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LIMIT THEOREMS FOR PRODUCTS
OF POSITIVE RANDOM MATRICES

By H. Hennion

Université de Rennes I

Let S be the set of q×q matrices with positive entries, such that each
column and each row contains a strictly positive element, and denote by S◦
the subset of these matrices, all entries of which are strictly positive. Con-
sider a random ergodic sequence �Xn�n≥1 in S. The aim of this paper is to
describe the asymptotic behavior of the random productsX�n� =Xn · · ·X1,
n ≥ 1, under the main hypothesis P�⋃n≥1�X�n� ∈ S◦
� > 0. We first study
the behavior “in direction” of row and column vectors ofX�n�. Then, adding
a moment condition, we prove a law of large numbers for the entries and
lengths of these vectors and also for the spectral radius of X�n�. Under the
mixing hypotheses that are usual in the case of sums of real random vari-
ables, we get a central limit theorem for the previous quantities. The vari-
ance of the Gaussian limit law is strictly positive except when �X�n��n≥1
is tight. This tightness property is fully studied when the Xn, n ≥ 1, are
independent.

1. Statement of results.

1.1. Framework. Let S be the multiplicative semigroup of q× q matrices
with real positive (greater than or equal to zero) entries which are allowable
[30]; that is, every row and every column contains a strictly positive element.
The product of g and g′ ∈ S is denoted by gg′. The subset of S composed of
matrices with strictly positive entries is a subsemigroup denoted by S◦.

Both S and S◦ may be described in terms of endomorphisms. Consider the
linear space R

q endowed with its canonical basis �ei�i=1
���
q, with the scalar
product �·
 · for which this basis is orthonormal and with the norm defined by

x ∈ R
q
 ��x�� =

q∑
i=1

��x
 ei��

Moreover, introduce the cones C and C:

C = {
x� x ∈ R

q
 ∀i = 1
 � � � 
 q
 �x
 ei > 0
}



C = {
x� x ∈ R

q
 ∀i = 1
 � � � 
 q
 �x
 ei ≥ 0
}
�

In this context, a q × q matrix with positive entries is identified with an
endomorphism of R

q that preserves C. Let g be such a matrix. The g image
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of x ∈ R
q is denoted by gx. We associate with g the real numbers

��g�� = sup���gx��� x ∈ R
q
 ��x�� = 1� = sup���gx��� x ∈ C
 ��x�� = 1�


v�g� = inf���gx��� x ∈ C
 ��x�� = 1��
Note that g belongs to S if and only if v�g� > 0 and v�g∗� > 0, where g∗ is
the adjoint matrix of g.

Now, let ��
� 
P
 θ� be an ergodic dynamical system and let X0 be a ran-
dom variable on � with values in S.

For n ≥ 0, we set

Xn =X0 ◦ θn�
Then we define the random products X�n�, n ≥ 1, by

X�1��ω� =X1�ω�
 X�n+1��ω� =Xn+1�ω�X�n��ω��
We denote by �n�ω� the spectral radius of X�n��ω�.

Our aim is the study of the asymptotic behavior of the sequence �X�n��n≥1.
For the main part, our results concern the sequences of real random variables(�y
X�n�x)

n≥1
 x
 y ∈ C\�0��
In these are included the sequences of matrix entries ��ei
X�n�ej�n≥1
 i
 j =
1
 � � � 
 q, as well as the sequences of norms of the transforms of a positive
vector ���X�n�x���n≥1
 x ∈ C\�0�, as is seen by choosing for y the vector all
coordinates of which are equal to 1.

The hypothesis common to all the following statements is

�� � P

( ⋃
n≥1

[
X�n� ∈ S◦]

)
> 0�

Consider the particular case of independent Xn, n ≥ 1, to which we will
henceforth refer as the “independent case.” Then it is clear that condition �� �
only depends on the support of the random matrix X1.

Returning to the general case, we notice that S◦ is an ideal of S; that is,
if g ∈ S◦ and g′ ∈ S, then g′g ∈ S◦, so that, for x
y ∈ C\�0�, �y
g′gx > 0.
Consequently, the stopping time T defined by

T�ω� = inf�n� n ≥ 1
 X�n��ω� ∈ S◦�
is of great importance in what follows. It will be established in Lemma 3.1
that, under �� �, P�T < +∞
 = 1.

Before we proceed, let us agree on two notations. First, if X is a random
variable in S, we set X∗�ω� = �X�ω��∗. Second, if 1 ≤ p, we denote

mp = E
[∣∣ ln ��X∗

0��
∣∣p]1/p +E[∣∣ ln v�X∗

0�
∣∣p]1/p

�

Notice that, according to the norm equivalence on the space of q×q matrices,
we may write equally well E�� ln ��X∗

0�� �p
 < +∞ or E�� ln ��X0�� �p
 < +∞.
In the sequel, unless otherwise stated, ei, ej are arbitrary basis vectors.
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1.2. Asymptotic behavior in direction. If a
 b ∈ R
q, we denote by a⊗ b the

q× q matrix defined by

�ei
 �a⊗ b�ej = �ei
 a�ej
 b
 i
 j = 1
 � � � 
 q�

When �a
 b = 1, a ⊗ b is the matrix of the projector on span�a� associated
with the decomposition R

q = span�a� ⊕ b⊥.
According to the Perron–Frobenius theorem ([22] and [30]), if g ∈ S has

spectral radius λ, then λ is a strictly positive eigenvalue of g and g∗ and it is
possible to choose r
 l ∈ C\�0� such that

gr = λr
 g∗l = λl
 ��l�� = 1
 �l
 r = 1�

If g ∈ S◦, if the eigenvalue λ is simple and all other eigenvalues have a strictly
smaller modulus, and if r and l are uniquely given by the preceding relations
and belong to C, then we have limn λ

−ngn = r⊗ l.

Theorem 1. Assume �� �. Let Rn, Ln be random vectors in C\�0� such that

X�n�Rn = �nRn
 X�n�∗Ln = �nLn
 ��Ln�� = 1
 �Ln
Rn = 1�

Then:

(i)

lim
n

�ei
X�n�ej
�n�Rn
 ei�Ln
 ej

1�T≤n
 = 1 a.s.


lim
(
�−1
n X

�n� −Rn ⊗Ln
) = 0 a.s.�

(ii) there exist random unit vectors Z1 and Z′1 in C such that
(a) �Ln�n≥1 converges almost surely to Z1,
(b) �Rn/��Rn���n≥1 converges weakly to Z′1;

(iii) moreover, if θ is mixing:
(a) the sequence �Rn/��Rn��
Ln�n≥1 converges weakly to ν′ × ν, where ν

and ν′ are the laws of Z1 and Z′1;
(b) the sequence ��−1

n X
�n��n≥1 converges weakly to the probability mea-

sure on S◦ which is the image of ν′ × ν under the function h defined on C×C
by h�z′
 z� = z′ ⊗ z/�z′
 z.

Point (i) compares the random matrices �−1
n X

�n� and the random projectors
Rn⊗Ln. With respect to almost sure convergence, the first assertion says that
at infinity the entries of these matrices are equivalent; the second mimics what
was recalled previously for the powers of an element g ∈ S◦. Joined to (ii),
this first statement shows that, in direction, the sequence of row vectors of
X�n� converges almost surely, while the sequence of column vectors converges
weakly.

Notice that, if the matrices Xn are stochastic, then the sequence �X�n��n≥1
converges a.s.

The asymptotic link between �n and ��X�n���1/n will appear in Theorem 2
under m1 < +∞. However, the preceding theorem may be adapted to normal-
ized matrix products. Recall [22] that a norm ��� · ��� on a vector space ordered
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by a cone C is said to be monotone if, for all x
y ∈ C such that y − x ∈ C,
���x��� ≤ ���y���.

Corollary 1. Let ��� · ��� denote both a monotone norm on R
q and the in-

duced norm on the space of q×q matrices. Under the hypothesis of Theorem 1,
we have:

(i)

lim
n
�n
���Rn ⊗Ln���
���X�n���� = 1 a.s.


lim
n

(
X�n�

���X�n���� −
Rn ⊗Ln

���Rn ⊗Ln���
)
= 0 a.s.�

(ii) if θ is mixing, the sequence �X�n�/���X�n�����n≥1 converges weakly to the
probability measure on S◦ which is the image of ν′ × ν by the function h1 =
���h���−1h.

1.3. The strong law of large numbers. Recall [23] that, under the hypoth-
esis E�ln+ ��X1��
 < +∞ which is satisfied if m1 < +∞, the greatest char-
acteristic exponent of the sequence �Xn�n≥1 is the element γ1 of R ∪ �−∞�
defined by

γ1 = lim
n

1
n
E�ln ��X�n���



and that, by means of the subadditive ergodic theorem, we have almost surely

lim
n

1
n

ln ��X�n��� = γ1�

It appears that, in the present context, the exponent γ1 also governs the
almost sure asymptotic behavior of the entries and of the spectral radius of
the matrices X�n�.

Theorem 2. Suppose �� � and m1 < +∞. Then γ1 > −∞ and we have
almost surely

lim
n

sup
{∣∣∣∣ 1
n

1�T≥n
 ln�y
X�n�x − γ1

∣∣∣∣� x
y ∈ C
 ��x�� = ��y�� = 1
}
= 0


lim
n

1
n

ln�n = γ1�

In Section 3, �� � will be understood as a contraction property of the se-
quence �X�n��n≥1 with which we can associate a coefficient κ ∈ �0
1�. As in the
case of independent matrices ([3], Proposition 3-6-4), κ allows us to compare
the two leading characteristic exponents.

Corollary 2. Let γ2 ∈ R ∪ �−∞� be the second characteristic exponent of
the sequence �Xn�n≥1. Under the hypothesis of Theorem 2, we have

γ2 ≤ γ1 − ln
1
κ
�
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1.4. The central limit theorem. For n ≥ 1, we denote

�n the σ-field generated by the random variables Xk, 0 ≤ k ≤ n,
� n the σ-field generated by the random variables Xk, n ≤ k.

We set

αn = sup
k≥0

sup
{
�P�A ∩B� −P�A�P�B��� A ∈ �k
 B ∈ � n+k

}



ρn = sup
k≥0

sup
{
�Cor�Y
Z��� Y ∈ L2��k�
 Z ∈ L2�� n+k�
 Y �= 0
 Z �= 0

}



where

Cor�Y
Z� = E
[�Y−E�Y
��Z−E�Z
�]

σ�Y�σ�Z� �

We will consider the two following situations:

(A) there exists δ > 0 such that m2+δ < +∞

∑
n≥1 α

δ/�2+δ�
n < +∞�

(B) m2 < +∞

∑
n≥1 ρn < +∞.

The independent case is a particular case of (B). Conditions (A) and (B) are
verified when �Xn�n≥1 is a finite stationary ergodic Markov chain on S.

Theorem 3. Assume that �� � and one of the conditions (A) or (B) is sat-

isfied. Then, for all sequences �xn�n≥1 and �yn�n≥1 of unit vectors of C, the
random sequences

(
1√
n

1�T≤n

(
ln�yn
X�n�xn − nγ1

))
n≥1



(
1√
n

(
ln�n − nγ1

))
n≥1

converge weakly to a centered normal law whose variance is denoted by σ2.

Notice that, in each case, moments and mixing conditions are the same as
in the standard theorems for sums of real random variables. For the preceding
result to be a meaningful central limit theorem, it is necessary that σ2 > 0.
So we have now to study the case σ2 = 0.

Corollary 3. Under the hypothesis of Theorem 3, if σ2 = 0, then the se-
quence �e−nγ1 ��X�n����n≥1 is tight in 
0
+∞�.

Since we may always substitute the sequence �e−γ1Xn�n≥1 for the initial se-
quence �Xn�n≥1, we are led to study the tightness properties of nonnormalized
random products.
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1.5. Tightness. Although �X�n��n≥1 is a sequence of random matrices in
S, it is natural to consider a tightness property on the closed semigroup S of
q× q matrices with positive entries.

Tightness of the sequence �X�n��n≥1 may be deduced from the tightness of
certain associated sequences of real random variables. For the statement of
the precise result, we consider functions  on S which are continuous, strictly
positive on S◦, homogeneous and increasing; that is, for g
g′ ∈ S, λ > 0,
�g� ≥ 0, �λg� = λ�g�, if g′ − g ∈ S, �g′� ≥ �g� and, if g ∈ S◦, �g� > 0.
The norm and the function v on S induced by an increasing norm on R

q are
examples of the function , as is vm, given by

vm�g� = min
{�ei
 gej� i
 j = 1
 � � � 
 q

}
�

Theorem 4. (i) Assume that θ is mixing, that condition �� � is satisfied
and that the sequence ��X�n���n≥1 is tight in �0
+∞�. Then �X�n��n≥1 is tight

in S and every weak limit value π of this sequence satisfies π��0� ∪ S◦� = 1.
Moreover, if π�0� = 0, π is carried by the subset Q = �a⊗ b� a
 b ∈ C� of rank
one elements in S◦.

(ii) Assume that θ is strongly mixing �limn αn = 0�, that condition �� � is

satisfied and that the sequence �X�n��n≥1 is tight in S. Then �X�n��n≥1 converges
weakly to the unit mass at 0 or each weak limit value π of this sequence satisfies
π�Q� = 1.

If �X�n��n≥1 is tight in S, it is tight in S if and only if any of its weak limit
value π satisfies π�S� = 1. Under the hypothesis of (i), this condition reduces
to π�0� = 0 and follows from

lim
3

lim inf
n

P
[
3−1 ≤ ��X�n���] = 1�

In the independent case, the tightness in S may be characterized in a ge-
ometric way and we get a convergence result. Some additional notation is
necessary.

We denote by � + the collection of the affine subspaces A of R
q such that

A∩C �= � and �A−A�∩C = �0� (or, equivalently,A∩C is a nonempty bounded
subset). The semigroup of elements in S preserving A ∈ � + is denoted by
SA.

Let T denote the closed subsemigroup of S spanned by the identity matrix
and the support of X1 in S.

Theorem 5. Assume that the random matricesXn, n ≥ 1, are independent
and that condition �� � is verified.

Then �X�n��n≥1 is tight in S if and only if there exists A ∈ � + such that
T ⊂ SA.

The set A may be described as the affine subspace spanned by Trm, where
rm is a vector of C such that E�X1
rm = rm, E�X1
 being the mean matrix
�ei
E�X1
ej = E��ei
X1ej
.
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To proceed, we need to describe the structure of elements in SA, A ∈ � +.
There exist measurable functions on SA� r�·�, l�·� and w�·� such that

r�g� ∈ A ∩C
 gr�g� = r�g�
 l�g� ∈ C
 g∗l�g� = l�g�
 �r�g�
 l�g� = 1


w�g�A ⊂ A−A
 w�g� has spectral radius λ�w�g�� ≤ 1


g = r�g� ⊗ l�g� +w�g��
Notice that now the normalization of left and right eigenvectors is not the
same as in Section 1.2.

Corollary 4. Under the hypothesis of Theorem 5, �X�n��n≥1 converges
weakly to the probability h�ν̃′ × ν̃�, where ν̃′ and ν̃ are the probability distribu-
tions of the almost surely converging series∑

n≥1

w�X∗
1� · · ·w�X∗

n−1�l�Xn�

∑
n≥1

w�X−1� · · ·w�X−n+1�r�X−n��

The preceding results clearly apply to products of random stochastic
matrices.

1.6. Connection with previous results. As far as I know, stationarity and
�� � are the weakest conditions that have been considered when dealing with
random products of positive matrices in order to establish limit theorems. The
method of this paper differs from those of the previous ones by the systematic
use of the contracting action of matrices on the projective space, a method
which is usual when studying products of random, independent, invertible
matrices ([3], [5], [14] and [17]).

Behavior in direction. Behavior in direction is related to the notion of weak
ergodicity for products of random, positive matrices as developed by Cohn,
Nerman and Peligrad [6], and others [30]. The work of Kesten and Spitzer
[20] gives some answers for this problem in the independent case. Theorem 1
takes place in a more general context; however, [20] has inspired the algebraic
lemma (Lemma 4.1). The stationary sequence �Zk�k≥1 in Lemma 3.3 is the
projective image of the generalized eigenvector introduced by Evstigneev [12].
The directionZ1 is of main importance to state a kind of multiplicative ergodic
theorem for random, strictly positive matrices [1]; it may be generalized to the
case of transfer operators ([1] and [13]).

Law of large numbers. Generalizing a result of Furstenberg and Kesten
[15], Kingman [21] has established that

lim
n

1
n

ln�ei
X�n�ej = γ1 a.s.,

under the hypothesis maxi
 j=1
���
q E�� ln�ei
X1ej�
 < +∞, which implies
m1 < +∞ and strengthens �� �. The proof is based on the subadditive ergodic
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theorem stated by this author. Avoiding this powerful tool, Cohn, Nerman
and Peligrad [6] have established the same result in an elementary way. The
relation between the two leading characteristic exponents and the contraction
rate stated in Corollary 2 has been obtained by Peres [28] for the case of the
Hilbert metric, using an algebraic formula due to Hopf.

Central limit theorem. Set

βn = sup
k≥0

sup
{�P�B�A� −P�B��� A ∈ �k
 P�A� > 0
 B ∈ � n+k}�

Note that βn ≥ αn. Assuming:

(i) almost surely mini
 j=1
���
q�ei
X0ej > 0 and maxi
 j=1
���
q�ei
X0ej/
mini
 j=1
���
q�ei
X0ej is bounded;

(ii) there exists δ > 0 such that maxi
 j=1
���
q E�� ln�ei
X0ej�2+δ
 < +∞;
(iii) �βn�n≥1 tends to 0 exponentially fast.

Furstenberg and Kesten [15] have obtained weak convergence to a normal
law.

This result is strengthened by Cohn, Nerman and Peligrad [6], since their
first set of hypotheses only supposes the existence of δ > 0 such that:

(i′) maxi
 j=1
���
q E�� ln�ei
X1ej�2+δ
 < +∞;

(ii′)
∑
n≥1 α

δ/�2+δ�
n < +∞.

The second set of hypotheses considered by these authors to get a central limit
theorem is:

(i′′) maxi
 j=1
���
q E�� ln�ei
X1ej�2
 < +∞;
(ii′′)

∑
n≥1 ρn < +∞.

It is clear that the conditions of our Theorem 3 are weaker than the previous
ones. Notice that the proofs of [6] are based on Theorem 5.4 of [18], whose
proof was corrected by Esseen and Janson [11]; see also Volny [31].

Tightness. The results of Theorem 5 are more general and precise than
those of Kesten and Spitzer [20]; moreover, the proofs are simpler. The hy-
potheses of [20] are �� � and the fact that �vm�X�n���n is tight in �0
+∞�; as
already noted, vm is a particular function . In [20] it is proved that the se-
quence �X�n��n converges weakly to a probability on S◦ and in a particular
case it is shown that the limit distribution is of the form described here. The
central idea of the proof of Theorem 5 is an argument of Raugi [29]. A simi-
lar technique has been used by Bougerol [2] to describe the structure of tight
products of independent not necessarily positive matrices. The favorable case
of positive matrices allows more precise statements and shorter proofs. Notice
also that, using semigroup methods, Mukherjea [26] gave alternative proofs
of some of Kesten and Spitzer’s results.

The limit theorems stated previously are similar to those obtained for prod-
ucts of independent or Markov-dependent, invertible, random matrices, by
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Furstenberg [14], Le Page [24] and Guivarc’h and Raugi [17]. For a more pre-
cise comparison, look at the results obtained here in the independent case.
Positivity allows us to avoid the invertibility of X1 and the strong irreducibil-
ity of its support and, in the central limit theorem, permits the use of a method
which eliminates the exponential moment condition. Although the case of pos-
itive matrices is much easier to handle than the general one, it is worth noting
that, in both cases, the crux is a contraction property.

2. Notation and general points. First, it will be convenient to modify
the dynamical system setting. Without restricting the generality of the pre-
viously stated results, we may replace the original dynamical system by a
natural extension, still denoted ��
� 
P
 θ�, for which θ is invertible [7]. The
sequence �Xn�n∈Z is then defined by Xn =X0 ◦ θn
 n ∈ Z.

The definitions of the σ-fields �n, � n are suitably extended.
The dual action of the random matrices Xn, n ∈ Z, will have a leading role

in the sequel, so we set

Yn =X∗
n
 n ∈ Z
 Y�n� =X�n�∗ = Y1 · · ·Yn
 n ≥ 1�

Recall that the norm used on R
q is defined by

x ∈ R
q
 ��x�� =

q∑
i=1

��x
 ei�


which is not the norm associated with the scalar product �·
 ·; however, the
inequality ��x
y� ≤ ��x�� ��y�� is satisfied. We have also set

C = �x� x ∈ R
q
 ∀i = 1
 � � � 
 q
 �x
 ei > 0�


C = �x� x ∈ R
q
 ∀i = 1
 � � � 
 q
 �x
 ei ≥ 0��

As usual, when studying random matrix products, it is convenient to intro-
duce the projective action of these matrices [3].

Projectively, that is, when only the directions are considered, the elements
of C and C are represented by points of the open and closed “polygons”

B = C ∩ �x� x ∈ R
q
 ��x�� = 1�
 B = C ∩ �x� x ∈ R

q
 ��x�� = 1��
We pick out in B the point χ = �1/q
 � � � 
1/q�. On C, the norm and scalar
product are then connected by the relation q�x
χ = ��x��.

We have that S acts on B. Precisely, every g ∈ S induces a transformation
of B; the image of x ∈ B is denoted g · x and defined by

g · x = gx

��gx�� �

If e stands for the identity matrix and g
g′ ∈ S, x ∈ B,

e · x = x
 �gg′� · x = g · �g′ · x��
Notice the importance of · to distinguish between the action of elements of S
on C and on B.
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From now on, condition �� � is assumed. It implies the contraction properties
stated in Section 3. Having these at hand, we establish Theorem 1 in Section 4
and tackle the proofs of Theorems 2 and 3 in Section 5.

3. Contraction properties.

3.1. Contraction properties of positive matrices. We construct a bounded
distance d on B, such that, with respect to d, any element g ∈ S acts on B as
a contraction.

Let x = �x1
 � � � 
 xq�
 y = �y1
 � � � 
 yq� be two points in B. We write

m�x
y� = sup
{
λ� λ ∈ R+
 ∀i = 1
 � � � 
 q
 λyi ≤ xi

}

= min
{
xi
yi
� i = 1
 � � � 
 q
 yi > 0

}
�

As
∑q
i=1 xi =

∑q
i=1 yi = 1, we have 0 ≤m�x
y� ≤ 1. We write

d�x
y� = ϕ�m�x
y�m�y
x��

where ϕ is the one-to-one function on �0
1
 defined by

ϕ�s� = 1− s
1+ s �

Proposition 3.1. d is a distance on B having the following properties:

(i) sup�d�x
y�� x
y ∈ B� = 1;

(ii) if x
y ∈ B, #x− y# ≤ 2d�x
y�.
For g ∈ S, there exists c�g� ≤ 1 such that:

(iii) if x
y ∈ B, d�g · x
g · y� ≤ c�g�d�x
y� ≤ c�g�;
(iv) c�g� < 1 if and only if g ∈ S◦;
(v) if g′ ∈ S, c�gg′� ≤ c�g�c�g′�;

(vi) c�g∗� = c�g�.

This result will be proved in Section 10, where we shall also establish a
formula that expresses c�g� as a function of the entries of the matrix g.

Remark. The Hilbert distance on B is defined by

dH�x
y� = − ln
(
m�x
y�m�y
x�)�

It is connected to the preceding distance by

d�x
y� = tanh
( 1

2dH�x
y�
)
�

On one hand, one knows ([3], page 59, [4] and [22]) that properties (iii)–(vi)
are satisfied by dH. On the other hand,

sup
{
dH�x
y�� x
y ∈ B

} = +∞

so that (i) makes d more convenient than dH.
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The distance d has been introduced in [4], for the two-dimensional case,
and, more recently, in [27], the relevant contraction coefficient c�g� has been
associated with the norm distance on B. As quoted in [4], if cH�g� is the
contraction coefficient of g ∈ S with respect to dH, we have cH�g� ≤ c�g�. But
it is of no interest for the sequel to use the best contraction coefficient.

3.2. Stochastic contraction properties. Recall that T�ω� = inf�n� n ≥ 1

X�n��ω� ∈ S◦�.

Lemma 3.1. We have P�T < +∞
 = 1, E�T
 < +∞ and, for n ≥ T�ω�,
X�n��ω� ∈ S◦.

Proof. From �� �, there exists b ∈ N
∗ such that P�X�b� ∈ S◦
 > 0. Set

T′�ω� = inf�n� n ≥ 1
 X�b��θn�ω�� ∈ S◦�. From Kac’s lemma [7], we know
that P�T′ < +∞
 = 1 and that E�T′
 < +∞. But, if g ∈ S and g′ ∈ S◦,
g′g and gg′ ∈ S◦. From this we deduce that T�ω� ≤ T′�ω� + b and that, for
n ≥ T�ω�, X�n��ω� ∈ S◦. ✷

We now explain the strictly contracting action of the matricesY�n� andX�n�,
n ≥ 1, on B.

Lemma 3.2. The contraction coefficient of the sequence �Y�n��n≥1 is the real
number κ ∈ �0
1� defined by

lnκ = lim
n

1
n
E�ln c�Y�n��
 = inf

n

1
n
E�ln c�Y�n��
�

We have limn�c�Y�n���1/n = κ a.s. In particular, limn c�Y�n�� = limn c�X�n�� = 0
a.s.

Proof. We use the properties of c given previously. For m and n ≥ 1,

ln c�Y�m+n�� ≤ ln c�Y�m�� + ln c�Ym+1 · · ·Ym+n� = ln c�Y�m�� + ln c�Y�n� ◦ θm��

As ln c�Y�n�� ≤ 0, the subadditive ergodic theorem does the main part of the
proof. It is clear that κ < 1, because by �� � there exists b ∈ N

∗ such that −∞ ≤
�1/b�E�ln c�Y�b��
 < 0. At last, since c�g� = c�g∗�, κ is also the contraction
coefficient of the sequence �Xn�n≥1. ✷

Lemma 3.3. There exists a stationary, ergodic sequence �Zk�k∈Z of random
elements of B such that:

(i) Zk is � k-measurable;
(ii) for k ∈ Z, Yk ·Zk+1 = Zk;

(iii) for y ∈ B and k
n ∈ Z, k ≤ n, d��Yk · · ·Yn� · y
Zk� ≤ c�Yk · · ·Yn��
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Proof. Set �1 = �ω� limn c�Y�n��ω�� = 0� and note that P��1� = 1.
Let ω ∈ �1. The “polygons” Kn�ω� = Y�n��ω� · �B� form a decreasing se-

quence of compact subsets of B endowed with the canonical topology on R
q, so

that K�ω� = ⋂
n≥1Kn�ω� �= �. For the distance d, the diameter =�ω� of K�ω�

is equal to 0. In fact, for n ≥ 1,

=�ω� ≤ =n�ω� = sup
{
d
(
Y�n��ω� · x
Y�n��ω� · y)} ≤ c�Y�n��ω���

We define Z1�ω� by K�ω� = �Z1�ω��.
Z1�ω� ∈ B, since for n large enough Y�n��ω� ∈ S◦.
Let y ∈ B. As Y�n��ω� · y ∈ Kn�ω�, we have, from (ii) in Proposition 3.1,

Lemma 3.2 and the preceding inequality,

lim
n
��Y�n��ω� · y−Z1�ω��� = lim

n
d
(
Y�n��ω� · y
Z1�ω�

) = 0


and, more precisely, considering distance d,

d
(
Y�n��ω� · y
Z1�ω�

) ≤ =n�ω� ≤ c(Y�n��ω�)�
For k ∈ Z, we set Zk = Z1 ◦ θ�k−1�.
We have a.s. Zk = limn�Yk · · ·Yn� · y = Yk ·Zk+1. The other properties of

�Zk�k∈Z are clear. ✷

4. Proof of Theorem 1 and Corollary 1.

4.1. Proof of (i). Let �1 ∈ � with P��1� = 1 such that, for ω ∈ �1,
limn c�Y�n���ω� = 0 and T�ω� < +∞.

We fix ω ∈ �1. Since Z1�ω� ∈ B, inf��Z1�ω�
 x� x ∈ B� = a > 0. For
x
y ∈ B, omitting ω for a while, we write

∣∣∣∣�Y
�n� · y
x
�Z1
 x

− 1
∣∣∣∣ =

∣∣∣∣�Y
�n� · y−Z1
 x
�Z1
 x

∣∣∣∣ ≤ ��Y
�n� · y−Z1����x��
�Z1
 x

≤ 2
d
(
Y�n� · y
Z1

)
�Z1
 x

≤ 2
a
c�Y�n���

Because

�Y�n� · y
x = �Y
�n�y
x

��Y�n�y�� =
�y
X�n�x
q�X�n�χ
y 


we get

�y
X�n��ω�x = q�X�n��ω�χ
y�Z1�ω�
 x
(
1+ εn�x
y��ω�

)



where �εn�x
y��ω��n converges to 0, uniformly for x
y ∈ B. Using homogene-
ity, we may still write this relation for x
y ∈ C, with limn sup��εn�x
y��ω��� x

y ∈ C� = 0�
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Points (i) of Theorem 1 and Corollary 1 are direct consequences of the follow-
ing lemma inspired by [20]. Notice, for later use, that, if  is as in Theorem 4,
the last statement of this lemma implies

lim
n

�Rn ⊗Ln�
�ei
 �Rn ⊗Ln�ej

�ei
X�n�ej
�X�n�� 1�T≤n
 = 1 a.s.

Lemma 4.1. Let �gn�n be a sequence in S◦, x0 an element of B and �yn�n a

sequence in C such that, for x
y ∈ C,

�y
gnx = �yn
y�x0
 x
(
1+ εn�x
y�

)



where limn sup��εn�x
y��� x
y ∈ C� = 0. Then, if λn is the spectral radius of
gn and if rn, ln are vectors in C defined by

g∗nln = λnln
 gnrn = λnrn
 ��ln�� = 1
 �ln
 rn = 1


we have

lim
n
ln = x0
 lim

n

�ei
 gnej
λn�rn
 ei�ln
 ej

= 1
 lim
n

(
λ−1
n gn − rn ⊗ ln

) = 0�

Moreover, if ��� · ��� is as in Corollary 1 and  is as in Theorem 4,

λn ∼
���gn���

���rn ⊗ ln���

 lim

n

(
gn

���gn���
− rn ⊗ ln
���rn ⊗ ln���

)
= 0


lim
n

�rn ⊗ ln�
�ei
 �rn ⊗ ln�ej

�ei
 gnej
�gn�

= 1�

Proof. Let ε, 0 < ε < 1, and let n be such that, for x
y ∈ C\�0�,

1− ε ≤ �y
gnx
�yn
y�x0
 x

≤ 1+ ε�

Consider the two double inequalities obtained from the preceding one by sub-
stituting rn for x and ln for y. Term-by-term multiplication of these inequali-
ties leads to

�1− ε�2 ≤ λ2
n�y
 rn�ln
 x

�yn
y�x0
 rn�yn
 ln�x0
 x
≤ �1+ ε�2�

Setting y = χ, we see that there exists a real positive sequence �cn�n
such that �cn��ln
 x/�x0
 x��n converges. As ��ln�� = ��x0�� = 1 it follows that
limn ln = x0.

Dividing the middle terms of the two double inequalities already written,
we now get dn such that, for all x
y ∈ C\�0�,

1− ε
�1+ ε�2 ≤ dn

�y
gnx
�y
 rn�ln
 x

≤ 1+ ε
�1− ε�2 �
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Assigning simultaneously to y and x the values ln and rn, we obtain

1− ε
�1+ ε�2 ≤ dnλn ≤

1+ ε
�1− ε�2 �

Hence (
1− ε
1+ ε

)3

≤ �y
gnx
λn�y
 rn�ln
 x

≤
(

1+ ε
1− ε

)3




which gives the second assertion.
Since limn ln = x0 ∈ B, there exists a > 0 and n0, such that, for n ≥ n0 and

all i = 1
 � � � 
 q, �ln
 ei ≥ a, the relation �ln
 rn = 1 then implies �rn
 ei ≤
1/a. We have �rn
 ei�ln
 ej ≤ ��ln��/a ≤ 1/a, so that limn�λ−1

n gn−rn⊗ ln� = 0.
Let ε, 0 < ε < 1, and let n be such that, for i
 j = 1
 � � � 
 q,

0 ≤ λn�rn
 ei�ln
 ej�1− ε� ≤ �ei
 gnej ≤ λn�rn
 ei�ln
 ej�1+ ε��
From the properties of , we get

λn�rn ⊗ ln��1− ε� ≤ �gn� ≤ λn�rn ⊗ ln��1+ ε��
It follows that

lim
n

�gn�
λn�rn ⊗ ln�

= 1�

Replacing λn by the equivalent so supplied, we deduce that, for i
 j = 1
 � � � 
 q,

lim
n

�rn ⊗ ln�
�ei
 �rn ⊗ ln�ej

�ei
 gnej
�gn�

= 1�

As rn ⊗ ln is a projector ���rn ⊗ ln��� ≥ 1 and

lim sup
n

�ei
 �rn ⊗ ln�ej
���rn ⊗ ln���

≤ 1/a


the preceding convergence with  = ��� · ��� leads to

lim
n

( �ei
 gnej
���gn���

− �ei
 �rn ⊗ ln�ej���rn ⊗ ln���
)
= 0� ✷

4.2. Proof of Theorem 1(ii). We have d�Ln
Z1�=d�Y�n� ·Ln
Y�n� ·Zn+1�≤
c�Y�n��. Hence

lim
n
d
(
Ln
Z1

) = lim
n
��Ln −Z1�� = 0 a.s.

The sequence whose general term is X′
n = X∗

−n, n ∈ Z, satisfies property
�� �, so that what was done for �Xn�n≥1 may be done for �X′

n�n∈Z. Assigning a
′ to the corresponding elements, we have

lim
n
d
(
L′n
Z

′
1

) = lim
n
��L′n −Z′1�� = 0 a.s.,
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with the relations

L′n = �Y′1 · · ·Y′n� ·L′n = �X−1 · · ·X−n� ·L′n
and

Z′1 = lim
n
�Y′1 · · ·Y′n� · χ = lim

n
�X−1 · · ·X−n� · χ a.s.

Set L′′n = L′n◦θn+1. The sequence �L′′n�n≥1 converges weakly to Z′1 and satisfies
X�n� ·L′′n = L′′n. For n ≥ T�ω�,X�n��ω� ∈ S◦, so that L′′n�ω� = ��Rn�ω���−1Rn�ω�.
As P�T < +∞
 = 1, we conclude that ���Rn��−1Rn�n≥1 converges weakly to
Z′1. ✷

4.3. Proof of Theorem 1(iii). Set R1
n = ��Rn��−1Rn. Let φ, ψ be two contin-

uous functions on the compact set B and k, n integers such that 1 ≤ k ≤ n.
Let us write

un = E�φ�Ln�ψ�R1
n�
−E�φ�Z1�
E�ψ�Z′1�
 = a�n
k�+b�n
k�+c�n
k�+d�k�


where

a�n
k� = E[
φ�Y�n� ·Ln�ψ�X�n� ·R1

n�
]−E[

φ�Y�k� · χ�ψ�X�n� ·R1
n�
]



b�k
n� = E[
φ�Y�k� · χ�ψ�X�n� ·R1

n�
]−E[

φ�Y�k� · χ�ψ��Xn · · ·Xn−k� · χ�
]



c�n
k� = E[
φ�Y�k� · χ�ψ��X�k+1� ◦ θn−k−1 · χ�]

−E[
φ�Y�k� · χ�]E[

ψ�X�k+1� · χ�]

d�k� = E[

φ�Y�k� · χ�]E[
ψ��X−1 · · ·X−k−1� · χ�

]−E�φ�Z1�
E�ψ�Z′1�
�
Fix k. To bound the sequences �a�n
k��n and �b�n
k��n, we introduce the
continuity modulus η1, η2 of the functions φ, ψ and their uniform bounds r1,
r2. Using Proposition 3.1, we get

�a�n
k�� ≤ r2E�η1���Y�n� ·Ln −Y�k� · χ���
 ≤ r2E�η1�2c�Y�k���


�b�n
k�� ≤ r1E�η2���X�n� ·R1

n − �Xn · · ·Xn−k� · χ���

≤ r1E�η2�2c�Xn · · ·Xn−k��
 ≤ r1E�η2�2c�X�k+1���
�

On the other hand, by the mixing property limn c�n
k� = 0, so that, for any k,

lim sup
n

�un� ≤ r2E�η1�2c�Y�k���
 + r1E�η2�2c�X�k+1���
 + d�k��

Letting k → ∞, we conclude that limn un = 0. In fact, we have seen in the
preceding section that limk d�k� = 0, while, by Lemma 3.2, limk c�Y�k�� =
limk c�X�k�� = 0 a.s. It is therefore established that the sequence ��Ln
R1

n��n≥1
converges weakly to ν × ν′.

Since the function h defined in the statement of Theorem 1 is continu-
ous, the sequence of positive matrices �h�R1

n
Ln��n≥1 converges weakly to
h�ν′ × ν�. As limn��−1

n X
�n� − h�R1

n
Ln�� = 0 a.s., it follows that the sequence
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��−1
n X

�n��n≥1 also converges weakly to h�ν′ ×ν�. Finally, ν and ν′ being carried
by B, h�ν′ × ν� is carried by S◦.

Part (ii) of Corollary 1 is obtained along the same lines. ✷

5. Preliminaries to the proofs of Theorems 2 and 3.

5.1. Main lines of these proofs and general facts. In each case, the idea is
to show that we may reduce the proof to that of a limit theorem for a certain
stationary, ergodic sequence of real random variables. This is done in two
steps: the first is Lemma 5.1 which is common to the two proofs; the second
consists of Lemma 7.1 or Lemma 8.1, depending whether an almost sure or
a weak convergence is considered. When this is done, Theorem 2 is nearly
proved. However, a lot of work is still necessary to establish Theorem 3 using
Gordin’s method.

To be precise and to carry out the program, we need some more objects.
We have already defined in Section 2 the space B and the action of g ∈ S on

this space. As usual in this context [3], we consider the real positive function
ρ defined on S×B by

ρ�g
x� = ��gx���
This function is connected to the previously quoted action by the cocycle prop-
erty: if g
g′ ∈ S and x ∈ B,

ρ�gg′
 x� = ρ�g
g′ · x�ρ�g′
 x��
On the other hand, for y ∈ B, k
n ∈ Z, k ≤ n, set

Z
y
n+1
 n = y
 Z

y
k
n = �Yk · · ·Yn� · y�

These are random vectors in B.
Provided with these new tools, we can write

ln ��Y�n�y�� = lnρ�Y1 · · ·Yn
y� = lnρ�Y�n−1�
Yn · y� + lnρ�Yn
y�

=
n∑
k=1

lnρ�Yk
Zyk+1
 n��

We have established in Lemma 3.3(iii) that, when n → +∞, the sequence
�Zyk+1
 n�n converges almost surely to the random element Zk+1 and that the
sequence �Zk�k∈Z is stationary and ergodic. Consequently, we are led to replace
the preceding sum by the Birkhoff sum

n∑
k=1

lnρ�Yk
Zk+1��

As explained at the beginning, our task will be to show that such a substitution
does not affect the asymptotic behavior.

The law of large numbers and connected results are established in Section 7.
The central limit theorem is proved in Section 8. The properties of random
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submultiplicative sequences listed in Section 6 play a central part in these
proofs, but only Lemma 6.1 is useful for the law of large numbers.

5.2. From scalar product to norm.

Lemma 5.1. If ω is such that T�ω� < +∞, the sequence whose general
term is

Dn�ω� = sup
{ ∣∣ 1�T≤n
�ω� ln�y
X�n��ω�x − ln ��Y�n��ω�y��∣∣� x
y ∈ B }

is bounded.
Consequently, we have limn�1/n�Dn = 0, limn�1/

√
n�Dn = 0 a.s.

Proof. Choose n ≥ T�ω� and denote by a
 b two strictly positive real
numbers such that, for i
 j = 1
 � � � 
 q,

a ≤ �ei
X�T��ω�ej ≤ b�

For x ∈ B and i = 1
 � � � 
 q, a = a��x�� ≤ �ei
X�T��ω�x ≤ b��x�� = b. Picking
y ∈ B, we write

〈
y
X�n��ω�x〉 = 〈(

YT+1 · · ·Yn
)�ω�y
X�T��ω�x〉�

Hence, successively,
〈(
YT+1 · · ·Yn

)�ω�y
a�qχ�〉 ≤ 〈
y
X�n��ω�x〉 ≤ 〈(

YT+1 · · ·Yn
)�ω�y
 b�qχ�〉
∣∣ ln�y
X�n��ω�x − ln ��(YT+1 · · ·Yn

)�ω�y�� ∣∣ ≤ max�� lna�
 � ln b���
Substituting χ for x in this relation, we get∣∣∣∣ ln

1
q
��Y�n��ω�y�� − ln ��(YT+1 · · ·Yn

)�ω�y��
∣∣∣∣ ≤ max�� lna�
 � ln b���

These two inequalities imply that �Dn�ω��n≥1 is bounded.
The stated convergences follow now from the fact that T is almost surely

finite. ✷

5.3. Some technical ingredients.

Lemma 5.2. For g ∈ S and x ∈ B,

v�g� ≤ ρ�g
x� ≤ ��g�� and
∣∣lnρ�g
x�∣∣ ≤ ∣∣ln v�g�∣∣+ ∣∣ln ��g��∣∣�

Proof. The proof is obvious. ✷

It will be of great importance to control the increments of the function
lnρ�g
 ·�.
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Lemma 5.3. For g ∈ S, set r�g� = ��g��/v�g�. We have:

(i) for x
y ∈ B, � lnρ�g
x� − lnρ�g
y�� ≤ 2r�g�d�x
y�;
(ii) for x
y ∈ B, � lnρ�g
x� − lnρ�g
y�� ≤ 2 ln�1/�1− d�x
y���;

(iii) if g′ ∈ S◦ and if c�g′� ≤ η < 1, there exists η1 such that, for x
y ∈ B,
∣∣ lnρ�g
g′ · x� − lnρ�g
g′ · y�∣∣ ≤ η1d�g′ · x
g′ · y� ≤ η1c�g′��

Proof. From the mean value inequality,

∣∣ lnρ�g
x� − lnρ�g
y�∣∣ ≤ �ρ�g
x� − ρ�g
y��
min�ρ�g
x�
 ρ�g
y�� ≤

��g��
v�g� ��x− y��


so that (i) follows from point (ii) of Proposition 3.1.
If x = �x1
 � � � 
 xq�, y = �y1
 � � � 
 yq� and g = �gij
i
 j=1
���
q,

ρ�g
x� =
q∑
i=1

q∑
j=1

gijxj ≥m�x
y�
q∑
i=1

q∑
j=1

gijyj =m�x
y�ρ�g
y��

Hence, using the symmetry in x and y,

m�x
y� ≤ ρ�g
x�
ρ�g
y� ≤

1
m�y
x� �

As x
y ∈ B, m�x
y�
m�y
x� ∈
0
1
, so that we get
∣∣ lnρ�g
x� − lnρ�g
y�∣∣ ≤ max�− lnm�y
x�
− lnm�x
y��

≤ − lnm�y
x� − lnm�x
y�

= − lnϕ−1(d�x
y�) = ln
1+ d�x
y�
1− d�x
y� �

For t ∈ �0
1�,

2 ln
1

1− t − ln
1+ t
1− t = ln

1
1− t2 ≥ 0


and (ii) follows.
Since g′ ∈ S◦ the inequality (ii) applies to g′ · x and g′ · y, so

∣∣ lnρ�g
g′x� − lnρ�g
g′y�∣∣ ≤ 2 ln
1

1− d�g′ · x
g′ · y� �

Moreover, d�g′ ·x
g′ ·y� ≤ c�g′�d�x
y� ≤ η. The function f�t� = 2 ln 1/�1− t�
being convex and such that f�0� = 0, for all t ∈ �0
 η
, we have f�t� ≤
�f�η�/η�t, hence (iii) holds with η1 = f�η�/η. ✷

To get rid of the integrability questions, let us end this section with the
following obvious statements.
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Lemma 5.4. For p ≥ 1, denote by �� · ��p the norm on Lp��� and recall that
mp = �� ln ��X∗

0�� ��p + �� ln v�X∗
0���p. Then:

(i) for all x ∈ B, �� lnρ�Y1
 x���p ≤mp;
(ii) �� ln r�Y1���p ≤mp.

6. Submultiplicative real random sequences. In this section, �Mn�n≥1
is a sequence of random variables in �0
1
 defined on ��
� 
P
 θ�, with the
following submultiplicative property: for all m
n ∈ N

∗,

Mm+n ≤Mm Mn ◦ θm�
We define τ ∈ �0
1
 by

ln τ = inf
{

1
n
E�lnMn
� n ≥ 1

}
= lim

n

1
n
E�lnMn



and we set, for 0 ≤m < n,

Mm
n =Mn−m ◦ θm�

6.1. Almost sure convergence.

Lemma 6.1. Choose α, 0 < α ≤ 1, and let nα be the integral part of �1−α�n.
Then:

(i) lim supn�1/n� lnMnα
n
≤ α ln τ a.s. in R ∪ �−∞�;

(ii) if τ < 1, �Mn�n≥1 converges to 0 almost surely and in the mean.

Proof. Fix b ∈ N
∗ and define the integers kn, 3n by

knb < nα ≤ �kn + 1�b
 �3n + 1�b ≤ n < �3n + 2�b�
One easily verifies that

lim
n

kn
n
= 1− α

b

 lim

n

3n
n
= 1
b

and that, for ε > 0,

Mnα
n
≤

3n∏
i=kn+1

Mib
 �i+1�b ≤
3n∏

i=kn+1

Mε
ib
 �i+1�b


where Mε
ib
 �i+1�b = sup�Mib
 �i+1�b
 ε�. With a left-hand member in R− ∪�−∞�,

we write

1
n

lnMnα
n
≤ 3n + 1

n

1
3n + 1

3n∑
i=0

lnMε
ib
 �i+1�b −

kn + 1
n

1
kn + 1

kn∑
i=0

lnMε
ib
 �i+1�b�

Applying the ergodic theorem, we get

lim sup
n

1
n

lnMnα
n
≤

(
1
b
− 1− α

b

)
E�lnMε

0
 b
 =
α

b
E�lnMε

0
 b
 a.s.

As this inequality is valid for arbitrary ε and b, (i) follows.
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Choose α = 1. If τ < 1, we have limnMn = 0 a.s. Since 0 ≤ Mn ≤ 1, this
implies limn E�Mn
 = 0. ✷

In the context of our study, we immediately deduce the following variation
on Lemma 3.2.

Corollary 6.1. Under hypothesis �� �, if 0 < α ≤ 1 and if nα is the integral
part of �1− α�n, we have

lim sup
n

1
n

ln c�Ynα+1 · · ·Yn� ≤ α lnκ a.s.

6.2. Mean convergence and mixing. From now on we suppose that �Mn�n≥1
has the following properties:

τ < 1, for all m
n, 0 ≤m < n, Mm
n is both �n and � m measurable.

Recall that these σ-fields have been defined in Section 1.4 and that their
definitions have been extended in Section 2.

We just noted that, if τ < 1, the sequence �E�Mn
�n≥1 converges to 0. Using
the mixing properties, we are now going to estimate the speed of convergence
of this sequence. At the end of this section, Corollary 6.2 gathers the properties
that will be used later in the proofs of Theorems 3 and 4. Notice that the proofs
of Lemmas 6.2 and 6.3 implement arguments that appear in Lemmas 3 and 4
of [6].

Let us recall the integral properties of the mixing coefficients αn and ρn:

�Iα� for p
q
 r ∈ �1
+∞
 such that 1/p+1/q+1/r = 1 and forX ∈ Lp��k�,
Y ∈ Lq�� k+n�,

�E�XY
 −E�X
E�Y
� ≤ 8α1/r
n ��X��p��Y��q�

�Iρ� for X ∈ L2��k�, Y ∈ L2�� k+n�,
�E�XY
 −E�X
E�Y
� ≤ ρn��X��2��Y��2�

See, for example, [8] or [10] for �Iα�.

Lemma 6.2. Assume that, for some λ > 0 and c, αn ≤ c/8nλ. Then, for every
real sequence �3�n��n satisfying

lim
n

lnn
3�n� = lim

n

3�n�
n
= 0


there exists c′ such that, for all n ≥ 1,

E�Mn
 ≤ c′
(
3�n�
n

)λ
�
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Proof. It follows from submultiplicativity and 0 ≤ Mn ≤ 1 that the se-
quence �E�Mn
�n≥1 is decreasing. Using, moreover, the stationarity and the
inequality �Iα� with p = q = +∞ and r = 1, we get, for u
 v
 s ≥ 1,

E�Mu+s+v
 ≤ E�MuMu
u+sMu+s
 u+s+v

≤ E�MuMu+s
 u+s+v

≤ E�Mu
E�Mv
 + 8αs�

Indeed, Mu is �u-measurable while Mu+s
 u+s+v is � u+s-measurable.
So the sequence with general term mn = E�Mn
 is decreasing and satisfies

mu+s+v ≤mumv +
c

sλ
�

Let k ≥ 1, u = 2ks and v = s. Then

m2�k+1�s ≤m2ksms +
c

sλ
�

Iterating this leads to

m2ks ≤ �ms�k−1m2s +
c

sλ

k−2∑
i=0

�ms�i�

For n ≥ 1, we denote by s�n� the integer defined by

2s�n�3�n� ≤ n < 2�s�n� + 1�3�n��
Since limn s�n� = +∞, we may choose n0 so large that, for n ≥ n0,ms�n� ≤ e−1.
For n ≥ n0, the preceding upper bound for m2ks gives

mn ≤m2s�n�3�n� ≤ exp�−3�n�� + ec

e− 1
exp

(
−λ ln

(
n

23�n� − 1
))



(
n

23�n�
)λ
mn ≤ exp

(
−3�n� + λ ln

n

23�n�
)
+ ec exp

(
−λ ln

(
1− 23�n�

n

))
�

The hypothesis on �3�n��n shows that the right-hand side of the inequality is
bounded. ✷

Lemma 6.3. Assume that limn ρn = 0. Then, for every k ∈ N, there exists
c ∈ R such that, for all n ≥ 1,

E�Mn
 ≤
c

nk
�

Proof. For the same reasons as in the preceding lemma, if u
 s
 v ≥ 1, we
have

E�Mu+s+v
 ≤ E�MuMu+s
 u+s+v
 ≤ E�Mu
E�Mv
 + ρsE�M2
u
1/2E�M2

v
1/2

≤ E�Mu
E�Mv
 + ρsE�Mu
1/2E�Mv
1/2
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so that the decreasing sequence �mn�n, mn = E�Mn
, satisfies

m2u+s ≤m2
u + ρsmu = �mu + ρs�mu�

Choose n0 and s such that s ≤ n0 and �mn0
+ ρs� ≤ 1/4k. For i ≥ 1 define ni

by ni = 2ni−1 + s. We get

mni ≤
1

4ik
mn0

�

Now if n is a large integer, we may write, with a suitable j, nj ≤ n < nj+1.
As ni ≤ 4ni−1, this j satisfies n ≤ 4j+1n0. Hence

mn ≤mnj ≤ exp�−kj ln 4�mn0
≤ 4k exp

(
−k ln

n

n0

)
mn0

= c

nk
� ✷

Corollary 6.2. Assume �� �. Choose η, 0 < η < 1, and set

T1�ω� = inf
{
n� c�Y�n��ω�� ≤ η}�

Then we have P�T1 < +∞
 = 1. Moreover:

(i) if, for some λ > 0,
∑
n≥1 α

1/λ
n < +∞, then there exists a constant K such

that, for all n ≥ 1,

max
{
P�T1 > n

 E

[
c�Y�n��]} ≤K

(
ln2 n

n

)λ
�

(ii) if limn ρn = 0, then there exists a constant K such that, for all n ≥ 1,

max
{
P�T1 > n

E

[
c�Y�n��]} ≤K 1

n8
�

Proof. Since �αn�n≥1 is decreasing and the series associated with �α1/λ
n �n≥1

converges, we have limn nα
1/λ
n = 0. It follows that there exists a constant c such

that, for all n ≥ 1, αn ≤ cn−λ. In each case, the hypotheses of Lemma 6.2 or 6.3
are satisfied.

The assertions on E�c�Y�n��
 follow from the application of these lemmas
to the submultiplicative random sequence �c�Y�n���n≥1.

Since limn c�Y�n�� = 0 a.s., T1 < +∞ a.s.
To estimate the tail of T1 law, we only have to notice that, as �c�Y�n���n is

decreasing,

P�T1 > n
 = P
[
c�Y�n�� > η] ≤ 1

η
E
[
c�Y�n��]� ✷

7. Law of large numbers. The hypotheses of this section are those of
Theorem 2.

7.1. Proof of Theorem 2. As indicated in Section 5.1, we first reduce the
study to the case of an ergodic mean, using the notation of Section 5.1.
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Lemma 7.1. Assume �� � and m1 < +∞. Then the sequences with general
terms

sup
{∣∣∣∣ 1
n

1�T≤n
 ln�y
X�n�x − 1
n

n∑
k=1

lnρ�Yk
Zk+1�
∣∣∣∣� x
y ∈ B

}



∣∣∣∣ 1
n

ln�n −
1
n

n∑
k=1

lnρ�Yk
Zk+1�
∣∣∣∣

converge to 0 almost surely.

Proof. From Lemma 5.1, to obtain the first assertion, it suffices to study
the left-hand member of the following inequality, written for y ∈ B with the
notation of Section 5.1:∣∣∣∣ln ��Y�n�y�� −

n∑
k=1

lnρ�Yk
Zk+1�
∣∣∣∣ ≤ =n�y�

=
n∑
k=1

∣∣ lnρ�Yk
Zyk+1
 n� − lnρ�Yk
Zk+1�
∣∣�

Setting =n = sup�=n�y�� y ∈ B�, we will prove that limn�1/n�=n = 0 a.s.
Pick out α, 0 < α < 1, and denote by nα the integral part of �1− α�n.
Write

=n�y� =
( nα∑
k=1

+
n∑

k=nα+1

)∣∣ lnρ�Yk
Zyk+1
 n� − lnρ�Yk
Zk+1�
∣∣ = =1

n�y� + =2
n�y�

and set, for i = 1
2, =in = sup�=in�y�� y ∈ B��
From point (i) of Lemma 5.3, Lemma 3.3 and the submultiplicativity of c,

=1
n�y� ≤ 2

nα∑
k=1

r�Yk�d
(
Z
y
k+1
 n
Zk+1

) ≤ 2
nα∑
k=1

r�Yk�c�Yk+1 · · ·Yn�

≤ 2
nα∑
k=1

r�Yk�c�Ynα+1 · · ·Yn��

Choose ε, ε > 0, such that �1 − α�ε + α lnκ < 0. Since E�ln r�Y1�
 < +∞,
the series

∑
k≥1P�ln r�Yk� ≥ εk
 converges. By the Borel–Cantelli lemma,

P�lim supk�r�Yk� ≥ eεk
� = 0; that is to say, the real random variable A =
supk r�Yk�e−εk is a.s. finite. This leads to the estimate

=1
n ≤ 2A

( nα∑
k=1

eεk
)
c�Ynα+1 · · ·Yn� ≤

2Aeε

eε − 1
eεnαc�Ynα+1 · · ·Yn��

Using Corollary 6.1, we get

lim sup
n

1
n

ln=1
n ≤ ε lim

n

nα
n
+ lim sup

n

1
n

ln c�Ynα+1 · · ·Yn� ≤ �1−α�ε+α lnκ < 0�



1568 H. HENNION

Hence

lim
n
=1
n = 0 a.s.

Moreover, through Lemma 5.2,

=2
n ≤ 2

n∑
nα+1

∣∣ln ��Yk��∣∣+ ∣∣ln v�Yk�∣∣

and, by means of the ergodic theorem, we get

lim sup
n

1
n
=2
n ≤ 2αm1 a.s.

As α is arbitrary, we obtain a.s. convergence of the first sequence considered
in the statement.

According to the uniformity in x
y ∈ B, we still have almost sure con-
vergence to 0, if, in the sequence we just studied, we omit the supremum and
replace y by the random vector Ln and x by χ. As �Ln
X�n�χ = �Y�n�Ln
χ =
�n/q and P�T < +∞
 = 1, we get the convergence of the second sequence. ✷

The real random variable lnρ�Y1
Z2� being integrable, the ergodic theorem
shows that

lim
n

1
n

n∑
k=1

lnρ�Yk
Zk+1� = E
[
lnρ�Y1
Z2�

] = γ a.s.

So we have established Theorem 2 with γ instead of γ1. Specifying x
and y in this preliminary form, we get almost surely, for i = 1
 � � � 
 q,
limn�1/n� ln ��X�n�ei�� = γ. Hence limn�1/n� ln ��X�n��� = γ and γ = γ1.

7.2. Remarks.

Remark 1. Since, for g ∈ S, v�g� = inf���gei��� i = 1
 � � � 
 q�, we have

lim
n

1
n

ln v�X�n�� = γ1 a.s.

Remark 2. Another proof of the convergence of the sequence
��1/n� ln ��X�n�x���n≥1, x ∈ B, can also be achieved using some version of
Oseledets’ theorem adapted to the case of noninvertible matrices. One only
has to adapt the arguments contained in the proof of Theorem 1 in [19]. The
preceding proof is more elementary.

Remark 3. It is possible to modify the reasoning leading to γ = γ1 in such
a way that the almost sure convergence

lim
n

1
n

ln ��X�n��� = γ1

will no more be an argument but a corollary.
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In fact, from limn�1/n� ln�y
X�n�x = γ a.s., we deduce that

lim
n
�1/n� ln ��Y�n�x�� = γ a.s.

But, for g
g′ ∈ S, v�g�v�g′� ≤ v�gg′� ≤ ��gg′�� ≤ ��g�� ��g′��, so that

1
n

n∑
k=1

ln v�Yk� ≤
1
n

ln ��Y�n��� ≤ 1
n

n∑
k=1

ln ��Yk��


this double inequality shows that the random variables �1/n� ln ��Y�n���, n ≥ 1,
are uniformly integrable. We conclude that γ= limn�1/n�E�ln ��Y1 · · ·Yn��
 =γ1�

Remark 4. As a by-product we get

γ1 = E
[
lnρ

(
Y1
Z2

)] = E[
ln ��Y1Z2��

]
�

7.3. Proof of Corollary 2. The second characteristic exponent [23] of the
sequence �Xn�n≥1 is the element γ2 ∈ R ∪ �−∞� which satisfies

γ1 + γ2 = lim
n

1
n
E
[
ln �� ∧2 X�n���]�

From the subadditive ergodic theorem,

γ1 + γ2 = lim
n

1
n

ln �� ∧2 X�n��� a.s.


and, since the vectors ei ∧ ej, i
 j = 1
 � � � 
 q, i < j, form a basis of ∧2 Rq, we
also have

γ1 + γ2 = sup
i
 j=1
���
q
 i<j

lim sup
n

1
n

ln
∣∣∣∣(X�n�ei

) ∧ (
X�n�ej

)∣∣∣∣ a.s.

For x ∈ R
q, set ��x��′ = �x
 x1/2. The scalar product and the Euclidean norm

extend to ∧2
R
q. The angular distance of x
y ∈ B is defined by

da�x
y� =
��x ∧ y��′
��x��′��y��′ �

Let us compare da to the distance d which has been used to define the
contraction coefficient of the sequence �Xn�n≥1.

Lemma 7.3. For all x
y ∈ B, da�x
y� ≤ 2
√
qd�x
y�.

Proof. We have

��x ∧ y��′ = ��x ∧ �y− x���′ ≤ ��x��′��y− x��′ ≤ ��x��′��y− x��′�√q���y��′�

because, by convexity, for y ∈ B,

√
q��y��′ ≥ 1. So we obtain

da�x
y� ≤
√
q��y− x��′ ≤ √q��y− x�� ≤ 2

√
qd�x
y�� ✷
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For all x
y ∈ B, we therefore have

da�X�n� · x
X�n� · y� ≤ 2
√
qd�X�n� · x
X�n� · y� ≤ 2

√
qc�X�n���

Hence

ln ���X�n�x� ∧ �X�n�y���′ − ln ��X�n�x��′ − ln ��X�n�y��′ ≤ ln 2
√
q+ ln c�X�n���

From the norm equivalence, it follows that

lim sup
n

1
n

ln ���X�n�x� ∧ �X�n�y��� ≤ 2γ1 + lnκ a.s.

Finally, using basis vectors,

γ1 + γ2 ≤ 2γ1 + lnκ a.s. ✷

8. Central limit theorem.

8.1. Proof of Theorem 3. We first show how this proof may be reduced
to the case of a stationary sequence. The following statement is similar to
Lemma 7.1, it differs by the normalization and the type of convergence in-
volved.

Lemma 8.1. Assume �� � and m1 < +∞. Then the sequences with general
terms

sup
{∣∣∣∣ 1√

n
1�T≤n
 ln�y
X�n�x − 1√

n

n∑
k=1

lnρ�Yk
Zk+1�
∣∣∣∣� x
y ∈ B

}



∣∣∣∣ 1√
n

ln�n −
1√
n

n∑
k=1

lnρ�Yk
Zk+1�
∣∣∣∣

converge to 0 in probability.

Proof. To establish the first assertion, we use the notation of the proof
of Lemma 7.1. From Lemma 5.1, it suffices to establish that the sequence
��1/√n�=n�n≥1 converges to 0 in probability.

As seen in the course of the proof of Lemma 7.1, we may write

1√
n
=n ≤

2√
n

n∑
k=1

r�Yk�c�Yk+1 · · ·Yn� =
2√
n
An


so that the proof will be over if we show that �An�n≥1 converges weakly. The
random variable An has the same law as

A′n = An ◦ θ−n−1 =
n∑
3=1

r�Y−3�c�Y−3+1 · · ·Y−1��
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This is the partial sum of a series whose general term satisfies

lim sup
3

1
3

ln
[
r�Y−3�c�Y−3+1 · · ·Y−1�

]

≤ lim sup
3

1
3

ln r�Y−3� + lim sup
3

1
3

ln c�Y−3+1 · · ·Y−1��

Since the random variables ln r�Y−3�, 3 ≥ 1, are identically distributed and
integrable, the first term on the right-hand side is equal to 0. Owing to the
properties of c and the subadditive ergodic theorem, the second term may be
written as

lim
3

1
3

ln c�Y−3+1 · · ·Y−1� = inf
3

1
3
E�ln c�Y−3+1 · · ·Y−1�


= inf
3

1
3
E�ln c�Y�3��
 = lnκ < 0


so that the considered series converges almost surely. We conclude that
�A′n�n≥1 and hence �An�n≥1 converges weakly. As in Lemma 7.1, the second
assertion follows from the first one. ✷

Set

Un = lnρ�Yn
Zn+1� − γ1
 n ≥ 0�

The preceding lemma shows that Theorem 3 will be established when the
weak convergence to a normal law of the sequence ��1/√n�∑n

k=1Uk�n≥1 is
proved. For this purpose, we employ Gordin’s method [16]. It is convenient to
use this method through the following statement.

Lemma 8.2. Let p ≥ 2 be such that mp < +∞ and let q be defined by
1/p+ 1/q = 1.

Assume ∑
n≥1

��E�U0�� n
��q < +∞�

Then the sequence ��1/√n�∑n
k=1Uk�n converges weakly to a centered normal

law with variance σ2. Moreover, if σ2 = 0 there exists a stationary sequence
�Wn�n, such that, for each n,

Wn ∈ Lq�� n�
 Un =Wn+1 −Wn�

This lemma is proved in [9]. It is also easily deduced from Liverani [25],
Theorem 1.1. The case considered here allows a short proof based on the same
argument.

Proof of Lemma 8.2.∑
j≥0

∣∣∣∣ ∣∣E�U−j�� 0
∣∣ ∣∣∣∣1 ≤
∑
j≥0

��E�U−j�� 0
��q =
∑
j≥0

��E�U0�� j
��q < +∞
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so that
∑
j≥0E�U−j�� 0
 converges in Lq and also absolutely on a set of prob-

ability one. In the sense of these convergences, we set

V0 =
∑
j≥0

(
E�U−j�� 0
 −E�U−j�� 1
)
 W0 =

∑
j≥1

E�U−j�� 0



and, for n ∈ Z, Vn = V0 ◦ θn and Wn =W0 ◦ θn. It is clear that

Vn = Un +Wn −Wn+1
 E�Vn�� n+1
 = 0�

Now, to get the result from the Ibragimov–Billingsley theorem (cf. [10]), it
is sufficient to prove that V0 or, equivalently, W1 − W0 is in L2. For this
purpose, we introduce the parameter λ, 0 < λ < 1, and we set, in the sense of
L2 convergence,

Wλ
0 =

∑
j≥1

λj−1E�U−j�� 0
�

A standard result in the theory of power series shows that we have
limλ→1−W

λ
0 =W0 a.s. Therefore, if it is proved that

sup
{��Wλ

1 −Wλ
0��2� 0 < λ < 1

}
< +∞


Fatou’s lemma leads to the required result. The following computation based
on the stationarity gives the desired boundedness. From the equality λWλ

0 =
�λWλ

0 −Wλ
1� +Wλ

1, we get

��λWλ
0 −Wλ

1��22 = 2�Wλ
1 − λWλ

0
W
λ
1 − �1− λ2���Wλ

0��22
≤ 2�Wλ

1 − λE�Wλ
0�� 1

Wλ

1�
But

Wλ
1−λE�Wλ

0�� 1
 = ∑
j≥1

λj−1E�U−j+1�� 1
−λ∑
j≥1

λj−1E�U−j�� 1
 = E�U0�� 1



so

��λWλ
0 −Wλ

1��22 ≤ 2
∑
j≥1

λj−1�E�U0�� 1

E�U−j+1�� 1


≤ 2��U0��p
∑
j≥1

��E�U−j�� 0
��q� ✷

Lemma 8.3. For η, 0 < η < 1, set T1 = inf�n� n ≥ 1
 c�Y�n�� ≤ η�. Then
there exists η1 such that, if, denoting by n2 the integral part of n/2, we set

an�2+ δ� = 8�4m2+δ + η1�αδ/�2+δ�n−n2 + 4m2+δP�T1 > n2
�1+δ�/�2+δ�

+ 2η1E�c�Y�n2��

 δ > 0


an�2� = �4m2 + η1�ρn−n2
+ 4m2P�T1 > n2
1/2 + 2η1E�c�Y�n2��



we have, according to the conditions m2+δ < +∞ or m2 < +∞,

��E�U−n�� 0
���2+δ�/�1+δ� ≤ an�2+ δ�
 ��E�U−n�� 0
��2 ≤ an�2��
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Proof. Let �p
q� = �2+ δ
 �2+ δ�/�1+ δ�� or �p
q� = �2
2�.
The method is to get an upper bound for the quantity �E�U0Gn
�, where

Gn is an arbitrary � n-measurable random variable in Lp. This is done using
terms related to the contraction properties and the mixing coefficients.

Recalling that Y�n2� · Zn2+1 = Z1 and that γ1 = E�lnρ�Y0
Z1�
, we may
write

U0 = lnρ�Y0
Z1� − γ1

= lnρ�Y0
Y
�n2� ·Zn2+1� − lnρ�Y0
Y

�n2� · χ�
+ lnρ�Y0
Y

�n2� · χ� −E�lnρ�Y0
Y
�n2� · χ�


+E�lnρ�Y0
Y
�n2� · χ�
 −E�lnρ�Y0
Y

�n2� ·Zn2+1�


or, equivalently,

U0 = An +Bn −E�An


An = lnρ�Y0
Y

�n2� ·Zn2+1� − lnρ�Y0
Y
�n2� · χ�


Bn = lnρ�Y0
Y
�n2� · χ� −E�lnρ�Y0
Y

�n2� · χ�
�
To bound An, we use the stopping time T1. On the event �T1 ≤ n2
, we have

c�Y�n2�� ≤ η. Therefore, by point (iii) of Lemma 5.3, there exists η1 such that
�An� ≤ η1c�Y�n2��, and hence, by Lemma 5.2,

�An� ≤ A′n = 2
(� ln ��Y0�� � + � ln v�Y0��

)
1�T1>n2
 + η1c�Y�n2���

For the sequel notice the straightforward inequalities

E�A′n
 ≤ 2mpP�T1 > n2
�p−1�/p + η1E�c�Y�n2��



��A′n��p ≤ 2mp + η1
 ��Bn��p ≤ 2mp�

As E�Bn
 = 0, we have

�E�U0Gn
� ≤ �E�AnGn
� + �E�BnGn
� + �E�An
E�Gn
�
≤ E�A′n�Gn�
 + �E�BnGn
� +E�A′n
E��Gn�

≤ ∣∣E�A′n�Gn�
 −E�A′n
E��Gn�
∣∣+ ∣∣E�BnGn
 −E�Bn
E�Gn
∣∣
+ 2E�A′n
E��Gn�
�

Noting that Gn is � n-measurable, while A′n and Bn are �n2
-measurable, we

can bound above the first two terms of the last member by means of the mixing
inequalities.

Assume p = 2 + δ. Using inequality �Iα� with p = q = 2 + δ and r =
�2+ δ�/δ, we get

�E�U0Gn
� ≤ 8αδ/�2+δ�n−n2

(��A′n��2+δ + ��Bn��2+δ)��Gn��2+δ + 2E�A′n
��Gn��2+δ
≤ an�2+ δ���Gn��2+δ�
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Assume p = 2. Using inequality �Iρ�, we get

�E�U0Gn
� ≤ ρn−n2

(��A′n��2 + ��Bn��2)��Gn��2 + 2E�A′n
��Gn��2
≤ an�2���Gn��2� ✷

To conclude, let us assume that the hypotheses of Theorem 3 are satisfied.
From Corollary 6.2, if p = 2+ δ and

∑
n≥1 α

δ/�2+δ�
n < +∞, then

E�c�Y�n��
 ≤K′
(

ln2 n

n

)�2+δ�/δ

 P�T1 > n
�1+δ�/�2+δ� ≤K′′

(
ln2 n

n

)�1+δ�/δ



while, if p = 2 and
∑
n≥1 ρn < +∞, then

E�c�Y�n��
 ≤ K
′

n8

 P�T1 > n
1/2 ≤

K′′

n4
�

In each case, the series
∑
n≥1an�p� converges. ✷

8.2. Proof of Corollary 3.

Lemma 8.5. Under hypothesis �� �, if there exists a stationary sequence
�Wn�n∈Z such that, for n ∈ Z,

Un = lnρ�Yn
Zn+1� − γ1 =Wn+1 −Wn


then the sequence �e−nγ1 ��X�n����n≥1 is tight in 
0
+∞�.

Proof. Let ε > 0. Choose c and c′ > 0 such that

P��W0� > c
 ≤ ε/4
 P
[

inf
i=1
���
q

�Z0
 ei < c′
]
≤ ε/2�

The last choice is possible since P�Z0 ∈ B
 = 1.
Set Dn = ��Wn −W0� ≤ 2c
 ∩ �inf i=1
���
q�Zn+1
 ei ≥ c′
.
From ��Wn−W0� > 2c
 ⊂ ��Wn� > c
 ∪ ��W0� > c
 and the stationarity of the

sequences �Wn�n∈Z, �Zn�n∈Z, it follows that P�Dn� ≥ 1− ε.
On Dn,

exp�−2c� ≤ exp�Wn −W0� = exp�−nγ1���Y�n�Zn+1�� ≤ exp�2c�
and

c′q��Y�n�χ�� ≤ ��Y�n�Zn+1�� ≤ q��Y�n�χ���
Hence

e−2c

q
enγ1 ≤ ��Y�n�χ�� = 1

q

q∑
i
 j=1

�Y�n�ei
 ej ≤
e2c

c′q
enγ1 �

On the finite-dimensional vector space of q×q matrices, the norms defined by

��h�� = sup
{��hx��� ��x�� = 1

}

 ��h��′ =

q∑
i
 j=1

��hei
 ej�
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are equivalent. Hence there exist constants a′
 b′, 0 < a′ ≤ b′, so that, on Dn,

a′enγ1 ≤ ��X�n��� ≤ b′enγ1 �

Finally, for all n, P�a′enγ1 ≤ ��X�n��� ≤ b′enγ1
 ≥ 1− ε. ✷

9. Tightness.

9.1. Proof of Theorem 4.

Proof of (i). Recall first that, as noted before Lemma 4.1,

lim
n

�Rn ⊗Ln�
�ei
 �Rn ⊗Ln�ej

�ei
X�n�ej
�X�n�� 1�T≤n
 = 1 a.s.,

and second that, from Theorem 1(iii), continuity, homogeneity of function 
and ν × ν′�g� g ∈ S
 �g� > 0� = 1,(

Rn ⊗Ln
�Rn ⊗Ln�

1��Rn⊗Ln�>0


)
n

converges weakly to the probability h2�ν′ × ν� on S◦, where h2 = �h�−1h.
Joining these to the fact that

(
�X�n��)

n≥1 is tight, we deduce that, for each
ε > 0, there exist a > 1 and n0 such that, for n ≥ n0, the events

An1 =
(⋂
i
 j

[
a−1 �ei
 �Rn ⊗Ln�ej

�Rn ⊗Ln�
≤ �ei
X

�n�ej
�X�n�� ≤ a�ei
 �Rn ⊗Ln�ej

�Rn ⊗Ln�
])

∩ �T ≤ n



An2 =
(⋂
i
 j

[
a−1 ≤ �ei
 �Rn ⊗Ln�ej

�Rn ⊗Ln�
≤ a

])
∩ ��Rn ⊗Ln� > 0



An3 =
[
�X�n�� ≤ a]


satisfy P�Ani � ≥ 1−ε/3, so that P�An1 ∩An2 ∩An3� ≥ 1−ε. But An1 ∩An2 ∩An3 ⊂
�X�n� ∈K
, where K is the compact subset of S defined by

K = {
g� g ∈ S
 ∀i
 j
 �ei
 gej ≤ a3}�

It follows that the sequence �µn�n, µn being the law of X�n�, is tight in S. By
Prohorov’s theorem, it is weakly conditionally compact.

Let µ̃ and �nk�k be such that limk µnk = µ̃. We now prove that µ̃�S◦ ∪�0�� =
1. Fix c > 0. For b > 0 and i
 j = 1
 � � � 
 q, set

Dbij =
{
g� g ∈ S
 ��g�� > c
 �ei
 gej < b

}



Dij =
{
g� g ∈ S
 ��g�� > c
 �ei
 gej = 0

}
�

On �An1 ∩An2� ∩ �X�n� ∈ Dbij
, we have

a−2 ≤ min
�i′
 j′�

�ei′
X�n�ej′ 
�X�n�� ≤ max

�i′
 j′�
�ei′
X�n�ej′ 
�X�n�� ≤ a2
 �ei
X�n�ej < b
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and we get successively

�X�n�� ≤ a2b
 max
�i′
 j′�

�ei′
X�n�ej′  ≤ a4b
 ��X�n��� ≤ qa4b�

If b is chosen such that qa4b < c, �An1 ∩An2� ∩ �X�n� ∈ Dbij
 = �, so that, for
n ≥ n0,

P
[
X�n� ∈ Dbij

] = P(�X�n� ∈ Dbij
 ∩
(
An1 ∩An2

)c) ≤ P(An1 ∩An2)c ≤ 2ε
3
�

It follows that

µ̃�Dij� ≤ µ̃�Dbij� ≤ lim inf
n

P
[
X�n� ∈ Dbij

] ≤ 2ε
3
�

Since ε is arbitrary, we get µ̃�Dij� = 0. At last, letting c and �i
 j� vary, we
get

µ̃
(
S\S◦ ∪ �0�) = 0�

If µ̃��0�� = 0, the function h2 is defined and continuous except on a set of
µ̃ probability 0, so that limk h2�µnk� = h2�µ̃�. But the sequence �h2�µn��n has
the limit h2�ν′ × ν� and hence 1 = h2�µ̃��Q� = µ̃�Q�. ✷

Proof of (ii). In this section we suppose that limn αn = 0, where αn is the
mixing coefficient defined in Section 1.4.

Lemma 9.1. For each ε > 0, there exist s0 ∈ N and η0 > 0 such that, for all
s ≥ s0, η ≤ η0 and n ≥ 1,

P
[��X�2n+s��� ≤ η] ≥ 2P

[��X�n��� ≤ η3]− (
P���X�n��� ≤ η3
)2 − ε�

Proof. Let η, 0 < η < 1. Setting

A = [��X�n��� ≤ η3] ∩ [��X�n��� ◦ θn+s ≤ η−1]

B = [��X�n��� ≤ η−1] ∩ [��X�n��� ◦ θn+s ≤ η3]

C = [��X�s��� ◦ θn ≤ η−1]


we have

[��X�2n+s��� ≤ η] ⊃ �A ∩C� ∪ �B ∩C��
As

P��A ∪B� ∩C� ≥ P�A ∪B� −P�Cc� = P�A� +P�B� −P�A ∩B� −P�Cc�
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we get

P
[��X�n+s+n��� ≤ η] ≥ P([��X�n��� ≤ η3] ∩ [��X�n��� ◦ θn+s ≤ η−1])

+P([��X�n��� ≤ η−1] ∩ [��X�n��� ◦ θn+s ≤ η3])
−P[��X�n��� ≤ η3] ∩ [��X�n��� ◦ θn+s ≤ η3]
−P([��X�s��� > η−1])

≥ 2P
[��X�n��� ≤ η3]P[��X�n��� ≤ η−1]− (

P���X�n��� ≤ η3
)2

− 3αs −P
[��X�s��� > η−1]�

As ���X�k����k≥1 is tight in R+, for all ε > 0, there exists η0 such that, for
η ≤ η0,

sup
k

P
[��X�k��� > η−1] ≤ ε/5�

To conclude, we just choose s0 such that, for s ≥ s0, 3αs ≤ ε/5. ✷

Suppose �µn�n is tight in S and there exist a probability µ̃ on S and a
subsequence �nk�k such that 0 < µ̃�0� < 1 and limk µnk = µ̃. We apply Lemma
9.1 with ε ≤ �1/2�µ̃�0��1 − µ̃�0��. From the sequence �2nk + s0�k, we may
extract a subsequence �n′k�k such that limk µn′k = µ̃′. If η is chosen such that

µ̃�g� g ∈ S
 ��g�� = η3� = 0, we have

µ̃′�g� ��g�� ≤ η� ≥ 2 µ̃�g� ��g�� ≤ η3� − �µ̃�g� ��g�� ≤ η3��2 − 1
2 µ̃�0��1− µ̃�0���

Hence

µ̃′�0� ≥ 1
2 µ̃�0��3− µ̃�0���

The sequence �un�n defined by u0 ∈ �0
1
 and un+1 = 1
2un�3 − un� converges

to 1. It follows that, for all ε > 0, it is possible to construct a probability µ̃ on
S and a sequence �nk�k such that µ̃�0� > 1 − ε and limk µnk = µ̃. Under the
conditions of Lemma 9.1, if η is chosen outside a suitable countable subset,
we get

lim inf
k

inf
s≥s0

P���X�2nk+s��� ≤ η
 ≥ 2 µ̃�g� ��g�� ≤ η3� − �µ̃�g� ��g�� ≤ η3��2 − ε

≥ µ̃�0��2− µ̃�0�� − ε ≥ 1− 2ε�

This means that ���X�n����n converges in probability to 0, or else that �µn�n
converges weakly to the probability carried by �0�.

Finally, if �µn�n is tight in S and does not converge to the unit mass at 0, all
its weak limit values µ̃ satisfy µ̃�0� = 0. This joined to (i) implies µ̃�Q� = 1.
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9.2. Case of independent random matrices. In this section, the random
matrices Xn, n ≥ 1, are independent, identically distributed according to the
probability measure µ on S. We denote by T the closed subsemigroup of S
spanned by the support of µ and the identity matrix.

If π
π ′ are probabilities on the multiplicative semigroup S, π ∗ π ′ denote
their convolution product while π∗n is the nth convolution power of π.

Remarks. In this context the contraction condition may be written as

�� � there exists n ≥ 1 such that
∫
c�g�dµ∗n�g� < 1.

Otherwise, let �q be the collection of all nonempty subsets of �1
 � � � 
 q�
and, for I ∈ �q, set ξI =

∑
i∈I ei. For I and J in �q, we write I

µ→ J if
there exist n, g in the support of µ∗n and λ > 0 such that gξI − λξJ ∈ C.
According to positivity and independence, the relation

µ→ is transitive, so that
it is determined by the connections established through the elements of the
support of µ. It is clear that

�� � is equivalent to the irreducibility of the graph
(
�q


µ→)
�

Notice that �� � cannot be deduced from the condition E�X1
 ∈ S◦ as may be
seen when q = 2 and µ = 1

2�δa + δb�, a =
( 1 0

0 1

)
, b = ( 0 1

1 0

)
.

Conjugate affine subspaces and structure of elements of SA. Let A ∈ � +.
To describe SA, it is convenient to introduce the conjugate subspace A′ of A:

A′ = �a′� a′ ∈ R
q
 ∀a ∈ A
 �a
 a′ = 1��

Denote by a0 ∈ C the orthogonal projection of 0 on A. As each a′ ∈ A′ satisfies
�a0
 a

′ = 1,A′∩C is bounded. It is nonempty since it contains a′0 = a0/�a0
 a0
and hence A′ ∈ � +. Notice that the relations g ∈ SA and g∗ ∈ SA′ are
equivalent.

From these remarks we may deduce a dual form of Theorem 5 in which the
tightness condition is the existence of A∗ ∈� + such that T∗ ⊂ SA∗ , A∗ being
now described as the affine subset spanned by T∗3m, where 3m ∈ C satisfies
E�X1
∗3m = 3m.

Using norm equivalence, it is seen that the condition �a′0
 ga0 = 1 implies
that there exists a constant c, such that, for each g ∈ SA, ��g�� ≤ c.

Let g ∈ SA. Consider the sequence �rn�n of the compact subset A ∩ C
defined by rn = �1/n�

∑n−1
k=0 g

ka0. If r is a limit value of this sequence, then
r ∈ A∩C �( 0 and gr = r. From this and the fact that ���gn���n is bounded, we
conclude that g has spectral radius λ�g� = 1.

We define r�g� as the unique element of Kg = �r� r ∈ A∩C
 gr = r� such
that �r�g�
 r�g� = min��r
 r� r ∈Kg�. The function r�·� is then measurable.
Note that l�·� is constructed similarly, replacing A by A′ and g by g∗. At last
we set w�g� = g − r�g� ⊗ l�g�.

As �l�g�
 r�g� = 1, we may write R
q = span�r�g�� ⊕ l�g�⊥; these two

subsets are preserved by g. It is clear that w�g�r�g� = 0, while if x ∈ l�g�⊥,
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w�g�x = gx. This implies that λ�w�g�� ≤ λ�g� = 1 and λ�w�g�� < 1 if g ∈ S◦.
For a ∈ A, w�g�a = ga− �l�g�
 ar�g� = ga− r�g� ∈ A−A. ✷

Proof of Theorem 5. The “if” part is readily obtained from the preceding
discussion.

The converse will be proved through the two following lemmas.

Lemma 9.2. Set µ̄n = �1/n�
∑n
k=1 µ

∗k, assume that �µ̄n�n is tight in S and
denote by π a weak limit value of this sequence. Then, if T is the closed sub-
semigroup of S spanned by the support of µ and the identity matrix,

π�T� = 1
 µ ∗ π = π ∗ µ = π
and

for all g ∈ T
 π ∗ δg ∗ π = π�

Proof. As T is closed in S and µ∗n�T� = 1, π�T� = 1.
By the relation µ ∗ µ̄n = µ̄n − �1/n�µ + �1/n�µ∗�n+1�, we have µ ∗ π = π.

Operating in the same way but on the left-hand side, we get π ∗ µ = π. One
step further gives π ∗ π = π, which is the second relation for g = e.

To cope with the general case, we use a technique due to Raugi (cf. [3],
[17] and [29]) based on a martingale argument introduced in [14]. Set Mn =
X1 · · ·Xn. To any real continuous bounded function f on S, we associate F
on S defined by F�g� = ∫

f�gk�dπ�k�. It is easily verified, using the inde-
pendence and the invariance µ ∗ π = π, that �F�Mn��n is a martingale with
respect to the filtration ��n�n. Fix j ≥ 1 and consider the sequence

un =
∫
E
[(
F�Mng� −F�Mn�

)2]
dµ∗j�g��

By the martingale property we have

un = E
[(
F�Mn+j� −F�Mn�

)2
]
= E[

F�Mn+j�2
]−E[

F�Mn�2
]
�

Using independence, we deduce

0 ≤ ∑
n≥1

un =
∫
E

[ ∑
n≥1

(
F�Mng� −F�Mn�

)2
]
dµ∗j�g� ≤ 2 sup

h

�F�h�� < +∞�

It follows that limn�F�Mng�−F�Mn�� = 0 P×µ∗j a.s. This implies that there
exists a subset Dj of S with µ∗j�Dj� = 1 such that, for g ∈ Dj,

lim
n

(
E
[
F�Mng�

]−E[
F�Mn�

]) = lim
n

(∫
F�hg�dµ∗n�h�−

∫
F�h�dµ∗n�h�

)
= 0


so that, for the limit value π,
∫
F�hg�dπ�h� = ∫

F�h�dπ�h�. Since the set of
elements g ∈ S satisfying this relation is closed and contains Dj for arbitrary
j, it contains T. Returning to f, we thus have, for all g ∈ T,∫

f�hgk�dπ�h�dπ�k� =
∫
f�hk�dπ�h�dπ�k� =

∫
f�h�dπ�h�� ✷
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Lemma 9.3. Let T be a subsemigroup of S containing the identity matrix
and π a probability on T such that, for each g ∈ T, π ∗ δg ∗π = π. Then there
exists c ∈ R such that, for each g ∈ T, 1 ≤ ��g�� ≤ c.

Assume, moreover, that π�S◦� > 0. Then the mean matrix h0 =
∫
hdπ�h�

may be written as h0 = r0 ⊗ l0, with r0
 l0 ∈ C and �r0
 l0 = 1. If A and A∗

denote the affine subsets spanned by Tr0 and T∗l0, A and A∗ are conjugate
elements of � + and T ⊂ SA ∩S∗A∗ .

Recall that, with respect to some probability distribution π on S, the mean
matrix entries are the mean values of the entries under π.

Proof. Let f be a real continuous function with compact support in S,
and let �gn�n be a sequence in T. For each n,

∫
f�hgnk�dπ�h�dπ�k� =

∫
f�h�dπ�h��

Suppose there exists a g ∈ T with ��g�� < 1. Then �gn�n→ 0, so that, setting
gn = gn, the limit of the left-hand side of the preceding relation is f�0�, which
leads to a contradiction.

Assume the existence of a sequence �gn�n such that limn ��gn�� = +∞. By
considering a subsequence, we may suppose that there exist i
 j such that
limn�ei
 gnej = +∞. Let h1
 h2 ∈ S. We may choose i′ and j′ such that
�ei′
 h1ei > 0 and �ej
 h2ej′  > 0. It follows that limn ��h1g

nh2�� = +∞. Hence
we have π ×π��h1
 h2�� limn ��h1g

nh2�� = +∞� = 1. The limit of the left-hand
side is now 0, contradicting the fact that π is a probability on S. The first
assertion is established.

Since π has a bounded support, we may consider the mean matrix h0. From
π�S◦� > 0, we get h0 ∈ S◦. The convolution relation in the hypothesis gives
h0gh0 = h0, for all g ∈ T. Replacing g by the identity matrix, we see that
h0 is a projector. As it is in S◦ it has rank 1 (its main eigenvalue is simple)
and so may be written as h0 = r0 ⊗ l0, where r0
 l0 ∈ C and �r0
 l0 = 1.
Then, returning to an arbitrary g ∈ T, we have r0⊗ l0 = �r0 ⊗ l0�g�r0 ⊗ l0� =
�l0
 gr0�r0 ⊗ l0�. We conclude that �l0
 gr0 = 1.

Obviously, for g ∈ T, g�Tr0� ⊂ Tr0 while g∗�T∗l0� ⊂ T∗l0. The same is true
of the spanned affine subspaces. Notice that A ∩ C ( r0 and A −A ⊂ l⊥0 . As
l0 ∈ C, it follows that �A−A� ∩C = �0�, so A and hence A∗ are in � +. The
last relation of the preceding paragraph shows that, for a ∈ A and a′ ∈ A∗,
�a
 a′ = 1, so A and A∗ are conjugated. ✷

End of the proof of Theorem 5. If �X�n��n≥1 is tight, so is �µ̄n�n. To con-
clude from Lemma 9.3, it just remains to verify that we may choose r0 = rm.
From the relation µ ∗ π = π ∗ µ = π, we get E�X1
h0 = h0E�X1
 = h0, so
E�X1
r0 = r0, as there exists n such that E�X1
n = E�X�n�
 ∈ S◦; r0 and rm
have the same direction. ✷
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Proof of Corollary 4. Lemma 9.3 shows that every element of T has
spectral radius 1. So �n = 1 a.s. and, from Theorem 1(iii), �X�n��n converges
weakly to the probability h�ν′ × ν�.

If g ∈ SA, g∗ preserves A′ and acts on this affine subspace according to the
formula g∗a′ = l�g� +w�g�∗a′. For a sequence �gk�nk=1 in SA, we get

g∗1 · · ·g∗na′ =
n∑
k=1

w�g1�∗ · · ·w�gk−1�∗l�gk� +w�g1�∗ · · ·w�gn�∗a′


so that

Y�n�l�Xn+1� =X∗
1 · · ·X∗

nl�Xn+1� =
n+1∑
k=1

w�X1�∗ · · ·w�Xk−1�∗l�Xk��

From Lemma 3.3, we know that

lim
n

Y�n�l�Xn+1�
�χ
Y�n�l�Xn+1�

= Z1 a.s.

This implies that, if a0 ∈ A ∩C, we have

lim
n

Y�n�l�Xn+1�
�a0
Y

�n�l�Xn+1�
= Z1

�a0
Z1
as �a0
Y

�n�l�Xn+1� = 1�

We get

Z1

�a0
Z1
= ∑
k≥1

w�X1�∗ · · ·w�Xk−1�∗l�Xk��

If g ∈ SA, g∗ ∈ SA′ and we may write g∗ = r′�g∗� ⊗ l′�g∗� + w′�g∗�, with
r′�g∗� = l�g�, l′�g∗� = r�g� and w′�g∗� = w�g�∗. Using the construction of Z′1
given in Section 4.2 and proceeding as before, we get, with a′0 ∈ A′ ∩C,

Z′1
�a′0
Z′1

= ∑
k≥1

w′�X∗
−1�∗ · · ·w′�X∗

−k+1�∗l′�X∗
−k�

= ∑
k≥1

w�X−1� · · ·w�X−k+1�r�X−k��

To conclude, just notice that, since

h

(
z′

�a′0
 z′



z

�a0
 z
)
= h�z′
 z�


we have h�ν̃′ × ν̃� = h�ν′ × ν�. ✷
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10. Proofs of facts about distance d. The aim of this section is to es-
tablish Proposition 3.1 and some connected formulas.

Recall that, for x = �x1
 � � � 
 xq�
 y = �y1
 � � � 
 yq� ∈ B,

m�x
y� = sup
{
λ� λ ∈ R+
 ∀i = 1
 � � � 
 q
 λyi ≤ xi

}

= min
{
xi
yi
� i = 1
 � � � 
 q
 yi > 0

}



and that

d�x
y� = ϕ�m�x
y�m�y
x��
 ϕ�s� = 1− s
1+ s
 s ∈ �0
1
�

The reader will easily verify the following properties of functionm, keeping
in mind that, for x ∈ B,

∑q
i=1 xi = 1.

Lemma 10.1. Let x
y
 z ∈ B. Then

(i) m�x
y� ∈ �0
1
;
(ii) m�x
 z�m�z
 y� ≤m�x
y�;

(iii) m�x
y�m�y
x� = 1 if and only if x = y;
(iv) m�x
y� = 0 if and only if there exists i0 such that xi0 = 0 and yi0 �= 0.

Lemma 10.2. (i) d is a distance on B:
(ii) sup�d�x
y�� x
y ∈ B� = 1;

(iii) if x ∈ B and y ∈ B, then d�x
y� = 1 if and only if y ∈ B\B.

Proof. Since ϕ′�s� = −2/�1+ s�2, ϕ is decreasing.
Moreover, the function F�s� = ϕ�s� + ϕ�t� − ϕ�st� satisfies F�1� = 0 and

F′�s� = − 2�1− t�
�1+ s�2�1+ st�2 �1− s

2t�


so that, for s
 t ∈ �0
1
, ϕ�st� ≤ ϕ�s� + ϕ�t�.
These two properties of ϕ and the preceding lemma allow us to conclude. ✷

To study d, it is more convenient to use the following formula.

Lemma 10.3. Let x
y ∈ B, x �= y. We set

a = �1− λ1�x+ λ1y
 λ1 = inf�λ� �1− λ�x+ λy ∈ B�


b = �1− λ2�x+ λ2y
 λ2 = sup�λ� �1− λ�x+ λy ∈ B�

where a and b are the end points of the segment which is the intersection of B
with the line through x and y.

Writing x = u1a+ u2b and y = v1a+ v2b, we have

d�x
y� = �u1v2 − u2v1�
u1v2 + u2v1

�



PRODUCTS OF RANDOM POSITIVE MATRICES 1583

Proof. Let us denote a = �a1
 � � � 
 aq�, b = �b1
 � � � 
 bq� and set I = �i� i =
1
 � � � 
 q
 ai > 0�, J = �i� i = 1
 � � � 
 q
 bi > 0�.

There is no inclusion relation between I and J. In particular, I and J are
different from �1
 � � � 
 q�. In fact, suppose J ⊂ I. Then it is possible to choose
ε > 0 such that �1+ ε�a− εb ∈ B. This vector belongs to the line through x
y
but does not belong to the segment �a
 b
, which gives a contradiction.

We first verify that the formula giving d�x
y� is correct if one of these
points coincides with a or b. Suppose, for example, x = a. From the preceding
discussion and point (iv) of Lemma 10.1,m�x
y� = 0, so that we get d�x
y� =
1. This is also the value of the right-hand side when u1 = 1, u2 = 0 and v2 �= 0.

Consider now x = �x1
 � � � 
 xq�, y = �y1
 � � � 
 yq�, both different from a and
b. Set r = min�ui/vi� i = 1
2�. As ryi = r�v1ai + v2bi� ≤ u1ai + u2bi = xi, we
have r ≤ m�x
y�. Conversely, writing m�x
y��v1ai + v2bi� ≤ u1ai + u2bi for
i0 ∈ J\I and j0 ∈ I\J, we get m�x
y�v2bi0 ≤ u2bi0 and m�x
y�v1aj0

≤ u1aj0
.

Hence m�x
y� ≤ r. At last m�x
y� = r. Since x �= y, m�x
y�m�y
x� < 1.
Consequently,

m�x
y�m�y
x� = min
{
u1

v1

v2

u2


u2

v2

v1

u1

}

and d�x
y� is written as stated. ✷

Remark. The cross-ratio of �a
 b
 x
 y� is the element of the extended real
line defined by �a
 b
 x
 y
 = �u1/v1�/�u2/v2�. We now consider ϕ as a function
on this line, d�x
y� = ϕ��a
 b
 x
 y
�
 while dH�x
y� = � ln�a
 b
 x
 y
�.

Lemma 10.4. For x
y ∈ B, d�x
y� ≥ 1
2 ��x− y��.

Proof. We use the notation and the formula of the preceding lemma.
Noticing that u1 + u2 = v1 + v2 = 1, we get

�u1v2 − u2v1� = �u1�1− v1� − �1− u1�v1� = �u1 − v1� = 1
2 ��x− y���

Moreover,

0 < u1v2 + u2v1 ≤ �u2
1 + u2

2�1/2�v2
1 + v2

2�1/2 ≤ �u1 + u2�1/2�v1 + v2�1/2 = 1


hence the stated inequality. ✷

Lemma 10.5. Set d1 for the distance on B associated with �� · ��.
Let y∈B, x∈B and �x�n��n be a sequence in B such that limn d1�x�n�
 x�=0�

Then limn d�x�n�
 y� = d�x
y��
The spaces �B
d� and �B
d1� are homeomorphic.
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Proof. Since, for all i, �y
 ei > 0, if n is large enough

m�y
x�n�� = min
{ �y
 ei
�x�n�
 ei

� ∀i
 �x�n�
 ei > 0
}

= min
{ �y
 ei
�x�n�
 ei

� ∀i
 �x
 ei > 0
}



so that limn m�y
x�n�� = m�y
x�. This property is not true when y ∈ B\B.
For example, set x = y = e1 and x�n� = �1 − 1/n�e1 + �1/n�χ. We have
m�x
 x�n�� = 0 but m�x
 x� = 1. On the contrary, it is clear that the con-
vergence limn m�x�n�
 y� = m�x
y� holds for every y ∈ B. Hence we have the
first assertion.

Restricting the preceding to x = y ∈ B, we conclude that the identity is a
continuous function from �B
d1� to �B
d�.

Conversely, Lemma 10.4 shows that, in B, the d-convergence implies d1-
convergence. ✷

Remark. The spaces �B
d� and �B
d1� are not homeomorphic. Indeed,
point (iii) of Lemma 10.2 shows that �B
d� is not connected.

We come now to the contraction properties.

Lemma 10.6. Let g ∈ S and set c�g� = sup�d�g · x
g ·y�� x
y ∈ B�. Then:

(i) for x
y ∈ B, d�g · x
g · y� ≤ c�g�d�x
y�;
(ii) if g′ ∈ S, c�gg′� ≤ c�g�c�g′�;

(iii) c�g� ≤ 1, moreover, c�g� < 1 if and only if g ∈ S◦.

Proof. Let x
y ∈ B, x �= y. If g · x = g · y, inequality (i) is established.
Suppose g ·x �= g ·y. Let a
 b and a1
 b1 be the extreme points of the segments
obtained as the intersections with B of the lines through x
y and through
g ·x
g ·y. Consider g as an isomorphism between the two-dimensional spaces
whose bases are �a
 b� and �a1
 b1�. With respect to these bases, g has matrix(
α β
γ δ

)
. Clearly, α
β
 γ
 δ ≥ 0; moreover, αδ + βγ > 0, since otherwise the

matrix has a zero lign or a zero column. Set x = u1a+u2b and y = v1a+ v2b,
gx = �αu1+βu2�a1+�γu1+ δu2�b1 and a similar formula is available for gy,
so that, from Lemma 10.3,

d�g · x
g · y� = ��αu1 + βu2��γv1 + δv2� − �γu1 + δu2��αv1 + βv2��
�αu1 + βu2��γv1 + δv2� + �γu1 + δu2��αv1 + βv2�

= �αδ− βγ��u1v2 − u2v1�
2αγu1v1 + �αδ+ βγ��u1v2 + u2v1� + 2βδu2v2

≤ �αδ− βγ��u1v2 − u2v1�
�αδ+ βγ��u1v2 + u2v1�

= d�g · a
g · b�d�x
y� ≤ c�g�d�x
y��



PRODUCTS OF RANDOM POSITIVE MATRICES 1585

If g′ ∈ S, for x
y ∈ B we have

d
(�gg′� · x
 �gg′� · y) ≤ c�g�d�g′ · x
g′ · y�


and hence (ii), owing to the definitions of c�gg′� and c�g′�.
It is clear that c�g� ≤ 1.
If g ∈ S\S◦ there exists i such that g · ei ∈ B\B, but g · χ ∈ B, so that

1 = d�g · ei
 g · χ� ≤ c�g� and c�g� = 1.
Suppose g ∈ S◦. We have g · B ⊂ B, so g · B is a compact of �B
d1� and

hence, by Lemma 10.5, of �B
d�. Consequently, there exist x0
 y0 ∈ B such
that c�g� = d�g · x0
 g · y0� < 1. ✷

It is possible to give an explicit formula for c�g�.

Lemma 10.7. If g = �gij
i
 j=1
���
q ∈ S,

c�g� = max�d�g · ei
 g · ej�� i
 j = 1
 � � � 
 q� = max
i
 j
 k
 3=1
���
q

�gkig3j − gkjg3i�
gkig3j + gkjg3i




so that c�g∗� = c�g�.

Proof. The equality is straightforward if g ∈ S\S◦.
Let g ∈ S◦. We are going to show that

sup
{
d�g · x
g · y�� x
y ∈ B} = max

{
d�g · ei
 g · ej�� i
 j

}
and that this last term is calculated by means of the stated formula.

Let x = �x1
 � � � 
 xq�, y = �y1
 � � � 
 yq� be two elements of g ·B ⊂ B. We may
write

x =
q∑
i=1

αi g · ei
 y =
q∑
j=1

βj g · ej


where �αi�qi=1 and �βj�qj=1 are sequences of positive numbers with sum 1. We
have

m�x
y�m�y
x� = min
k

xk
yk

min
3

y3
x3
= min

k
 3

xky3
ykx3

and

xky3
ykx3

= xk
x3

y3
yk
=

∑
i αigki∑
i αig3i

∑
j βjg3j∑
j βjgkj

≥ min
i

gki
g3i

min
j

g3j

gkj
= min

i
j

gkig3j

g3igkj
�

Using the first relations, we get

min
k
 3

gkig3j

g3igkj
=m�g · ei
 g · ej�m�g · ej
 g · ei��

Consequently, the second relations lead to

m�x
y�m�y
x� ≥ min
i
 j
 k
 3

gkig3j

g3igkj
= min

i
 j
m�g · ei
 g · ej�m�g · ej
 g · ei��
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Applying the decreasing function ϕ, we conclude that the d-diameter of g ·B
and the d-diameter of �g · ei� i� are equal and that, considering the function
ϕ as defined on R+, this number is equal to

max
i
 j
 k
 3

ϕ

(
gkig3j

g3igkj

)
= max
i
 j
 k
 3

g3igkj − gkig3j
g3igkj + gkig3j

= max
i
 j
 k
 3

�g3igkj − gkig3j�
g3igkj + gkig3j

� ✷

Let us complete this section with the answer to a legitimate question.

Lemma 10.8. We have that c is a continuous function on S.

Proof. Let g ∈ S and let �gn�n be a sequence in S such that limn��gn −
g�� = 0.

Suppose g ∈ S◦. For all i, we have limn d1�gn ·ei
 g ·ei� = 0 and g ·ei ∈ B\B,
so by Lemma 10.5, for all i and j, limn d�gn · ei
 gn · ej� = d�g · ei
 g · ej�.
Consequently,

lim
n
c�gn� = lim

n
max�d�gn · ei
 gn · ej�� i
 j� = max�d�g · ei
 g · ej�� i
 j� = c�g��

Suppose g ∈ S\S◦. Let i be such that g · ei ∈ B\B. Then

c�gn� ≥ d�gn · χ
gn · ei� ≥ d�g · χ
gn · ei� − d�g · χ
gn · χ��
By Lemma 10.5, lim infn c�gn� ≥ d�g · χ
g · ei� = 1. ✷
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[9] Dürr, D. and Goldstein, S. (1984). Remarks on the CLT for weakly dependent random

variables. Lecture Notes in Math. 1158. Springer, New York.
[10] Durrett, R. (1991). Probability: Theory and Examples. Wadsworth and Brooks/Cole, Mon-

terey, CA.
[11] Esseen, C. G. and Janson, S. (1985). On moment conditions for sums of independent vari-

ables and martingale differences. Stochastic Process. Appl. 19 173–182.
[12] Evstigneev, C. G. I.V. (1974). Positive matrix-valued cocycles over dynamical systems. Us-

pehi Mat. Nauk 29 219–226.
[13] Ferrero, P. and Schmitt, B. (1988). Produits aléatoires d’opérateurs matrices de transfert.
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Measures on Groups. Lecture Notes in Math. 928 258–303. Springer, Berlin.
[25] Liverani, C. (1996). Central limit theorem for deterministic systems. In International Con-

ference on Dynamical Systems, Montevideo 1995: a Tribute to Ricardo Mané.
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