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WHEN IS A PROBABILITY MEASURE DETERMINED
BY INFINITELY MANY PROJECTIONS?1

By Claude Bélisle, Jean-Claude Massé and Thomas Ransford

Université Laval

The well-known Cramér–Wold theorem states that a Borel probability
measure on R

d is uniquely determined by the totality of its one-dimensional
projections. In this paper we examine various conditions under which a
probability measure is determined by a subset of its �d − 1�-dimensional
orthogonal projections.

1. Introduction. Let µ be a probability measure on the class �d of Borel
sets in R

d, d ≥ 2, and denote by φµ its characteristic function. Let L be
a subspace of R

d, and write πL� R
d → L for the orthogonal projection of R

d

on L. Then the orthogonal projection of µ on L is defined as the probability
measure

µL�B� = µ�π−1
L �B��� B ∈ �d�

The Cramér–Wold theorem ([1], page 291) states that a probability measure
on R

d is uniquely determined by its one-dimensional projections, or equiva-
lently, a probability measure is uniquely determined by the probabilities it
assigns to half-spaces. This result is an immediate consequence of the next
proposition and its corollary.

Proposition 1.1. Let µ be a Borel probability measure and let L be a sub-
space of R

d. Then

φµL�t� = φµ�πL�t��� t ∈ R
d�

Proof. From the change of variable formula and the definition of orthog-
onal projection, we have∫

R
d

exp�it · y�dµL�y� =
∫

R
d

exp�it · πL�x��dµ�x�

=
∫

R
d

exp�iπL�t� · x�dµ�x�� ✷

Corollary 1.2. Let µ and ν be Borel probability measures on R
d and let

L be a subspace of R
d. Then µL = νL if and only if φµ = φν on L.
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Another easy consequence of Corollary 1.2 is the following extension due to
Rényi.

Theorem 1.3 (Rényi [5], page 136). A Borel probability measure on R
d is

uniquely determined by its projections on a set of subspaces of arbitrary di-
mensions which together cover the whole space.

Again, from Corollary 1.2 and the continuity of φµ, it follows that if �Ln�
is a countable family of �d − 1�-dimensional subspaces such that

⋃
n Ln is

dense in R
d, then µ is uniquely determined by its projections on the Ln. It

is natural to ask whether µ is uniquely determined by its projections on any
infinite family of distinct �d − 1�-dimensional subspaces. Gilbert [3] showed
that, in general, the answer is no. This raises the following question: under
what conditions is a Borel probability measure uniquely determined by proper
subfamilies of its lower dimensional projections? To our knowledge, only four
articles have treated this general problem, all of them going back to the 1950’s.
These papers were by Rényi [5], Gilbert [3], Heppes [4] and Ferguson [2]. We
shall see some of their results throughout this paper.

Heppes [4], page 408, showed that if a probability distribution on R
2 has

a density function which is positive on a disk, then this distribution is not
determined by finitely many of its orthogonal projections on straight lines
through the origin. For that reason, this article will be concerned solely with
projections on infinitely many subspaces. Specifically, this paper addresses the
following question: When is a Borel probability measure on R

d determined by
its projections on infinitely many �d− 1�-dimensional subspaces?

The main theoretical results of the paper are in Section 2. Their proofs
are given in Section 3. Section 4 shows that in some cases a stronger form
of determination can be obtained. In addition, using the sophisticated tool of
quasi-analytic classes, we are able to extend some of the results of Section 2.
Section 5 introduces three counterexamples which demonstrate that, in the
absence of some of the hypotheses of Section 2 and Section 4, the results of
these sections may fail. Finally, Section 6 briefly examines the problem of
determination for discrete probability measures.

Notation. Throughout this paper, � denotes an infinite family of �d−1�-
dimensional subspaces of R

d. Each L ∈ � determines a pair of unit vectors
±u ∈ L⊥, and vice versa. Some of the hypotheses below are to be understood
with this identification of � as a subset of the unit sphere in R

d. In particular,
to say that a sequence �Ln� converges to L in � means that there exist unit
vectors un ∈ L⊥

n for each n and a unit vector u ∈ L⊥ such that un → u as
n→ ∞.

If µ is a Borel probability measure on R
d, the support of µ is denoted by

supp�µ�. We write

Cµ =
{
t ∈ R

d�
∫

R
d
et·x dµ�x� <∞

}
�

Note that 0 ∈ Cµ. Also, using Hölder’s inequality, it follows that Cµ is convex.
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If A ⊂ R
d, we write int�A�, A and co�A� for the interior, the closure and

the convex hull of A, respectively. If f� R
d → R is a continuous function, we

define its support as supp�f� = �x ∈ R
d� f�x� �= 0�. The Euclidean norm of

t = �t1� � � � � td� ∈ R
d is denoted by �t�.

2. Main theorems. The following result is the most basic. Its proof is
presented in the next section.

Theorem 2.1. Let µ and ν be Borel probability measures on R
d and let �

be an infinite family of �d − 1�-dimensional subspaces of R
d. Assume that �

has an accumulation point L∗ (in the unit sphere of R
d) such that there exist

a ∈ L∗ and b /∈ L∗ with a ± b ∈ Cµ ∩ Cν. If µL = νL for every L ∈ � , then
µ = ν.

Remark. In view of the convexity of Cµ and Cν, the condition in the the-
orem is equivalent to the existence in Cµ ∩ Cν of a segment centered on L∗,
but not contained in L∗.

Corollary 2.2. Let µ and ν be Borel probability measures on R
d and let

� be an infinite family of �d− 1�-dimensional subspaces of R
d. Suppose that

the moment generating functions of µ and ν are finite in a neighborhood of the
origin. If µL = νL for every L ∈ � , then µ = ν.

Proof. The hypothesis implies that there exists δ > 0 such that �t ∈
R
d� �t� ≤ δ� ⊂ Cµ ∩ Cν. Moreover, since the unit sphere in R

d is compact, �
must have an accumulation point L∗. Taking a = 0 and b /∈ L∗ with �b� ≤ δ,
Theorem 2.1 applies. ✷

In particular, Corollary 2.2 implies the theorem of Rényi ([5], Theorem 1),
which says that if a Borel probability measure on R

2 has compact support,
then it is determined by infinitely many of its one-dimensional projections. A
more general result is the next corollary. It is an extension to R

d of a result
obtained by Ferguson [2].

Corollary 2.3. Let µ and ν be Borel probability measures on R
d and let

� be an infinite family of �d − 1�-dimensional subspaces of R
d. Assume that

there exist an accumulation point L∗ of � and a one-dimensional subspace
J �⊆ L∗, such that µJ and νJ have finite moment generating functions in a
neighborhood of the origin. If µL = νL for every L ∈ � , then µ = ν.

Proof. By hypothesis there exists δ > 0 such that �y ∈ J� �y� ≤ δ� ⊂
Cµ ∩Cν. Now, Theorem 2.1 can be applied if we use a = 0 and b ∈ J \L∗ with
�b� ≤ δ. ✷

If S ⊂ R
d, we write S◦ = �y ∈ R

d� t · y ≤ 0 for all t ∈ S�.
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Corollary 2.4. Let µ and ν be Borel probability measures on R
d and let

� be an infinite family of �d− 1�-dimensional subspaces of R
d. Suppose that

there exists S ⊂ R
d such that we have the following conditions.

(i) supp�µ� ∪ supp�ν� ⊂ S ∪ �−S�;
(ii) � has an accumulation point L∗ such that L∗ ∩ int�S◦� �= �.

If µL = νL for every L ∈ � , then µ = ν.

Proof. First suppose that supp�µ� ∪ supp�ν� ⊂ S. Take a ∈ L∗ ∩ int�S◦�
and b /∈ L∗ with �b� small enough so that a±b ∈ S◦. Then, since S◦ ⊂ Cµ ∩Cν,
Theorem 2.1 applies.

Now consider the general case, and note that for L ∈ � close enough to L∗,
we have L∩ int�S◦� �= �. Pick y ∈ L∩ int�S◦�. Then y · t < 0 for all t ∈ S\�0�,
and y·t > 0 for all t ∈ −S\�0�, therefore πL�S\�0��∩πL�−S\�0�� = �. Now let
µ�1� and µ�2� be the restrictions µ�1� = µ��S \ �0�� and µ�2� = µ��−S \ �0��, and
define ν�1� and ν�2� likewise. Defining the projections just as for probability
measures, we have supp�µ�1�

L � ∩ supp�µ�2�
L � = �, and similarly for ν, hence

µ
�1�
L = ν�1�

L and µ�2�
L = ν�2�

L . Thus the above special case implies that µ�1� = ν�1�

and µ�2� = ν�2�. Finally, since µ and ν necessarily coincide on �0�, we conclude
that µ = ν. ✷

By relaxing the condition on Cµ ∩ Cν and strengthening the condition on
� , we obtain the following companion to Theorem 2.1. Again the proof is
presented in the next section.

Theorem 2.5. Let µ and ν be Borel probability measures on R
d and let �

be an infinite family of �d− 1�-dimensional subspaces of R
d. Assume that the

following hold.

(i) � has positive measure (in the unit sphere of R
d).

(ii) There exists c ∈ Cµ ∩Cν, c �= 0.

If µL = νL for every L ∈ � , then µ = ν.

Remarks.

(a) Clearly condition (i) in Theorem 2.5 could be replaced by the weaker
condition that the closure of � has positive measure.

(b) Since Cµ ∩Cν is convex and contains 0, condition (ii) is satisfied if and
only if Cµ ∩Cν contains a nontrivial segment.

Corollary 2.6. Let µ and ν be Borel probability measures on R
d and let �

be an infinite family of �d− 1�-dimensional subspaces of R
d. Suppose that �

has positive measure and that supp�µ�∪supp�ν� ⊂H, whereH is a half-space
of R

d. If µL = νL for every L ∈ � , then µ = ν.

Proof. Let H = �x ∈ R
d� c ·x ≤ α� for some c ∈ R

d, c �= 0 and α ∈ R. Then
c ∈ Cµ ∩Cν, and therefore Theorem 2.5 applies. ✷
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3. Proofs of the main theorems. Throughout this section, we assume
that µ and ν are Borel probability measures on R

d. Moreover, � is assumed
to be an infinite family of �d − 1�-dimensional subspaces such that µL = νL
for every L ∈ � . Set ψ�t� = φµ�t� −φν�t�, t ∈ R

d. Originally defined on R
d, ψ

can be extended to a subset of C
d. Indeed, if t ∈ R

d and u ∈ Cµ ∩ Cν, we can
write

ψ�t− iu� =
∫

R
d
ei�t−iu�·xd�µ− ν��x� =

∫
R
d
eit·xeu·xd�µ− ν��x��

Two lemmas are needed for the proof of Theorem 2.1.

Lemma 3.1. If L ∈ � , then ψ�t− iu� = 0 for all t ∈ L and u ∈ L∩Cµ ∩Cν.

Proof. For all t ∈ L and u ∈ L ∩Cµ ∩Cν,

ψ�t− iu� =
∫

R
d
eit·xeu·xd�µ− ν��x�

=
∫

R
d
eit·πL�x�eu·πL�x�d�µ− ν��x�

=
∫

R
d
eit·yeu·yd�µL − νL��y�

= 0� ✷

Lemma 3.2. Let t� a� b ∈ R
d and suppose that a±b ∈ Cµ ∩Cν. Let D = �ζ ∈

C� ��ζ� < 1� and define f� D→ C by

f�ζ� = ψ�t− ia− ζb�� ζ ∈ D�
Then f is bounded and continuous on D and holomorphic on D.

Proof. We have∣∣ei�t−ia−ζb�·x∣∣ = ea·xe��ζ�b·x ≤ e�a+b�·x + e�a−b�·x� ζ ∈ D�
Since a± b ∈ Cµ ∩Cν, it follows that

�f�ζ�� ≤
∫

R
d

[
e�a+b�·x + e�a−b�·x]d�µ− ν��x� <∞� ζ ∈ D�

This shows that f is well defined and bounded on D. These inequalities also
allow us to apply the dominated convergence theorem to deduce that f is
continuous on D.

Now let T be a triangle in D. By Fubini’s theorem∫
T
f�ζ�dζ =

∫
R
d

∫
T
ei�t−ia−ζb�·x dζd�µ− ν��x� = 0�

since the inner integral vanishes by virtue of Cauchy’s theorem. As this holds
for every such triangle T, Morera’s theorem ([7], Theorem 10.17) implies that
f is holomorphic on D. ✷
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Proof of Theorem 2.1. Since L∗ is an accumulation point of � , there
exists a sequence �Ln� in � such that Ln → L∗, Ln �= L∗ for all n. This
means that there exist unit vectors �un�� u∗ in R

d such thatLn = u⊥
n ,L∗ = u∗⊥,

un → u∗, un �= u∗ for all n.
Let a� b be as in the statement of the theorem. Then a · un → a · u∗ = 0

since a ∈ L∗, and b · un → b · u∗ �= 0 since b /∈ L∗. Thus if n is large enough,
then b · un �= 0 and ��a · un�/�b · un�� < 1. Without loss of generality, we can
suppose that this is true for all n. Put

An =
{
t ∈ R

d� t · un
b · un

= t · u∗

b · u∗

}
�

Since un �= u∗, each An is a �d− 1�-dimensional subspace of R
d.

Now fix t ∈ R
d \ ⋃

n An. By Lemma 3.2, if we define D = �ζ ∈ C� ��ζ� < 1�
and f�ζ� = ψ�t − ia − ζb�, ζ ∈ D, then f is holomorphic on D. Also, by
Lemma 3.1, f�ξ + iη� = 0 if there exists L ∈ � such that t − ξb ∈ L and
a+ ηb ∈ L ∩Cµ ∩Cν. Thus if we set

ξn = t · un
b · un

and ηn = −a · un
b · un

�

then we have the following.

(i) �ηn� < 1, so ξn + iηn ∈ D;
(ii) t− ξnb ∈ Ln and a+ ηnb ∈ Ln ∩Cµ ∩Cν, so f�ξn + iηn� = 0;

(iii) ξn + iηn → ξ∗ ∈ D, where ξ∗ = �t · u∗�/�b · u∗�;
(iv) ξn + iηn �= ξ∗ for all n, since we chose t /∈ ⋃

n An.

Therefore, by the principle of isolated zeros for holomorphic functions [7],
Theorem 10.18, it follows that f ≡ 0 on D. In particular f�0� = 0, which tells
us that

ψ�t− ia� =
∫

R
d
eit·xea·xd�µ− ν��x� = 0� t ∈ R

d
∖⋃
n

An�

Now put dλ�x� = ea·xd�µ−ν��x�. Then λ is a finite signed measure on �Rd��d�
whose Fourier transform vanishes on R

d \ ⋃
n An. As this set is dense in R

d

and the Fourier transform is continuous, it follows that the latter vanishes on
R
d, and therefore λ = 0. Since

�λ��B� =
∫
B
ea·xd�µ− ν��x�� B ∈ �d�

we conclude that µ = ν. ✷

We now proceed with three lemmas used in the proof of Theorem 2.5.

Lemma 3.3. Let E be a Borel subset of the unit sphere of R
d of positive

�d− 1�-dimensional measure, and let v1� v2 be linearly independent vectors in
R
d. If

F =
{
u · v1

u · v2
� u ∈ E� u · v2 �= 0

}
�

then F is a subset of R of positive one-dimensional measure.
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Proof. Since E has positive �d − 1�-dimensional measure in the sphere,
it clearly follows that

E1 = �λu� u ∈ E� λ > 0�
has positive d-dimensional measure. As v1� v2 are linearly independent, we
can extend them to a basis v1� v2� � � � � vd of R

d. Put

E2 = ��x · v1� x · v2� � � � � x · vd�� x ∈ E1��
Then E2 has positive d-dimensional measure, since a linear isomorphism of
R
d onto R

d maps sets of positive measure to sets of positive measure. Now put

E3 = ��ξ1� ξ2� � � � � ξd� ∈ E2� ξ2 �= 0��
ThenE3 still has positive d-dimensional measure, because we have subtracted
off a subset of a �d− 1�-dimensional subspace. Finally let

E4 = ��ξ1/ξ2� ξ2� � � � � ξd�� �ξ1� ξ2� � � � � ξd� ∈ E3��
Then E4 also has positive d-dimensional measure, because the Jacobian of
the map �ξ1� ξ2� � � � � ξd� → �ξ1/ξ2� ξ2� � � � � ξd� is nowhere zero on E3 (see e.g.,
[7], Theorem 7.28).

Now, as is easily checked, E4 ⊂ F × R
d−1, and so it follows that F must

have positive one-dimensional measure. ✷

Lemma 3.4. Let t ∈ R
d and c ∈ Cµ ∩Cν. Let D = �ζ ∈ C� 0 < �ζ < 1� and

define f� D→ C by

f�ζ� = ψ�t− ζc�� ζ ∈ D�
Then f is bounded and continuous on D, and holomorphic on D.

Proof. Applying Lemma 3.2 with a = b = c/2, we see that ζ ′ �→ ψ�t −
ic/2−ζ ′c/2� is continuous and bounded on �ζ ′ ∈ C� ��ζ ′� ≤ 1�, and holomorphic
on �ζ ′ ∈ C� ��ζ ′� < 1�. To conclude, it suffices to make the change of variable
ζ = ζ ′/2 + i/2. ✷

Lemma 3.5. Let D = �ζ ∈ C� 0 < �ζ < 1�, and let f� D→ C be a function
continuous on D and holomorphic on D. If f�ξ� = 0 for all ξ ∈ F, where F is
a subset of R of positive one-dimensional measure, then f ≡ 0 on D.

Proof. Choose an interval I ⊂ R of length 1 such that I ∩F has positive
one-dimensional measure. Let V be the open semidisc in D whose base is I.
Then there is a conformal mapping γ of V onto the unit disc U which extends
to a homeomorphism of their closures. Put f̃ = f ◦ γ−1. Then f̃ is continuous
on U and holomorphic on U, and f̃ = 0 on a subset of ∂U [namely γ�I ∩F�]
of positive one-dimensional measure. By [7], Theorem 17.18, it follows that
f̃ ≡ 0 on U: in other words, f ≡ 0 on V. The principle of isolated zeros then
implies that f ≡ 0 on D, hence, by continuity, on D too. ✷
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Proof of Theorem 2.5. Choose c as in the statement of the theorem, that
is, c ∈ Cµ ∩ Cν, c �= 0, and let t ∈ R

d, t not a multiple of c. By assumption,
there is a subset E of the unit sphere in R

d of positive �d − 1�-dimensional
measure such that u⊥ ∈ � for all u ∈ E. Set

F =
{
t · u
c · u � u ∈ E� c · u �= 0

}
�

Applying Lemma 3.3 with v1 = t and v2 = c, we see that F has positive
one-dimensional measure.

Now put D = �ζ ∈ C� 0 < �ζ < 1� and define f� D→ C by

f�ζ� = ψ�t− ζc�� ζ ∈ D�
By Lemma 3.4, f is continuous on D and holomorphic on D. Also, by Lemma
3.1 f�ξ� = 0 if ξ ∈ R and there exists L ∈ � such that t−ξc ∈ L. It follows that
f�ξ� = 0 for all ξ ∈ F. Hence by Lemma 3.5, f ≡ 0 onD. In particular f�0� = 0,
which tells us that ψ�t� = φµ�t�−φν�t� = 0. Since the characteristic functions
φµ and φν coincide everywhere except on the multiples of c, continuity of these
functions implies that they are equal everywhere, and therefore µ = ν. ✷

4. Two refinements.

4.1. Strong determination. All the theorems and corollaries of Section 2
are of the form: “Suppose that µ and ν both satisfy condition (C1), and that
� satisfies condition (C2). If µL = νL for every L ∈ � , then µ = ν.” In this
section we consider the following stronger type of determination: “Suppose
that µ satisfies condition (C1) and that � satisfies condition (C2). If ν is a
Borel probability measure such that µL = νL for every L ∈ � , then µ = ν.”

The two theorems of this section are easily deduced from the next lemma.

Lemma 4.1. Let µ and ν be Borel probability measures on R
d. Suppose �

is an infinite family of �d − 1�-dimensional subspaces such that µL = νL for
every L ∈ � . Then

co
(
Cµ ∩ ⋃

L∈�
L

)
⊂ Cµ ∩Cν�

Proof. Take t ∈ Cµ ∩ ⋃
L∈� L. Then there exists a sequence �Ln� in �

such that dist�t�Ln� → 0 as n → ∞. By compactness, some subsequence
�Lnj� converges, say to L̃. Necessarily, t ∈ L̃. Now µLnj

= νLnj for all j, so
φµ�y� = φν�y�, y ∈ Lnj , j ≥ 1, and by continuity φµ�y� = φν�y�, y ∈ L̃, which
implies that µL̃ = νL̃. Hence, since t ∈ L̃,∫

R
d
et·x dν�x� =

∫
L̃
et·y dνL̃�y� =

∫
L̃
et·y dµL̃�y� =

∫
R
d
et·x dµ�x��

and this last integral is finite because t ∈ Cµ. Thus we have shown that
Cµ ∩ ⋃

L∈� L ⊂ Cµ ∩Cν. Finally, as Cµ ∩Cν is convex, it contains the convex
hull of Cµ ∩ ⋃

L∈� L. ✷
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As an immediate consequence, we deduce the following strong-determination
version of Theorem 2.1.

Theorem 4.2. Let µ be a Borel probability measure on R
d. Let � be an

infinite family of �d− 1�-dimensional subspaces of R
d. Assume that � has an

accumulation point L∗ such that there exist a ∈ L∗ and b /∈ L∗ with a ± b ∈
co�Cµ ∩ ⋃

L∈� L�. If ν is a Borel probability measure on R
d such that µL = νL

for every L ∈ � , then µ = ν.

“Strong” versions of Corollaries 2.2, 2.3 and 2.4 will now be stated, respec-
tively, as Corollaries 4.3, 4.4 and 4.5.

Corollary 4.3. Suppose that µ has a finite moment generating function in
a neighborhood of the origin. Let � be an infinite family of �d−1�-dimensional
subspaces of R

d. If ν is a Borel probability measure on R
d such that µL = νL

for every L ∈ � , then µ = ν.

Proof. By compactness, � has an accumulation point L∗. By hypothesis,
for some δ > 0, �y� �y� ≤ δ� ⊂ Cµ. Take then a = 0, and b ∈ L\L∗ with �b� ≤ δ,
where L is any element of � , L �= L∗. ✷

Corollary 4.4. Let µ be a Borel probability measure on R
d and let � be

an infinite family of �d− 1�-dimensional subspaces of R
d. Suppose that there

exist an accumulation point L∗ of � and a one-dimensional subspace J �⊆ L∗,
such that J ⊂ ⋃

L∈� L and µJ has a finite moment generating function in a
neighborhood of the origin. If ν is a Borel probability measure on R

d such that
µL = νL for every L ∈ � , then µ = ν.

Proof. Let δ > 0 be such that
∫
J e
t·xdµJ�x� < ∞ for all t ∈ J, �t� ≤ δ. In

Theorem 4.2 we take a = 0 and b ∈ J, �b� ≤ δ. ✷

Remark. Corollary 4.4 can also be seen as the special case of Corollary 2.3
where J ⊂ ⋃

L∈� L.

Corollary 4.5. Let µ be a Borel probability measure on R
d and let � be

an infinite family of �d− 1�-dimensional subspaces of R
d. Suppose that there

exists a set S in R
d such that supp�µ� ⊂ S ∪ �−S�. Suppose also that � has

an accumulation point L∗ and that there exist subspaces L1 and L2 in � ,
such that we can draw within int�S◦� a segment which meets L∗ and whose
endpoints belong, respectively, to L1 \L∗ and L2 \L∗. If ν is a Borel probability
measure on R

d such that µL = νL for every L ∈ � , then µ = ν.

Proof. The hypotheses imply that there exist a ∈ L∗ and b /∈ L∗ such
that a + αb ∈ L1 ∩ int�S◦�, a − βb ∈ L2 ∩ int�S◦� for some α�β > 0. Without
loss of generality, we may suppose that β ≤ α. Take λ = �1 + β/α�/2 and
c = �λ − 1�a + βb. Then λa ∈ L∗ and c /∈ L∗. Moreover, it can be seen that
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λa+c = �a+αb�β/α ∈ L1∩int�S◦� and λa−c = a−βb ∈ L2∩int�S◦�. Therefore
λa± c ∈ Cµ ∩ ⋃

L∈� L. We can now apply Theorem 4.2 with a replaced by λa
and b by c. ✷

Next, we state strong-determination versions of Theorem 2.5 and Corol-
lary 2.6. The proof of the theorem is a straightforward application of
Lemma 4.1.

Theorem 4.6. Let µ be a Borel probability measure on R
d and let � be an

infinite family of �d − 1�-dimensional subspaces of R
d. Suppose that we have

the following.

(i) � has positive measure (in the unit sphere of R
d).

(ii) There exists c ∈ co�Cµ ∩ ⋃
L∈� L�, c �= 0.

If ν is a Borel probability measure on R
d such that µL = νL for every L ∈ � ,

then µ = ν. ✷

Remark. Just as noted in remark (a) following Theorem 2.5, condition (i)
in Theorem 4.6 could be replaced by the weaker condition that the closure of
� has positive measure.

Corollary 4.7. Let µ be a Borel probability measure on R
d and let � be

an infinite family of �d − 1�-dimensional subspaces of R
d. Suppose that �

has positive measure and that supp�µ� ⊂ H, where H is a half-space �x ∈
R
d� c · x ≤ α� for some c ∈ ⋃

L∈� L \ �0� and α ∈ R. If ν is a Borel probability
measure on R

d such that µL = νL for every L ∈ � , then µ = ν.

Proof. The hypotheses imply that c ∈ Cµ ∩ ⋃
L∈� L, hence Theorem 4.6

applies. ✷

Remark. In all the theorems considered thus far, the sets Cµ and Cν are
nontrivial. Yet, it is possible to exhibit an example of weak determination
where no such assumption is made. Indeed, suppose that µ and ν are spher-
ically symmetric probability measures on R

d (possibly with Cµ = Cν = �0�).
In this case, it is plain that if µL = νL for at least one nontrivial subspace L,
then µ = ν. It would be interesting to see if more could be said for the case
where Cµ = Cν = �0�.

4.2. Conditions involving quasi-analyticity. The proofs of Section 3 relied
heavily on two tools: the analyticity of an extension of the characteristic func-
tion and the principle of isolated zeros. In fact, the critical property that we
needed in these proofs was that an analytic function is determined in its do-
main once we know its value and the values of its derivatives at some fixed
point of the domain. Functions belonging to quasi-analytic classes have the
same property without necessarily being analytic.
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To define quasi-analytic classes, let �Mn� be a sequence of positive numbers
and let C�Mn� denote the class of all complex-valued functions f ∈ C∞�R�
satisfying the inequalities

sup
x∈R

∣∣f�n��x�∣∣ ≤ βfBnfMn� n ≥ 0�

for some positive constants βf and Bf depending on f but not on n. A class
C�Mn� is said to be quasi-analytic if, given any x0 ∈ R and f ∈ C�Mn�, the
condition f�n��x0� = 0 for all n ≥ 0 implies that f ≡ 0 [7], Definition 19.8.
Note that a complex-valued function belongs to C�Mn� if and only if both its
real and imaginary parts do.

Functions belonging to C�Mn� are bounded. Within the class of complex-
valued functions, C�n!� coincides with the class of functions f to which there
corresponds a δ > 0 such that that f can be extended to a bounded holomor-
phic functions in the strip defined by �z ∈ C� ��z� < δ� ([7], Theorem 19.9).
Example 4.10 will show that there exists a non-analytic characteristic function
belonging to a quasi-analytic class.

The following lemma extends to functions belonging to quasi-analytic
classes a well-known property of analytic functions.

Lemma 4.8. Let f1 and f2 be two functions belonging to the same quasi-
analytic class C�Mn�. If �xj� is a bounded sequence of distinct points of R

such that f1�xj� = f2�xj� for all j, then f1 ≡ f2.

Proof. Write f = f1 −f2, and let x0 ∈ R be the limit of some subsequence
�xjk�. Then f�x0� = f�xjk� = 0 for all k, implying that f′�x0� = 0. By repeated
application of Rolle’s theorem to the real and imaginary parts of f and its
derivatives, it follows that f�n��x0� = 0 for all n ≥ 0. Since f1 and f2 belong
to the same quasi-analytic class, it follows that they necessarily coincide. ✷

The following theorem is a strong-determination analogue of Corollary 2.3.
First, we recall that if �mn� is the sequence of moments of a Borel probabil-
ity measure λ on R, then �mn� is said to satisfy the Carleman condition if∑
n�m2n�−1/2n = ∞. It is known that the Carleman condition is sufficient to

ensure that λ is determined by its moments ([8], page 19).

Theorem 4.9. Let µ be a Borel probability measure on R
d and let � be an

infinite family of �d−1�-dimensional subspaces of R
d. Suppose that there exist

an accumulation point L∗ of � and a one-dimensional subspace J �⊆ L∗, such
that µJ has finite moments of all orders satisfying the Carleman condition. If
ν is a Borel probability measure on R

d such that µJ = νJ and µL = νL for
every L ∈ � , then µ = ν.

Proof. Without loss of generality, we may assume that

J = {( d−1 terms︷ ︸︸ ︷
0� � � � �0� s

)� s ∈ R
}
�
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Let us show that for every r ∈ R
d−1 the function s → φµ�r� s� belongs to

a quasi-analytic class. Indeed φµ�r� s� = E ei�r·U+sV�!, where U and V are
respectively �d − 1�-dimensional and one-dimensional random vectors, and
�U�V� has the probability distribution µ. Writing Mn = E �V�n!, φµ�r� s� is
infinitely differentiable in s and

sup
s∈R

∣∣∣∣∂nφµ∂sn
�r� s�

∣∣∣∣ ≤Mn� n ≥ 0�

meaning that, for all r ∈ R
d−1, the function s �→ φµ�r� s� belongs to the

class C�Mn�. Since the sequence of moments satisfies the Carleman condi-
tion, the Denjoy–Carleman theorem ([7], Theorem 19.11) implies that C�Mn�
is a quasi-analytic class.

Since µJ = νJ, in the same way as above it can be shown that s �→ φν�r� s�
belongs to C�Mn� for every r ∈ R

d−1. In R
d−1 × R, choose �r∗� s∗� ∈ L∗ where

r∗ �= 0, and assume that �Lj� is a sequence of distinct elements of � con-
verging to L∗. For each j we can find sj ∈ R such that �r∗� sj� ∈ Lj and
�r∗� sj� → �r∗� s∗�. Since by hypothesis φµ�r∗� sj� = φν�r∗� sj� for all j, Lemma
4.8 implies that φµ�r∗� ·� ≡ φν�r∗� ·�. This being true for every nonzero r∗, we
conclude that µ = ν.

Example 4.10. This example will show that Theorem 4.9 sometimes ap-
plies when Corollary 2.3 does not. Let µ be the probability distribution of a
pair �X�Y� of random variables, where Y has moments satisfying the Car-
leman condition and a moment generating function which is infinite for all
t > 0. For the existence of such a distribution, see for example [9], page 95.
Let J be the y-axis, and let ν be a Borel probability measure on R

2 such that
µJ = νJ. Suppose that � is an infinite family of one-dimensional subspaces
such that µL = νL for every L ∈ � , and that there exists an accumulation
point L∗ �= J. Then the hypotheses of Theorem 4.9 are fulfilled but those of
Corollary 2.3 are not. Note also that the characteristic function of the distribu-
tion of Y is nonanalytic, and yet it belongs to the quasi-analytic class C�Mn�,
where Mn is the absolute moment of order n of Y.

Finally, let us mention the following strong determination theorem obtained
by Gilbert for Borel probability measures on R

2 that are determined by their
moments. Inasmuch as the proof does not use analyticity or quasi-analyticity,
this theorem stands alone among all results about nondiscrete probability
measures. The extension to R

d is straightforward.

Theorem 4.11 (Gilbert, [3], page 196). Let µ be a Borel probability mea-
sure on R

d having finite moments of all orders, and assume that these moments
determine µ. Let � be an infinite family of �d − 1�-dimensional subspaces of
R
d. If ν is a Borel probability measure such that µL = νL for all L ∈ � , then
µ = ν.
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In view of Gilbert’s theorem, one may ask the following question: does The-
orem 4.9 still hold if we merely assume that µJ is determined by its moments?
Example 5.3 in the next section provides a partial answer. That example will
show that Theorem 4.9 is sharp in the following sense: if λ is a Borel proba-
bility measure on R

d whose moments do not satisfy the Carleman condition,
then there exist Borel probability measures µ and ν on R

d, with moments
bounded by those of λ, such that µL = νL for infinitely many L, but µ ⊥ ν.

5. Counterexamples.

Example 5.1. Ferguson (private communication) presented the following
example to illustrate the fact that distinct Borel probability measures on R

2

may have infinitely many identical projections. Let µ be the probability distri-
bution of a vector of the form �W�W�, where W is a standard Cauchy random
variable. Let ν be the probability distribution of a vector of two independent
standard Cauchy random variables. Then, for �t1� t2� ∈ R

2,

φµ�t1� t2� = e−�t1+t2� and φν�t1� t2� = e−�t1�−�t2��

so that φµ�t1� t2� = φν�t1� t2� if t1 and t2 have the same sign. Therefore, if �
is the infinite family of straight lines through the origin filling the first and
the third quadrants, then µL = νL for all L ∈ � . However µ �= ν.

This example actually shows that we may have weak determination with-
out having strong determination. To see this, let J = ��x�−x�� x ∈ R�. Then
µJ = δ0, and therefore µJ has a finite moment generating function. Thus, if
the condition (C1) on µ mentioned at the beginning of Section 4 is that µJ
has a finite moment generating function and if the condition (C2) is that no
accumulation point L∗ of � contains J, then we do not have strong determi-
nation. On the other hand, if τ is a Borel probability measure such that τJ
has a finite moment generating function in the neighborhood of the origin and
µL = τL for all L ∈ � , then Corollary 2.3 implies that µ = τ.

Example 5.2. This counterexample will show that several of the results
of Section 2 may fail if some of their hypotheses are not satisfied. Again the
construction is based on the example of Ferguson already used in Example 5.1.
LetX be a two-dimensional random vector whose components are independent
standard Cauchy random variables, and let Y be a two-dimensional random
vector of the form �W�W�, where W is a standard Cauchy random variable.
Let Z be a nonnegative random variable, independent ofX and Y, and denote
by µ and ν, respectively, the probability distributions of �X�Z� and �Y�Z�.
Then, for �t1� t2� t3� ∈ R

3,

φµ�t1� t2� t3� = e−�t1�−�t2�φZ�t3� and φν�t1� t2� t3� = e−�t1+t2�φZ�t3��
so that φµ�t1� t2� t3� = φν�t1� t2� t3� if and only if t1 and t2 have the same sign.
Write A = ��t1� t2�0� ∈ R

3� ti ≥ 0� i = 1�2�. To each a ∈ A there corresponds
the subset of the unit sphere

Ba = a⊥ ∩ �R2 × �0�� ∩ �x� �x� = 1��
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Let B = ⋃
a∈A Ba. For each b ∈ B, write Lb = �u ∈ R

3� u · b = 0�. Then,
according to Corollary 1.2, the foregoing comparison of φµ and φν shows that
µL = νL for all L ∈ � , where � = �Lb�b∈B. Since B ⊂ R

2 × �0�, � is an
infinite null set in the unit sphere of R

3, which is why Theorem 2.5 does not
apply. Furthermore, take L∗ to be any accumulation point of � . Then, this
example also shows that Theorem 2.1 may fail if a� b both belong to L∗. Next,
let

J = ��0�0� t3�� t3 ∈ R��
We note that J ⊂ L∗. Then, if Z has a finite moment generating function in a
neighborhood of the origin, µJ = νJ has finite moment generating function, but
Corollary 2.3 fails. Finally supp�µ� ∪ supp�ν� ⊂ S, where S = �t ∈ R

3� t3 ≥ 0�,
but L∗ ∩ int�S◦� = � and Corollary 2.4 fails.

Example 5.3. Thus far, we have presented two examples of pairs of dis-
tinct probability measures having infinitely many identical projections: the
example of Gilbert, mentioned in Section 1, and the example of Ferguson used
in Examples 5.1 and 5.2. In both cases the characteristic functions of the mea-
sures are nondifferentiable at 0, and therefore the measures do not have finite
moments. Our third example exhibits two Borel probability measures that are
mutually singular, even though infinitely many of their �d − 1�-dimensional
projections coincide and all their moments are finite and coincide.

First we recall some notation and terminology associated with derivatives
of functions of d variables. A multiindex is an ordered d-tuple α = �α1� � � � � αd�
of nonnegative integers. Each multiindex determines a differential operator

∂α =
(
∂

∂x1

)α1

· · ·
(
∂

∂xd

)αd
whose order is �α� = ∑d

1 αi. If �α� = 0, we define ∂αf = f. Moreover, for
x = �x1� � � � � xd� ∈ R

d we write xα = ∏d
i=1 x

αi
i .

Theorem 5.4. Let K be a closed ball in R
d such that 0 /∈K, and let �Mn�

be a positive sequence satisfying

�∗� M0 = 1� M2
n ≤Mn−1Mn+1� n ≥ 1 and

∞∑
n=1

M−1/n
n <∞�

Then there exist Borel probability measures µ and ν on R
d with µ ⊥ ν such

that

(i) µL = νL for all �d− 1�-dimensional subspaces L with L ∩K = �;

(ii) max
{(∫

�x�2ndµ�x�
)1/2

�

(∫
�x�2ndν�x�

)1/2}
≤Mn for all n ≥ 0"

(iii)
∫
xαdµ�x� = ∫

xαdν�x� for every multiindex α.
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The proof will follow from three technical lemmas. First, we recall that if
f ∈ L1�Rd�, its Fourier transform is defined as

f̂�t� = 1
�2π�d/2

∫
R
d
e−it·xf�x�dx� t ∈ R

d�

Lemma 5.5. Let f� R
d → R be a function satisfying: f ≥ 0, f ∈ C∞, S =

supp�f� is compact and 0 /∈ S + S. Let σ be the signed Borel measure on R
d

defined by

σ�B� =
∫
B

#�f̂�x�2�dx� B ∈ �d�

Then we have the following.

(a) σ̂ ∈ L1�Rd� and ��σ̂ ��1 = ��f��21, where σ̂ is the Fourier transform of

#�f̂�x�2� and �� · ��1 denotes the L1 norm;
(b) σ̂ = 0 outside �S+S� ∪ −�S+S�;
(c) For each multiindex α,

∫
x2α d�σ ��x� ≤ ��∂αf��22 <∞, where �� · ��2 denotes

the L2 norm;
(d) For each multiindex α,

∫
xα dσ�x� = 0.

Proof. The key observation is that

σ̂ = 1
2

(
f̂ 2 + f̂ 2

)̂
= 1

2

(
�f ∗ f�̂ + �f ∗ f�̂

)̂
= 1

2

(�f ∗ f�˜ + �f ∗ f�)�
where �f ∗ f�˜�t� ≡ �f ∗ f��−t�.

(a) Since f and f ∗ f are nonnegative,

��σ̂ ��1 = 1
2 ���f ∗ f�˜ + �f ∗ f���1 = 1

2

(���f ∗ f�˜��1 + ���f ∗ f���1
)

= ��f ∗ f��1 = ��f��21�
(b) Note that supp�f∗f� ⊂ S+S and supp��f∗f�˜ � ⊂ −�S+S�. Therefore

supp�σ̂� ⊂ �S+S�⋃−�S+S�.
(c) The inequality follows from∫
x2αd�σ ��x� =

∫
x2α

∣∣#�f̂�x�2�∣∣dx
≤

∫
x2α

∣∣f̂�x�∣∣2 dx = ∣∣∣∣xαf̂�x�∣∣∣∣22 = ∣∣∣∣�∂αf�̂ ∣∣∣∣2
2 = ∣∣∣∣∂αf∣∣∣∣22�

where the last equality is a consequence of Plancherel’s theorem.
(d) This part follows from parts (b) and (c) by means of the argument used

by Gilbert in proving Theorem 4.11. ✷

Lemma 5.6. Let �Mn� be a positive sequence satisfying �∗�. There exists a
positive constant D such that

Mr

r!
≤ Ms

s!
Ds−r� r ≤ s�
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Proof. The conditions on the sequence �Mn� imply ([7], Theorem 19.11)
that

Mn−1

Mn

≥ Mn

Mn+1
and

∑
n

Mn−1

Mn

<∞�

Thus if we put an = Mn−1/Mn, then �an� is a positive decreasing sequence
and

∑
n an < ∞. This implies nan → 0, and in particular �nan� is bounded,

say by D. Therefore an ≤ D/n for all n, so Mn−1/Mn ≤ D/n for all n, and
finally

Mr

Ms

= Mr

Mr+1

Mr+1

Mr+2
· · ·Ms−1

Ms

≤ D

r+ 1
D

r+ 2
· · · D
s

= r!
s!
Ds−r� ✷

Lemma 5.7. Fix p ∈ R
d and r > 0. Let B�p� r� denote the closed ball of

radius r centered at p. Let �Mn� be a positive sequence satisfying �∗�. Then
there exists f� R

d → R such that f ≥ 0, f ∈ C∞, f�p� > 0, supp�f� ⊂ B�p� r�
and

�†�
∣∣∣∣
∣∣∣∣∂nf∂xnj

∣∣∣∣
∣∣∣∣
2

≤ C0C
n
1Mn� n ≥ 0� j = 1� � � � � d�

for some constants C0, C1.

Proof. By [7], Theorem 19.10, there exists φ� R → R satisfying φ ≥ 0,
φ ∈ C∞, supp�φ� ⊂ �−1�1�, φ�0� > 0 and sup

R
�φ�n��x�� ≤ C0C

n
1Mn, n ≥ 1, for

some constants C0, C1. We shall define f� R
d → R by

f�x� = φ
( �x− p�2

r2

)
= φ

(∑d
1 �xj − pj�2

r2

)
�

Clearly f ≥ 0, f ∈ C∞, supp�f� ⊂ B�p� r�, f�p� > 0. We need to estimate the
derivatives of f and for this we recall the formula of Faà di Bruno for the nth
derivative of the composition of two functions [6]. Suppose that g�h ∈ C∞�R�.
Then

�h ◦g��n��x� = ∑
k1�k2�����kn

k1+2k2+���+nkn=n

[
n!

k1!k2! · · ·kn!
h�k1+k2+···+kn��g�x��

×
(
g�1��x�

1!

)k1
(
g�2��x�

2!

)k2

· · ·
(
g�n��x�
n!

)kn]
�

For fixed x2� � � � � xd, we shall apply this with g�x1� = r−2 ∑d
1 �xj−pj�2 and

h = φ. Happily, g′′′�x1� ≡ 0, so the formula simplifies to

∂nf

∂xn1
�x� = ∑

k1�k2
k1+2k2=n

n!
k1!k2!

φ�k1+k2��g�x1��
(

2�x1 − p1�
r2

)k1 1
r2k2

�
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Hence

sup
R

∣∣∣∣∂nf∂xn1 �x�
∣∣∣∣ ≤ ∑

k1�k2
k1+2k2=n

n!
k1!k2!

C0C
k1+k2
1 Mk1+k2

2k1

rn

=Mn

∑
k1�k2

k1+2k2=n

�k1 + k2�!
k1!k2!

Mk1+k2

�k1 + k2�!
n!
Mn

C0C
k1+k2
1

2k1

rn
�

Now, taking D to be the constant guaranteed by Lemma 5.6,

sup
R

∣∣∣∣∂nf∂xn1 �x�
∣∣∣∣ ≤Mn

∑
k1�k2

k1+2k2=n

�k1 + k2�!
k1!k2!

Dn−�k1+k2�C0C
k1+k2
1

2k1

rn
�

Next, increasing l increases �k1 + l�!/�k1!l!�, so

sup
R

∣∣∣∣∂nf∂xn1 �x�
∣∣∣∣ ≤Mn

∑
k1�k2

k1+2k2=n

�k1 + 2k2�!
k1!�2k2�!

Dn−�k1+k2�C0C
k1+k2
1

2k1

rn

= C0

(
D

r

)n
Mn

∑
k1�k2

k1+2k2=n

�k1 + 2k2�!
k1!�2k2�!

(√
C1

D

)2k2
(

2C1

D

)k1

≤ C0

(
D

r

)n
Mn

∑
k� l

k+l=n

n!
k!l!

(√
C1

D

)l(2C1

D

)k

= C0

(
D

r

)n(√C1

D
+ 2
C1

D

)n
Mn

= C̃0C̃
n
1Mn�

say. Since ∣∣∣∣
∣∣∣∣∂nf∂xn1

∣∣∣∣
∣∣∣∣
2

≤ sup
R

∣∣∣∣∂nf∂xn1 �x�
∣∣∣∣ · �volume�B�p� r���1/2�

a similar estimate holds for ��∂nf/�∂xn1���2. Finally, the same can be done for
��∂nf/�∂xnj���2, j = 2� � � � � n. ✷

Proof of Theorem 5.4. Choose p ∈ R
d and r > 0 such that B�2p�2r� ⊂

K. According to Lemma 5.7 there exists f� R
d → R a function satisfying f ≥ 0,

f ∈ C∞, f�p� > 0, supp�f� = S ⊂ B�p� r� and (†). Define

λ1�B� =
∫
B

#+(f̂�x�2)dx� λ2�B� =
∫
B

#−(f̂�x�2)dx� B ∈ �d�

Clearly λ1 and λ2 are positive measures on R
d with λ1 ⊥ λ2, and λ1 − λ2 = σ ,

where σ is as defined in Lemma 5.5. By part (b) of that lemma, σ̂ = λ̂1−λ̂2 = 0
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outside �S + S� ∪ −�S + S� ⊂ B�2p�2r� ∪ B�−2p�2r� ⊂ K ∪ �−K�. By part
(c), all the moments of λ1 and λ2 are finite, and by part (d) those of the same
order coincide. Therefore λ1 and λ2 are finite measures and λ1�Rd� = λ2�Rd�.

Next, part (a) of Lemma 5.5 gives ��̂λ1 − λ̂2��1 = ��f��21 > 0, and so λ1 and λ2
are not the zero measure. Thus, we can define

µ�B� = λ1�B�
λ1�Rd�

� ν�B� = λ2�B�
λ2�Rd�

� B ∈ �d�

Therefore, applying Corollary 1.2, we obtain probability measures satisfy-
ing (i).

To obtain part (ii), we note that Lemma 5.5(c) implies that

∫
�x�2n dµ�x� =

∫ ( d∑
1

x2
j

)n
dµ�x� ≤

∫ (
dmax

j
x2
j

)n
dµ�x�

≤ dn
∫ d∑

1

x2n
j dµ�x� ≤ dn

d∑
j=1

∣∣∣∣
∣∣∣∣∂nf∂xnj

∣∣∣∣
∣∣∣∣
2

2
�

The same inequalities can be derived for ν. According to Lemma 5.7, this
means that for some constants C0 and C1,

max
{(∫

�x�2n dµ�x�
)1/2

�

(∫
�x�2n dν�x�

)1/2}
≤ C0C

n
1Mn�

In fact, without loss of generality, we may take C0 = C1 = 1. Indeed, one can
remove C0 by increasing C1 if necessary; as for C1, if that constant is greater
than 1, it can be reduced to 1 by dilating µ and ν by an appropriate factor.

Part (iii) is an immediate consequence of Lemma 5.5(d). ✷

6. Discrete measures. Rényi [5] investigated the problem of the deter-
mination of a discrete probability measure µ on R

2 by a set of its projections.
Attributing the proof of his result to Hajós, he stated that if supp�µ� consists of
k distinct points, then µ is completely determined by its projections on k+ 1
straight lines through the origin. This says that if ν is another probability
measure on R

2 with the same projections on the k + 1 straight lines, then
µ = ν (strong determination). This result is sharp in view of the following
example also given by Rényi. Consider a regular polygon P with 2k sides and
centered at the origin. Let µ1 be the probability measure with mass points of
probability 1/k at each second vertex of P, and let µ2 be defined in the same
way at each remaining vertex of P. Then µ1 and µ2 have the same projec-
tions on the k straight lines perpendicular to pairs of opposite sides and going
through the origin. The following extension to R

d was proved by Heppes.

Proposition 6.1 (Heppes [4], page 405). Let µ be a discrete probabil-
ity measure on R

d and suppose that supp�µ� consists of k distinct points.
Suppose that H1�H2� � � � �Hk+1 are subspaces respectively of dimensions
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m1�m2� � � � �mk+1, such that no two of these subspaces are contained in a sin-

gle hyperplane, that is, no arbitrary straight line in R
d can be perpendicular

to more than one of the Hi’s. If ν is a Borel probability measure on R
d such

that µHi = νHi , i = 1� � � � � k+ 1, then µ = ν.

The following proposition allows another approach to the problem.

Proposition 6.2. Let L1� � � � �Lk be distinct �d−1�-dimensional subspaces
in R

d, and suppose that µ and ν are Borel probability measures on R
d such

that µLi = νLi , i = 1� � � � � k. Then

�µ��x�� − ν��x��� ≤ 1
k
� x ∈ R

d�

Proof. Let x ∈ R
d. Put c = µ��x�� − ν��x��, and let Ai = π−1

Li
��πLi�x��� \

�x�, i = 1� � � � � k. Then

µ�Ai� = µ�π−1
Li

��πLi�x���� − µ��x��
= ν�π−1

Li
��πLi�x���� − ν��x�� − c

= ν�Ai� − c�
Since the sets A1� � � � �Ak are disjoint,

1 ≥
k∑
i=1

ν�Ai� ≥
k∑
i=1

c = kc�

hence c ≤ 1/k. Exchanging the roles of µ and ν in the argument above yields
the result. ✷

Theorem 6.3. Let µ and ν be Borel probability measures on R
d and let �

be an infinite family of �d − 1�-dimensional subspaces of R
d. If µL = νL for

every L ∈ � , then the discrete parts of µ and ν coincide. In particular, if µ is
discrete, then so is ν, and µ = ν.

Proof. According to Proposition 6.2, for every positive integer k,

�µ��x�� − v��x��� ≤ 1
k
� x ∈ R

d�

Therefore, µ��x�� = ν��x�� for all x ∈ R
d, and thus the discrete parts of µ and

ν are the same. ✷

The example of Rényi presented at the beginning of this section exhibits a
case where two different discrete measures µ and ν in R

2 are such that

�µ��x�� − ν��x��� = 1
k

for each mass point �x� of µ or ν, while having at the same time k identical
projections. This shows that Proposition 6.2 is the best possible of its kind.
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