{\sigma}$ is the Fourier transform of $\Re\left(\widehat{f}(x)^{2}\right)$ and $\|\cdot\|_{1}$ denotes the $L^{1}$ norm;
(b) $\widehat{\sigma}=0$ outside $(S+S) \cup-(S+S)$;
(c) For each multiindex $\alpha, \int x^{2 \alpha} d|\sigma|(x) \leq\left\|\partial^{\alpha} f\right\|_{2}^{2}<\infty$, where $\|\cdot\|_{2}$ denotes the $L^{2}$ norm;
(d) For each multiindex $\alpha, \int x^{\alpha} d \sigma(x)=0$.

Proof. The key observation is that

$$
\widehat{\sigma}=\frac{1}{2}\left(\widehat{f}^{2}+\overline{\widehat{f}^{2}}\right) \widehat{=}=\frac{1}{2}\left((f * f) \widehat{+} \overline{(f * f)^{\top}}\right) \widehat{=}=\frac{1}{2}\left((f * f)^{\sim}+(f * f)\right),
$$

where $(f * f)^{\sim}(t) \equiv(f * f)(-t)$.
(a) Since $f$ and $f * f$ are nonnegative,

$$
\begin{aligned}
\|\widehat{\sigma}\|_{1}=\frac{1}{2}\left\|(f * f)^{\sim}+(f * f)\right\|_{1} & =\frac{1}{2}\left(\left\|(f * f)^{\sim}\right\|_{1}+\|(f * f)\|_{1}\right) \\
& =\|f * f\|_{1}=\|f\|_{1}^{2} .
\end{aligned}
$$

(b) Note that $\operatorname{supp}(f * f) \subset S+S$ and $\operatorname{supp}\left((f * f)^{\sim}\right) \subset-(S+S)$. Therefore $\operatorname{supp}(\widehat{\sigma}) \subset(S+S) \cup-(S+S)$.
(c) The inequality follows from

$$
\begin{aligned}
\int x^{2 \alpha} d|\sigma|(x) & =\int x^{2 \alpha}\left|\Re\left(\widehat{f}(x)^{2}\right)\right| d x \\
& \leq \int x^{2 \alpha}|\widehat{f}(x)|^{2} d x=\left\|x^{\alpha} \widehat{f}(x)\right\|_{2}^{2}=\left\|\left(\partial^{\alpha} f\right) \widehat{)}\right\|_{2}^{2}=\left\|\partial^{\alpha} f\right\|_{2}^{2},
\end{aligned}
$$

where the last equality is a consequence of Plancherel's theorem.
(d) This part follows from parts (b) and (c) by means of the argument used by Gilbert in proving Theorem 4.11.

Lemma 5.6. Let ( $M_{n}$ ) be a positive sequence satisfying (*). There exists a positive constant $D$ such that

$$
\frac{M_{r}}{r!} \leq \frac{M_{s}}{s!} D^{s-r}, \quad r \leq s
$$

Proof. The conditions on the sequence ( $M_{n}$ ) imply ([7], Theorem 19.11) that

$$
\frac{M_{n-1}}{M_{n}} \geq \frac{M_{n}}{M_{n+1}} \quad \text { and } \quad \sum_{n} \frac{M_{n-1}}{M_{n}}<\infty .
$$

Thus if we put $a_{n}=M_{n-1} / M_{n}$, then $\left(a_{n}\right)$ is a positive decreasing sequence and $\sum_{n} a_{n}<\infty$. This implies $n a_{n} \rightarrow 0$, and in particular $\left(n a_{n}\right)$ is bounded, say by $D$. Therefore $a_{n} \leq D / n$ for all $n$, so $M_{n-1} / M_{n} \leq D / n$ for all $n$, and finally

$$
\frac{M_{r}}{M_{s}}=\frac{M_{r}}{M_{r+1}} \frac{M_{r+1}}{M_{r+2}} \cdots \frac{M_{s-1}}{M_{s}} \leq \frac{D}{r+1} \frac{D}{r+2} \cdots \frac{D}{s}=\frac{r!}{s!} D^{s-r} .
$$

Lemma 5.7. Fix $p \in \mathbb{R}^{d}$ and $r>0$. Let $B(p, r)$ denote the closed ball of radius $r$ centered at $p$. Let ( $M_{n}$ ) be a positive sequence satisfying ( $*$ ). Then there exists $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $f \geq 0, f \in C^{\infty}, f(p)>0, \operatorname{supp}(f) \subset B(p, r)$ and

$$
\left\|\frac{\partial^{n} f}{\partial x_{j}^{n}}\right\|_{2} \leq C_{0} C_{1}^{n} M_{n}, \quad n \geq 0, j=1, \ldots, d
$$

for some constants $C_{0}, C_{1}$.
Proof. By [7], Theorem 19.10, there exists $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $\phi \geq 0$, $\phi \in C^{\infty}, \operatorname{supp}(\phi) \subset(-1,1), \phi(0)>0$ and $\sup _{\mathbb{R}}\left|\phi^{(n)}(x)\right| \leq C_{0} C_{1}^{n} M_{n}, n \geq 1$, for some constants $C_{0}, C_{1}$. We shall define $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ by

$$
f(x)=\phi\left(\frac{|x-p|^{2}}{r^{2}}\right)=\phi\left(\frac{\sum_{1}^{d}\left(x_{j}-p_{j}\right)^{2}}{r^{2}}\right)
$$

Clearly $f \geq 0, f \in C^{\infty}, \operatorname{supp}(f) \subset B(p, r), f(p)>0$. We need to estimate the derivatives of $f$ and for this we recall the formula of Faà di Bruno for the $n$th derivative of the composition of two functions [6]. Suppose that $g, h \in C^{\infty}(\mathbb{R})$. Then

$$
\begin{aligned}
(h \circ g)^{(n)}(x)=\sum_{\substack{k_{1}, k_{2}, \ldots, k_{n} \\
k_{1}+2 k_{2}+\ldots+n k_{n}=n}} & {\left[\frac{n!}{k_{1}!k_{2}!\cdots k_{n}!} h^{\left(k_{1}+k_{2}+\cdots+k_{n}\right)}(g(x))\right.} \\
& \left.\times\left(\frac{g^{(1)}(x)}{1!}\right)^{k_{1}}\left(\frac{g^{(2)}(x)}{2!}\right)^{k_{2}} \cdots\left(\frac{g^{(n)}(x)}{n!}\right)^{k_{n}}\right] .
\end{aligned}
$$

For fixed $x_{2}, \ldots, x_{d}$, we shall apply this with $g\left(x_{1}\right)=r^{-2} \sum_{1}^{d}\left(x_{j}-p_{j}\right)^{2}$ and $h=\phi$. Happily, $g^{\prime \prime \prime}\left(x_{1}\right) \equiv 0$, so the formula simplifies to

$$
\frac{\partial^{n} f}{\partial x_{1}^{n}}(x)=\sum_{\substack{k_{1}, k_{2} \\ k_{1}+2 k_{2}=n}} \frac{n!}{k_{1}!k_{2}!} \phi^{\left(k_{1}+k_{2}\right)}\left(g\left(x_{1}\right)\right)\left(\frac{2\left(x_{1}-p_{1}\right)}{r^{2}}\right)^{k_{1}} \frac{1}{r^{2 k_{2}}} .
$$

Hence

$$
\begin{aligned}
\sup _{\mathbb{R}}\left|\frac{\partial^{n} f}{\partial x_{1}^{n}}(x)\right| & \leq \sum_{\substack{k_{1}, k_{2} \\
k_{1}+2 k_{2}=n}} \frac{n!}{k_{1}!k_{2}!} C_{0} C_{1}^{k_{1}+k_{2}} M_{k_{1}+k_{2}} \frac{2^{k_{1}}}{r^{n}} \\
& =M_{n} \sum_{\substack{k_{1}, k_{2} \\
k_{1}+2 k_{2}=n}} \frac{\left(k_{1}+k_{2}\right)!}{k_{1}!k_{2}!} \frac{M_{k_{1}+k_{2}}}{\left(k_{1}+k_{2}\right)!} \frac{n!}{M_{n}} C_{0} C_{1}^{k_{1}+k_{2}} \frac{2^{k_{1}}}{r^{n}} .
\end{aligned}
$$

Now, taking $D$ to be the constant guaranteed by Lemma 5.6,

$$
\sup _{\mathbb{R}}\left|\frac{\partial^{n} f}{\partial x_{1}^{n}}(x)\right| \leq M_{n} \sum_{\substack{k_{1}, k_{2} \\ k_{1}+2 k_{2}=n}} \frac{\left(k_{1}+k_{2}\right)!}{k_{1}!k_{2}!} D^{n-\left(k_{1}+k_{2}\right)} C_{0} C_{1}^{k_{1}+k_{2}} \frac{2^{k_{1}}}{r^{n}} .
$$

Next, increasing $l$ increases $\left(k_{1}+l\right)!/\left(k_{1}!l!\right)$, so

$$
\begin{aligned}
\sup _{\mathbb{R}}\left|\frac{\partial^{n} f}{\partial x_{1}^{n}}(x)\right| & \leq M_{n} \sum_{\substack{k_{1}, k_{2} \\
k_{1}+2 k_{2}=n}} \frac{\left(k_{1}+2 k_{2}\right)!}{k_{1}!\left(2 k_{2}\right)!} D^{n-\left(k_{1}+k_{2}\right)} C_{0} C_{1}^{k_{1}+k_{2}} \frac{2^{k_{1}}}{r^{n}} \\
& =C_{0}\left(\frac{D}{r}\right)^{n} M_{n} \sum_{\substack{k_{1}, k_{2} \\
k_{1}+2 k_{2}=n}} \frac{\left(k_{1}+2 k_{2}\right)!}{k_{1}!\left(2 k_{2}\right)!}\left(\sqrt{\frac{C_{1}}{D}}\right)^{2 k_{2}}\left(\frac{2 C_{1}}{D}\right)^{k_{1}} \\
& \leq C_{0}\left(\frac{D}{r}\right)^{n} M_{n} \sum_{k, l} \frac{n!}{k!l!}\left(\sqrt{\frac{C_{1}}{D}}\right)^{l}\left(\frac{2 C_{1}}{D}\right)^{k} \\
& =C_{0}\left(\frac{D}{r}\right)^{n}\left(\sqrt{\frac{C_{1}}{D}}+2 \frac{C_{1}}{D}\right)^{n} M_{n} \\
& =\tilde{C}_{0} \tilde{C}_{1}^{n} M_{n}
\end{aligned}
$$

say. Since

$$
\left\|\frac{\partial^{n} f}{\partial x_{1}^{n}}\right\|_{2} \leq \sup _{\mathbb{R}}\left|\frac{\partial^{n} f}{\partial x_{1}^{n}}(x)\right| \cdot(\operatorname{volume}(B(p, r)))^{1 / 2},
$$

a similar estimate holds for $\left\|\partial^{n} f /\left(\partial x_{1}^{n}\right)\right\|_{2}$. Finally, the same can be done for $\left\|\partial^{n} f /\left(\partial x_{j}^{n}\right)\right\|_{2}, j=2, \ldots, n$.

Proof of Theorem 5.4. Choose $p \in \mathbb{R}^{d}$ and $r>0$ such that $B(2 p, 2 r) \subset$ $K$. According to Lemma 5.7 there exists $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a function satisfying $f \geq 0$, $f \in C^{\infty}, f(p)>0, \operatorname{supp}(f)=S \subset B(p, r)$ and ( $\dagger$ ). Define

$$
\lambda_{1}(B)=\int_{B} \Re^{+}\left(\widehat{f}(x)^{2}\right) d x, \quad \lambda_{2}(B)=\int_{B} \Re^{-}\left(\widehat{f}(x)^{2}\right) d x, \quad B \in \mathscr{B}^{d} .
$$

Clearly $\lambda_{1}$ and $\lambda_{2}$ are positive measures on $\mathbb{R}^{d}$ with $\lambda_{1} \perp \lambda_{2}$, and $\lambda_{1}-\lambda_{2}=\sigma$, where $\sigma$ is as defined in Lemma 5.5. By part (b) of that lemma, $\widehat{\sigma}=\widehat{\lambda}_{1}-\widehat{\lambda}_{2}=0$
outside $(S+S) \cup-(S+S) \subset B(2 p, 2 r) \cup B(-2 p, 2 r) \subset K \cup(-K)$. By part (c), all the moments of $\lambda_{1}$ and $\lambda_{2}$ are finite, and by part (d) those of the same order coincide. Therefore $\lambda_{1}$ and $\lambda_{2}$ are finite measures and $\lambda_{1}\left(\mathbb{R}^{d}\right)=\lambda_{2}\left(\mathbb{R}^{d}\right)$.

Next, part (a) of Lemma 5.5 gives $\left\|\widehat{\lambda}_{1}-\widehat{\lambda}_{2}\right\|_{1}=\|f\|_{1}^{2}>0$, and so $\lambda_{1}$ and $\lambda_{2}$ are not the zero measure. Thus, we can define

$$
\mu(B)=\frac{\lambda_{1}(B)}{\lambda_{1}\left(\mathbb{R}^{d}\right)}, \quad \nu(B)=\frac{\lambda_{2}(B)}{\lambda_{2}\left(\mathbb{R}^{d}\right)}, \quad B \in \mathscr{B}^{d} .
$$

Therefore, applying Corollary 1.2, we obtain probability measures satisfying (i).

To obtain part (ii), we note that Lemma 5.5(c) implies that

$$
\begin{aligned}
\int|x|^{2 n} d \mu(x) & =\int\left(\sum_{1}^{d} x_{j}^{2}\right)^{n} d \mu(x) \leq \int\left(d \max _{j} x_{j}^{2}\right)^{n} d \mu(x) \\
& \leq d^{n} \int \sum_{1}^{d} x_{j}^{2 n} d \mu(x) \leq d^{n} \sum_{j=1}^{d}\left\|\frac{\partial^{n} f}{\partial x_{j}^{n}}\right\|_{2}^{2}
\end{aligned}
$$

The same inequalities can be derived for $\nu$. According to Lemma 5.7, this means that for some constants $C_{0}$ and $C_{1}$,

$$
\max \left\{\left(\int|x|^{2 n} d \mu(x)\right)^{1 / 2},\left(\int|x|^{2 n} d \nu(x)\right)^{1 / 2}\right\} \leq C_{0} C_{1}^{n} M_{n}
$$

In fact, without loss of generality, we may take $C_{0}=C_{1}=1$. Indeed, one can remove $C_{0}$ by increasing $C_{1}$ if necessary; as for $C_{1}$, if that constant is greater than 1 , it can be reduced to 1 by dilating $\mu$ and $\nu$ by an appropriate factor.

Part (iii) is an immediate consequence of Lemma 5.5(d).
6. Discrete measures. Rényi [5] investigated the problem of the determination of a discrete probability measure $\mu$ on $\mathbb{R}^{2}$ by a set of its projections. Attributing the proof of his result to Hajós, he stated that if $\operatorname{supp}(\mu)$ consists of $k$ distinct points, then $\mu$ is completely determined by its projections on $k+1$ straight lines through the origin. This says that if $\nu$ is another probability measure on $\mathbb{R}^{2}$ with the same projections on the $k+1$ straight lines, then $\mu=\nu$ (strong determination). This result is sharp in view of the following example also given by Rényi. Consider a regular polygon $P$ with $2 k$ sides and centered at the origin. Let $\mu_{1}$ be the probability measure with mass points of probability $1 / k$ at each second vertex of $P$, and let $\mu_{2}$ be defined in the same way at each remaining vertex of $P$. Then $\mu_{1}$ and $\mu_{2}$ have the same projections on the $k$ straight lines perpendicular to pairs of opposite sides and going through the origin. The following extension to $\mathbb{R}^{d}$ was proved by Heppes.

Proposition 6.1 (Heppes [4], page 405). Let $\mu$ be a discrete probability measure on $\mathbb{R}^{d}$ and suppose that $\operatorname{supp}(\mu)$ consists of $k$ distinct points. Suppose that $H_{1}, H_{2}, \ldots, H_{k+1}$ are subspaces respectively of dimensions
$m_{1}, m_{2}, \ldots, m_{k+1}$, such that no two of these subspaces are contained in a single hyperplane, that is, no arbitrary straight line in $\mathbb{R}^{d}$ can be perpendicular to more than one of the $H_{i}$ 's. If $\nu$ is a Borel probability measure on $\mathbb{R}^{d}$ such that $\mu_{H_{i}}=\nu_{H_{i}}, i=1, \ldots, k+1$, then $\mu=\nu$.

The following proposition allows another approach to the problem.
Proposition 6.2. Let $L_{1}, \ldots, L_{k}$ be distinct ( $d-1$ )-dimensional subspaces in $\mathbb{R}^{d}$, and suppose that $\mu$ and $\nu$ are Bored probability measures on $\mathbb{R}^{d}$ such that $\mu_{L_{i}}=\nu_{L_{i}}, i=1, \ldots, k$. Then

$$
|\mu(\{x\})-\nu(\{x\})| \leq \frac{1}{k}, \quad x \in \mathbb{R}^{d} .
$$

Proof. Let $x \in \mathbb{R}^{d}$. Put $c=\mu(\{x\})-\nu(\{x\})$, and let $A_{i}=\pi_{L_{i}}^{-1}\left(\left\{\pi_{L_{i}}(x)\right\}\right) \backslash$ $\{x\}, i=1, \ldots, k$. Then

$$
\begin{aligned}
\mu\left(A_{i}\right) & =\mu\left(\pi_{L_{i}}^{-1}\left(\left\{\pi_{L_{i}}(x)\right\}\right)\right)-\mu(\{x\}) \\
& =\nu\left(\pi_{L_{i}}^{-1}\left(\left\{\pi_{L_{i}}(x)\right\}\right)\right)-\nu(\{x\})-c \\
& =\nu\left(A_{i}\right)-c .
\end{aligned}
$$

Since the sets $A_{1}, \ldots, A_{k}$ are disjoint,

$$
1 \geq \sum_{i=1}^{k} \nu\left(A_{i}\right) \geq \sum_{i=1}^{k} c=k c
$$

hence $c \leq 1 / k$. Exchanging the roles of $\mu$ and $\nu$ in the argument above yields the result.

Theorem 6.3. Let $\mu$ and $\nu$ be Borel probability measures on $\mathbb{R}^{d}$ and let $\mathscr{L}$ be an infinite family of ( $d-1$ )-dimensional subspaces of $\mathbb{R}^{d}$. If $\mu_{L}=\nu_{L}$ for every $L \in \mathscr{L}$, then the discrete parts of $\mu$ and $\nu$ coincide. In particular, if $\mu$ is discrete, then so is $\nu$, and $\mu=\nu$.

Proof. According to Proposition 6.2, for every positive integer $k$,

$$
|\mu(\{x\})-v(\{x\})| \leq \frac{1}{k}, \quad x \in \mathbb{R}^{d} .
$$

Therefore, $\mu(\{x\})=\nu(\{x\})$ for all $x \in \mathbb{R}^{d}$, and thus the discrete parts of $\mu$ and $\nu$ are the same.

The example of Rényi presented at the beginning of this section exhibits a case where two different discrete measures $\mu$ and $\nu$ in $\mathbb{R}^{2}$ are such that

$$
|\mu(\{x\})-\nu(\{x\})|=\frac{1}{k}
$$

for each mass point $\{x\}$ of $\mu$ or $\nu$, while having at the same time $k$ identical projections. This shows that Proposition 6.2 is the best possible of its kind.

Acknowledgment. We are grateful to Tom Ferguson for his helpful remarks, and in particular for communicating the example presented at the beginning of Section 5.

## REFERENCES

[1] Cramér, H. and Wold, H. (1936). Some theorems on distribution functions. J . London Math. Soc. 11 290-295.
[2] Ferguson, T. S. (1959). On the determination of joint distributions from the marginal distributions of linear combinations. Ann. Math. Statist. 30255.
[3] Gilbert, W. M. (1955). Projections of probability distributions. Acta Math. Acad. Sci. Hungar. 6 195-198.
[4] Heppes, A. (1956). On the determination of probability distributions of more dimensions by their projections. Acta Math. Acad. Sci. Hungar. 7 403-410.
[5] Rényı, A. (1952). On projections of probability distributions. Acta Math. Acad. Sci. Hungar. 3 131-142.
[6] Roman, S. (1980). The formula of Faà di Bruno. Amer. Math. Monthly 87 805-809.
[7] Rudin, W. (1987). Real and Complex Analysis, 3rd ed. McGraw-Hill, New York.
[8] Shohat, J. A. and Tamarkin, J. D. (1943). The Problem of Moments. Amer. Math. Soc., Providence, RI.
[9] Stoyanov, J. M. (1987). Counterexamples in Probability. Wiley, New York.
DÉPARTEMENT DE MATHÉMATIQUES et de statistique
Université Laval
Sainte-Foy, Québec G1K 7P4
Canada
E-MAIL: belisle@mat.ulaval.ca jcmasse@mat.ulaval.ca ransford@mat.ulaval.ca


[^0]:    Received September 1995; revised August 1996.
    ${ }^{1}$ Research supported by grants from the National Sciences and Engineering Research Council of Canada and the Fonds FCAR de la Province de Québec.

    AMS 1991 subject classifications. Primary 60E 05; secondary 60E 10.
    Key words and phrases. Cramér-Wold theorem, probability measure, characteristic function, projection, analytic function, quasi-analytic class, determination.

