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THE SDE SOLVED BY LOCAL TIMES OF A BROWNIAN
EXCURSION OR BRIDGE DERIVED FROM THE HEIGHT

PROFILE OF A RANDOM TREE OR FOREST1

BY JIM PITMAN

University of California, Berkeley

Let B be a standard one-dimensional Brownian motion started at 0.
Ž � �. � �Let L B be the occupation density of B at level v up to time t. Thet, v

Ž Ž � �. .distribution of the process of local times L B , v � 0 conditionallyt, v
Ž � �.given B � 0 and L B � l is shown to be that of the unique strongt t, 0

solution X of the Ito SDE,ˆ

�1v
2dX � 4 � X t � X du dv � 2 X dB'Hv v u v v½ 5ž /0

� Ž .. Ž . 	 v 4on the interval 0, V X , where V X � inf v: H X du � t , and X � 0t t 0 u v
Ž .for all v � V X . This conditioned form of the Ray�Knight description oft

Brownian local times arises from study of the asymptotic distribution as
'n � � and 2k� n � l of the height profile of a uniform rooted random

forest of k trees labeled by a set of n elements, as obtained by condi-
tioning a uniform random mapping of the set to itself to have k cyclic
points. The SDE is the continuous analog of a simple description of a
Galton�Watson branching process conditioned on its total progeny. For
l � 0, corresponding to asymptotics of a uniform random tree, the SDE
gives a description of the process of local times of a Brownian excursion
which is equivalent to Jeulin’s description of these local times as a time
change of twice a Brownian excursion. Another corollary is the Biane�Yor
description of the local times of a reflecting Brownian ridge as a time-
changed reversal of twice a Brownian meander of the same length.

1. Introduction. This paper describes the local time process of a Brown-
ian excursion or reflecting Brownian bridge as the solution of a stochastic

Ž .differential equation SDE . This equation is the continuous analog of a
corresponding description of the height profile of a random tree or forest
obtained by conditioning a discrete time Galton�Watson process on its total
progeny. This result is a development of the deep connection between Brown-
ian excursions and branching processes established over the past 45 years
and summarized briefly in the next paragraph. In the case of Brownian
excursion, the SDE description of the local time process is implicit in Jeulin
� �27 , page 264, and a derivation of the SDE from branching process considera-

� �tion was indicated by Kersting 30 , page 11. The same SDE appears in
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� �descriptions by Leuridan 47 , Section I.3, of the local time process of Brown-
ian motion up to a fixed time. Here a unified description of the local time
processes of Brownian excursion and reflecting Brownian bridge is given in
terms of solutions of this SDE, and this description is applied to identify
these processes as weak limits of suitably scaled height profiles of random
trees and forests.

� �Harris 21 observed that excursions of the simple random walk embedded
in a Brownian path could be recoded to form the random tree associated with

Ž .a discrete time Galton�Watson branching process with geometric 1�2 off-
� �spring distribution. As pointed out by Kawazu and Watanabe 28 , this

branching structure of random walk excursions is implicit in Knight’s ap-
proach by random walk approximation to the Ray�Knight description of

� �Brownian local time processes 67, 34, 68 . The Ray�Knight theorems are
� �thus linked to Feller’s 20 diffusion approximation for a critical branching

� �process. Le Gall 41, 42 connected these ideas to Williams’ path decomposi-
� � � �tions of Brownian motion 78 . Neveu and Pitman 51, 52 showed how the

family tree of a continuous time Yule process is embedded in a path governed
by Ito’s law of Brownian excursions conditioned to exceed a given height.ˆ

� �Aldous 2, 3, 4 developed analogous results encoding a Brownian excursion of
given length as a continuum random tree, in the context of a more general
theory of continuum random trees as weak limits as n � � of combinatorially

� �defined trees with n vertices. See also 44 . There is much current interest in
the use of Brownian and other local time processes as models of continuous
state branching processes and the applications of such processes to Marko-

� �vian superprocesses. See, for instance, 43, 45 and papers cited there.
Let B denote a standard Brownian motion started at 0. Let

br , t br, t �B � B , 0 � s � t � B , 0 � s � t B � 0Ž .Ž .s d s t

denote a Brownian bridge of length t. Here and throughout the paper, ‘‘� ’’
means ‘‘equal by definition’’ and ‘‘� ’’ denotes equality in distribution ofd

	random variables or processes. For a fixed time T � 0, let G � sup s: s � T,T
4 	 4B � 0 be the last zero of B before time T and D � inf s: s � T, B � 0 bes T s

first zero of B after time T. It is known that for each 0 � t � T the law of

B , 0 � s � G given G � tŽ .s T T

does not depend on T and is that of Bbr, t, the Brownian bridge of length t.
A process with the law of

� �B , 0 � s � D � G given D � G � t ,Ž .G �s T T T TT

which also does not depend on T, is called a Brownian excursion of length t,
denoted here by Bex, t. A process with the law of

� �B , 0 � s � T � G given T � G � t ,Ž .G �s T TT

which again does not depend on T, is called a Brownian meander of length t.
It is well known that these Brownian bridges, excursions and meanders of
length t can be constructed by Brownian scaling from the corresponding
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standard processes of length 1. If the length of one of these processes is not
� �mentioned, it is assumed to be 1. See 68, 5 for background and further

references to these processes.
� �For a suitable continuous function f with domain containing 0, t , let

Ž .L f denote the local time of f up to time t at level v as defined by thet, v
occupation density formula

�t
1 g f du � g v L f dvŽ . Ž . Ž . Ž .H Hu t , v

0 ��

for every nonnegative Borel measurable g and continuity in v. Let B � br � , t be a
Ž .reflecting Brownian bridge RBB of length t,

� br � , t � br � , t � br , t �B � B , 0 � s � t � B , 0 � s � t .Ž . Ž .s s

� br � Ž � br � , t .The abbreviation L � L B will be used throughout the paper fort, v t, v
the local time up to time t at level v of a RBB of length t. Using the

� �Ray�Knight description of Brownian local times, Williams’ 78 time reversal
theorem and an identity of �-finite measures related to Brownian excursions,

� � Ž � br � .Biane and Yor 7 showed that the process L , v � 0 of local times of RBB1, v
is a time change of the time reversal of twice a Brownian meander. Corollary
16 below recalls the precise statement of this result.

Ž � br � .Section 3 reviews the appearance of the process L , v � 0 as the1, v
asymptotic distribution for large n of the height profile of the random forest

� �generated by a uniform random mapping of an n-element set to itself 1, 17 .
� �The density of a limit law derived by Proskurin 66 from the height profile of

this random forest was identified with the density of L � br � by Aldous and1, v
� � � �Pitman 1 . See also 72, 73 for a derivation of this density by a more

� �straightforward random walk approximation. Recent work 17 develops the
� �approach of 1 by use of a generating function analysis of the finite-dimen-

sional distributions of the height profile of a random mapping. After passage
to the limit, this yields a formula for the characteristic function of the

Ž � br � .finite-dimensional distributions of L , v � 0 in terms of a contour integral1, v
in the complex plane with a rather complicated integrand. The purpose of this

Ž � br � .paper is to record another description of the process L , v � 0 in terms of1, v
the process X introduced in the following lemma, which is easily verified by

� �techniques of stochastic calculus 68 .

LEMMA 1. Let � be a Brownian motion. For each l � 0 and t � 0 there
exists a unique strong solution X of the Ito SDE,ˆ

2 X � l ; dX � � X dv � 2 X d� ,Ž . Ž . '0 v v v v

where

�1v
23 � X � 4 � X t � X duŽ . Ž . Hv v už /0
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� Ž ..with the convention that the equation for X is to be solved only on 0, V Xt
Ž .and that X � 0 for v � V X wherev t

v
4 V X � inf v : X du � t .Ž . Ž . Ht u½ 5

0

Ž .DEFINITION 2. For each t � 0 and l � 0 let X � X , v � 0 denote al, t, v
process with the same distribution as the solution X of the above SDE. Also,
let X � 0 for all v � 0.0, 0, v

The following proposition records some basic properties of this process X,
which follow easily from its definition by standard techniques of stochastic
calculus.

PROPOSITION 3. The process X enjoys the following properties.

Ž . Ž .i For each l � 0 and t � 0, the random time V X is strictly positivet
Ž .and finite a.s., and the left limit of X at time V X exists and equals 0 a.s.t

Consequently, the process X has continuous paths almost surely.
Ž .ii For each l � 0 and t � 0,

�

5 X � l and X dv � t a.s.Ž . Hl , t , 0 l , t , v
0

Ž . Ž .iii For each t � 0, the collection of laws of X , v � 0 for l � 0 isl, t, v
Ž .determined by the collection of laws of X , v � 0 for l � 0 via thel, 1, v

formula

'6 X , v � 0 � t X , v � 0 .Ž . Ž . ž /' 'l , t , v d l� t , 1, v� t

Ž . � . Ž . 	Ž .4 Ž . wiv Let E � 0, � � 0, � 	 0, 0 and for w � l, t 
 E let Q denote
the law of the process

v
7 W � W , v � 0 � X , t � X du , v � 0Ž . Ž . Hl , t , v l , t , v l , t , už /ž /0

Ž w .on the space of continuous E-valued paths. Then Q , w 
 E is the collection
Ž .of laws of a strong Markov process W with state space E with 0, 0 as an

absorbing state which is reached in finite time Qw a.s. for all w 
 E.

Ž .The scaling property iii implies that in formulating results about X there
is no loss of generality in supposing that t � 1. However, this reduction tends

Ž .to obscure basic properties of X such as the Markov property iv of W, where
it is essential to involve both l and t. Figure 1 displays approximations to

Ž .trajectories of the process X , v � 0 for l � 0, 1, 2, 3 and t � 1, obtainedl, t, v
by computer simulation. The main result of the paper is the following

� �theorem, which, together with the well-known formula 48

x 2
� br �8 P L �2 � x � exp � for t � 0, x � 0,Ž . Ž .t , 0 ž /2 t

Ž � br � .determines the distribution of the process L , v � 0 .t, v
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FIG. 1. Simulated trajectories of the local time process of a reflecting Brownian bridge of length
1. Each panel shows an exact computer simulation of the height profile of a uniform random
forest of k-rooted trees with n � 2500 vertices, generated from binomial random variables via

Ž . Ž .Lemma 9 and scaled as in 17 to approximate X , v � 0 governing the local times of al, 1, v
reflecting Brownian bridge of length 1 given local time l at 0. In each panel, v ranges from 0 to 2
on a horizontal scale, and the vertical scale for local time ranges from 0 to 4. The area under each
trajectory differs negligibly from 1. Each row shows six repetitions for a given initial value

'l � 2k� n � k�25, with l � 1�25 in the bottom row approximating the local time process of a
Brownian excursion, and l � 1, 2, 3 in rows above.
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Ž .THEOREM 4. For each t � 0 the collection of laws of X , v � 0 on thel, t, v
� .path space C 0, � , parameterized by l � 0, is the unique weakly continuous

Ž � br � . Ž � br � .version of the conditional law of L , v � 0 given L � l ,t, v t, 0

� br � � � br �9 L , v � 0 L � l � X , v � 0 .Ž . Ž .Ž .t , v t , 0 d l , t , v

It is intuitively clear, and made rigorous by Lemma 12, that conditioning a
RBB of length t to have zero local time at 0 should produce a Brownian
excursion of length t. Thus the particular case l � 0 of Theorem 4 yields the
following description of the process of local times of a Brownian excursion.

Ž . � �That this process solves a SDE of the form 2 is implicit in 27 , page 264,
� �and explicit in 30 , page 11. However, these authors do not discuss the

uniqueness issue settled by Lemma 1.

COROLLARY 5. The process of local times up to time t of a Brownian
excursion of length t is identical in law to the process defined by the solution of

Ž .the SDE 2 for l � 0,

10 L Bex , t , v � 0 � X , v � 0 .Ž . Ž . Ž .Ž .t , v d 0, t , v

Ž . Ž .If the path dependent drift � X in the SDE 2 is replaced by a constantv
Ž . Ž� . Ž Ž� . .drift � , then 2 becomes the SDE governing a BESQ process X , v � 0 ,l l, v

� �that is a Bessel squared process of dimension � started at l. See 71, 63, 68 .
This process appears for � � 0, 2 and 4 in the Ray�Knight description of
Brownian local time processes, also for other real � , both fixed and path
dependent, as the distribution of local times of appropriately perturbed
Brownian motions. See Section 7 for references to such results. For � �l

	 Ž � �. 4inf t: L B � l , the Ray�Knight theorem,t, 0

� � Ž0.11 L B , v � 0 � X , v � 0 ,Ž . Ž . Ž .Ž .� , v d l , vl

combined with the well-known and easily rigorized identity in law,
� br � , t � � br � � � �B , 0 � s � t L � l � B , 0 � s � � � � tŽ .Ž .s t , 0 d s l l

Žfor l, t � 0 shows that Theorem 4 implies the following corollary obtained
� � .independently in 47 Section 4 , and vice versa.

LEMMA 6. For all l � 0 and t � 0,

�
Ž0. Ž0.12 X , v � 0 X dv � t � X , v � 0 ,Ž . Ž .Hl , v l , v d l , t , vž /0

where the distribution of the right side provides the unique determination of
the conditional distribution of the left side that is weakly continuous in t.

The rest of this paper is organized as follows. Section 2 shows how the
Ž .process defined by the SDE 2 arises as the weak limit of a suitably

normalized Poisson�Galton�Watson branching process conditioned on its
total progeny. The limit process can then be identified with the process
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appearing in Theorem 4. Section 3 explains the connection with random
forests and random mappings. Section 4 lays out a series of corollaries which
amplify the meaning of Proposition 3 and Theorem 4 in various ways. One of
these corollaries is the Biane and Yor description of the process of local times
of B � br � , 1. Another is Jeulin’s corresponding description of the process of local
times of a Brownian excursion. It will be seen that this line of reasoning can
also be reversed to recover Theorem 4 from either of these descriptions.
Section 5 deduces from these results some explicit formulas regarding the
distribution of local times of the reflecting bridge. Section 6 records a varia-
tion of Theorem 4 for an unreflected bridge. Finally, some concluding remarks
and further references to related work are made in Section 7.

2. The branching process approximation. According to a result in
� �the theory of branching processes, first indicated by Feller 19 and further

� � � � Ž .developed by Lamperti 40, 39 and Lindvall 49 , if Z h for h � 0, 1, 2, . . .k
denotes the number of individuals in generation h of a Galton�Watson
process started with k individuals in which the offspring distribution has

2 Ž .mean 1 and finite variance � � 0, and Z h is defined for all h � 0 byk
linear interpolation between integers, then as m � � and k varies with m in

Ž . Ž .such a way that 2k � � m � l,

2 2mv
Ž0.13 Z , v � 0 � X , v � 0Ž . Ž .k d l , vž /ž /� m �

Ž Ž0. . Ž9.where X , v � 0 is the BESQ process defined by the SDEl, v l

14 X � l ; dX � 2 X d�Ž . '0 v v v

� .and � is the usual notion of convergence of distributions on C 0, � . Tod
Ž .check the nonstandard normalizations in 13 , observe that if the process on

the left side has value x at v such that 2mv�� equals an integer h, then
Ž . Ž .Z h � x� m�2. The number Z h � 1 in the next generation of the branch-k k

Ž . 2ing process therefore has variance x� m�2 � . The increment of the process
Ž .on the left side over the next v-increment of �� 2m has this variance

Ž .2 Ž .multiplied by 2�� m . So along the grid of multiples of �� 2m , the vari-
ance of increments of the normalized process on the left side per unit
v-increment, from one grid point to the next, given the normalized process
has value x at the first grid point, is

2 �1x� m 2 � 22 '� � 4 x � 2 xŽ .ž / ž /ž /2 � m 2m
Ž0. Ž . � �in accordance with the BESQ SDE 14 . Kawazu and Watanabe 28

showed that if the branching process is modified by allowing an immigration
term, then the weak limit is a BESQŽ� . process with � representing anl
asymptotic rate of immigration per unit time. They showed also that this
result for � � 0 and � � 2 yields the basic Ray�Knight theorems when
applied to the branching processes with geometric offspring distribution
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� �derived from upcrossings of the Brownian path. See also 41 for another
� � � �exposition of this idea and 10, 11 and 33 for more about approximation of

Brownian local times using random walks.
Ž Ž . .Consider now the distribution of the process Z h , h � 0 defined byk , n

Ž Ž . . � Ž .conditioning Z h , h � 0 on the event that its total progeny Ý Z hk h�0 k
equals n. So

�

15 Z h , h � 0 � Z h , h � 0 Z h � n ,Ž . Ž . Ž . Ž .Ž . Ýk , n d k kž /
h�0

where it is assumed now that the offspring distribution is aperiodic, so the
conditioning event has strictly positive probability for all sufficiently large n.

'Ž .In view of 13 for m � n , in an asymptotic regime with n � � and
'Ž . Ž .2k � � n � l,

� �1 2 '16 Z h � Z 2 n v�� dvŽ . Ž . Ž .Ý Hk k'n � n0h�0

in the sense that the difference converges in probability to 0 as n � �. So one
'Ž . Ž .expects that as n � � and 2k � � n � l for some l � 0,

2 '17 Z 2 n v�� , v � 0 � X , v � 0 ,Ž . Ž .Ž .k , n d l , 1, vž /'� n

Ž . Ž . Ž .where X , v � 0 for l � 0 is identified via 12 as the limit process in 13l, 1, v
conditioned to have integral equal to 1. If l � 0, this line of reasoning fails

Ž . � �because the limit process in 13 is identically equal to 0. However, 16 and
� � Ž .30 show that 17 holds in this case with the law of the limiting process
Ž .X , v � 0 identified as that of the process of local times of a Brownian0, 1, v

Ž .excursion. It appears that 17 can be justified in general by some combina-
� �tion of arguments from the present paper and from 30 , but that will not be

� �attempted here. See also 31 regarding the case when the offspring distribu-
tion has infinite variance.

In view of the scaling properties of the processes involved, it is clear that
Ž . Ž .Corollary 6 can be deduced from the combination of 13 and 17 for any

particular choice of offspring distribution for the Galton�Watson process.
Then Theorem 4 can be deduced from Corollary 6 via the Ray�Knight

Ž .theorem 11 , as indicated in the introduction. Thus Theorem 4 is a conse-
quence of the following result.

Ž .THEOREM 7. The convergence in distribution 17 holds with � � 1 as
'Ž . Ž Ž . .n � � and 2k � n � l � 0, for Z h , h � 0 a Galton�Watson processk , n

with Poisson offspring distribution started with k individuals and conditioned
Ž .to have total progeny n and with the limit process X , v � 0 constructedl, 1, v

as in Lemma 1 for t � 1.

The proof of Theorem 7 is based on the following lemma. Note that if
Ž .Z h is interpreted as the number of vertices at level h in a forest with nk , n
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vertices defined by a collection of k family trees, one for each initial individ-
ual in the Galton�Watson process, then for h � 0, 1, . . . , the random variable

h

18 A h � n � Z iŽ . Ž . Ž .Ýk , n k , n
i�0

represents the number of vertices in the forest strictly above level h.

LEMMA 8. Let X , X , . . . be a sequence of independent random variables1 2
	 4with some distribution p on 0, 1, 2, . . . , and set S � X � ��� �X . Fix 1 �j 1 j

Ž . Ž Ž . .k � n with P S � n � k � 0. Let Z h , h � 0, 1, 2, . . . be a Galton�n k , n
Watson branching process with offspring distribution p started with k individ-

Ž .uals and conditioned to have total progeny n. Let Z h , h � 0, 1, . . . be a
sequence of nonnegative integer random variables and set

h

A h � n � Z i and W h � Z h , A h .Ž . Ž . Ž . Ž . Ž .Ž .Ý
i�0

Then
19 Z h , h � 0, 1, 2, . . . � Z h , h � 0, 1, 2, . . .Ž . Ž . Ž .Ž . Ž .d k , n

Ž Ž . .if and only if the sequence W h , h � 0, 1, 2, . . . is a Markov chain with state
space

	 4 	 4E� � 1, 2, . . . , � 0, 1, 2, . . . , 	 0, 0 ,	 4Ž .Ž .
Ž .initial state k, n � k , and the following stationary transition probabilities:

Ž . Ž .for all h � 0, 1, 2, . . . and all z, a 
 E� with a � 0 and z , a 
 E� with1 1
z � a � a � 1,1 1

P W h � 1 � z , a W h � z , aŽ . Ž . Ž . Ž .Ž .1 1

z z � aŽ .1
�� P S � z S � a ,Ž .z 1 z�aza

20Ž .

Ž Ž . Ž . � Ž . Ž ..whereas P W h � 1 � 0, 0 W h � z, 0 � 1, and all other transition
probabilities are zero.

PROOF. This is easily verified by a computation using the well-known
� �formula 18 for the distribution of the total progeny in the branching process

starting with k individuals,
� k

21 P Z h � n � P S � n � kŽ . Ž . Ž .Ý k nž / nh�0

together with the Markov property of the branching process, and Bayes rule.
�

� � Ž .See 62 for a recent review of the fundamental formula 21 and its
various probabilistic and combinatorial equivalents. As a check on formula
Ž . Ž .20 , one that the sum of probabilities in 20 over all 0 � z � a is 1, due to1
the well-known formula

za
�E S S � a � ,Ž .z z�a z � aŽ .
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Ž .which follows from exchangeability of the X . According to 20 , giveni
Ž . Ž . Ž .W h � z, a , the distribution of Z h � 1 is obtained by size-biasingk , n k , n

Ž . Ž .of the distribution of S given S � a, while A h � 1 � a � Z h � 1 .z z�a k , n k , n
For a Poisson offspring distribution, the law of S given S � a is bino-z z�a

Ž Ž .. Ž .mial a, z� z � a . It is elementary that a size-biased binomial n, p variable
Ž .is 1 plus a binomial n � 1, p variable, so the previous lemma can be special-

ized as follows.

Ž Ž . .LEMMA 9. Fix 1 � k � n. A sequence Z h , h � 0, 1, . . . has the same
distribution as a Galton�Watson process with a Poisson offspring distribution
started with k individuals and conditioned on total progeny equal to n, if and

Ž .only if the sequence evolves by the following mechanism: Z 0 � k and for each
h � 0, 1, . . . ,

Z h � 1 Z i , 0 � i � h , Z h � z , A h � aŽ . Ž . Ž . Ž .Ž .
z

� 1 � bin a � 1, ,d ž /a � z

22Ž .

Ž . h Ž . Ž .where A h � n � Ý Z i and bin m, p is a binomial random variablei�0
Ž .with parameters m and p, with the conventions bin �1, p � �1 and

Ž .bin 0, p � 0.

PROOF OF THEOREM 7. Consider the rescaled process on the left side of
Ž .17 in the Poisson case, so � � 1, in an asymptotic regime with n � �

' Ž .and 2k� n � l for some l � 0. From 22 , in the limit as n, z and a tend
' Ž .to � with 2 z� n � x and a�n � p, for integer h the increment 	 h �k , n

Ž . Ž .Z h � 1 � Z h is such that the corresponding normalized incrementk , n k , n
� 'Ž . Ž .	 h � 2	 h � n has the following conditional mean and variancek , n k , n

Ž Ž . . Ž . Ž .given a history Z i , 0 � i � h with W h � z, a :k , n k , n

2 a � 1 zŽ .
�E 	 h W h � z , a � 1 � � zŽ . Ž . Ž .Ž .k , n k , n ž /' a � zn

x 2 1
� 4 � ,ž / 'p 2 n

4 a � 1 za 1Ž .
�Var 	 h W h � z , a � � 4 x .Ž . Ž . Ž .Ž .k , n k , n 2 'n 2 na � zŽ .

The relative errors of approximation here are negligible as n � �, uniformly
in h, provided x � 1�
 and p � 
 , which can be arranged by a localization
argument, stopping the normalized process when either its value exceeds x

� Ž .or its integral exceeds 1 � p. Since 	 h is the increment of the normalizedk , n 'Ž . Ž .process over a time interval of length 1� 2 n , and the value of p � A h �nk , n
can be recovered from the path of the normalized process with a negligible
error via

hA h 1 2Ž . Ž .h� 2 n'k , n '23 p � � 1 � Z i � 1 � Z 2 n v dv,Ž . Ž . Ž .Ý Hk , n k , n'n n n0i�0
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these calculations show that the normalized process is governed asymptoti-
Ž . Ž .cally by the SDE 2 and 3 . According to Lemma 1, the SDE has a unique

strong solution, so the conclusion follows by application of known results
regarding the weak convergence of a sequence of Markov chains to the

� � � �solution of an SDE 38, 37 . See in particular 37 Theorem 5.4, regarding
unbounded coefficients. �

� �3. Application to forests and mappings. It is known 36, 1 that each
Ž Ž . . Ž . Ž .of the two processes Z h , h � 0 defined in 1 and 2 below has thek , n

distribution of a Galton�Watson branching process with Poisson offspring
distribution started with k individuals and conditioned to have total progeny

� � Ž .n. See 62 for a quick proof of this fact in case 1 . This case can also be
� �deduced by using classical enumerations of trees and forests, reviewed in 61

to show the conditions of Lemma 9 are satisfied.

1. In a random forest with uniform distribution on the set of all rooted forests
� � 	 4 Ž .of k trees labeled the set n � 1, . . . , n , let Z h equal the number ofk , n

Ž Ž . .vertices at height h above the roots. Call this process Z h , h � 0 thek , n
height profile of the forest.

� � � � m2. For M a mapping from n to n , with iterates M for m � 0, 1, 2, . . . ,
� � mŽ .call v 
 n a cyclic point of M if M v � v for some m � 0. Let

Ž . � � Ž .cyclic M be the set of cyclic points of M. For v 
 n let h v, M be the
mŽ . Ž . Ž .least m � 0 such that M v 
 cyclic M . So h v, M is the height of v in

Ž .the usual forest derived from M whose set of roots is cyclic M . For
Ž . � � Ž .h � 0, 1, 2, . . . , let Z� h be the number of v 
 n such that h v, M �, n n

� � � �h, for M a random mapping from n to n , with uniform distribution onn
n � �the set of n such mappings, as studied in 36, 1 . Call this process

Ž Ž . . Ž Ž .Z� h , h � 0 the height profile of the mapping forest. Let Z h ,, n k , n
.h � 0 be the height profile of the mapping forest conditioned on the event

Ž Ž . .Z� 0 � k that M has exactly k cyclic points., n n

Ž Ž . . Ž . Ž .That Z h , h � 0 has the same distribution in 2 as in 1 is evidentk , n
because given that M has k cyclic points, the forest generated by M is an n

� �uniform random forest of k rooted trees labeled by n , exactly as supposed
Ž .in 1 . Theorem 7 now yields the corollary.

Ž Ž . .COROLLARY 10. If Z h , h � 0 is either:k , n

Ž .i The height profile of a uniform random forest of k rooted trees labeled
� �by n , or
Ž . � �ii the height profile of the forest derived from a random mapping from n
� �to n conditioned to have k cyclic points,

Ž Ž . .then the distribution of the sequence Z h , h � 0 is that described byk , n 'Lemma 9, and in the limit regime as n � � and 2k� n � l � 0,

2 '24 Z 2 n v , v � 0 � X , v � 0 .Ž . Ž .Ž .k , n d l , 1, vž /'n
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� �Aldous-Pitman 1 showed how a uniform random mapping M can ben
recoded as a nonuniformly distributed random walk of 2n steps starting and
ending at 0, with each tree component of the forest generated by M corre-n
sponding to an excursion of the walk away from 0, in such a way that as
n � � the normalized walk converges in distribution to a reflecting Brownian
bridge of length 1. The following further corollary is now obtained by mixing
the result of the previous corollary with respect to the distribution of the

Ž . � �number Z� 0 of cyclic points of M . It is well known 1 that for all x � 0,, n n

2'25 lim P Z� � n � x � exp �x �2Ž . Ž .Ž ., n
n��

Ž . Ž .So Theorem 4 and Corollary 10 combine with 25 and 8 to yield the
Corollary.

Ž � �.COROLLARY 11 Drmota�Gittenberger 17 . The normalized height profile
of the forest derived from a uniform random mapping M converges weakly ton
the process of local times of a reflecting Brownian bridge of length 1,

2
� br �'26 Z� 2 n v , v � 0 � L , v � 0 .Ž . Ž . Ž ., n d 1, vž /'n

A second proof of Theorem 4 can be given by comparison of Corollary 10
Ž . Ž .with the known result 26 or with the weaker integrated form of 26 given

� �in 1 .

4. Related results. This section presents a series of results related to
Theorem 4. Those deduced from the theorem are labeled as corollaries, while
those proved independently of the theorem are labeled lemmas. In particular,

Ž � br � .the Biane and Yor description of L , v � 0 is obtained as a corollary. Thist, v
description combined with the lemmas yields a third proof of Theorem 4.

Observe first that in terms of the local time representation of X provided
by Theorem 4, the Markov property of the process W described in Proposition
3, which is the continuous analog of the Markov property of W in Lemma 8,

� . Ž � .amounts to the following equality of distributions on C 0, � , where dist X Y
stands for the conditional distribution of X given Y: for all t � r � 0, l � 0,
v � 0,

v
� br � � br � � br � � br �dist L , z � 0 L , 0 � u � v with L � l , t � L du � rHt , v�z t , u t , v t , už /027Ž .

� br � � br �� dist L , z � 0 L � l .Ž .r , z r , 0

Lemma 12 prepares for a refinement of this identity in law which is stated
in Lemma 13.

� �LEMMA 12. For each t � 0, there exists on the path space C 0, t a unique
Ž � br � , t . � br �family of conditional distributions for B , 0 � s � t given L � l, says t, 0
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Ž l, t . 0, tP , l � 0 , that is weakly continuous in l. In particular, the law P is the
law of a Brownian excursion of length t.

Ž l, t .PROOF. The existence of such a continuous family P , l � 0 follows
from the construction of the RBB by first constructing its zero set, then
piecing together independent Brownian excursions over the maximal open

� �intervals in the complement of the zero set. See 65 for an explicit description
of the law of the ranked lengths of the complementary intervals given
L � br � � l. Given the lengths, each interval is assigned an independent localt, 0

� �time value with uniform distribution on 0, l , and then the lengths are laid
down in the order of the local time variables. It follows from this description
that for each t � 0 and 
 � 0 there exists � such that for l � � , with P l, t

probability at least 1 � 
 , there is a complementary interval of length at least
t � 
 . This implies easily that P 0, t is the law of a Brownian excursion of
length t. �

This construction of a Brownian excursion of length t by conditioning
B � br � , t on L � br � � 0 parallels similar constructions by conditioning a Browniant, 0

br, t � �bridge B of length t on Z � 0 for suitable Z , due to 9 for Z �t t t
br, t � � t Ž br, t .inf B and 14 for Z � H 1 B � 0 ds.0 � s� t s t 0 s

If B � br � , l, t denotes a process with law P l, t, then Lemma 12 allows Theorem
4 to be recast as

28 L B � br � , l , t , v � 0 � X , v � 0 .Ž . Ž . Ž .Ž .t , v d l , t , v

For l � 0, Corollary 5 is then recovered from Lemma 12. The law P l, t could
� �also be constructed as in 1 as a weak limit from a uniform mapping Mn'conditioned to have around k � l n �2 cyclic points, or from a random rooted

forest of k trees with n vertices, or by similar conditioning of a uniform
lattice walk path of length 2n on its number of returns to 0.

LEMMA 13. Fix t � 0. For v � 0 let Y v, � denote the process with lifetime

vtv , � � br � , t � br �� � 1 B � v ds � L duŽ .H Hs t , u
0 0

defined by deleting the excursions of B � br � , t above v and closing up the gaps,
and let Y v, � denote the process with lifetime

vtv , � � br � , t � br �� � 1 B � v ds � t � L duŽ .H Hs t , u
0 0

defined by deleting all portions of the path of B � br � , t below v, closing up the
gaps and finally subtracting v so the path starts and ends at 0. Then:

Ž . Ž � br � . � �i The process L , 0 � u � v is the restriction to 0, v of the process oft, u
local times of Y v, � up to time � v, �.

Ž . Ž � br � .ii The process L , z � 0 is the process of local times at levels z of thet, v�z
process Y v, � up to time � v, �.
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Ž .iii For l� � 0, r � 0,
v , � � v , � � br � v , � r , l�dist Y Y with L � l�, � � r � P .Ž .t , v

Ž . � br � , tiv These results hold also for each l � 0 with the reflecting bridge B
replaced by a bridge B � br � , l, t with the law P l, t described in Lemma 12, and in
particular for l � 0 with B � br � , t replaced by Bex, t, an excursion of length t.

� �PROOF. See 25 , Section 2.11, for details of the construction involved in
v, � v, � Ž . Ž .the definition of the processes Y and Y . Properties i and ii follow

Ž .immediately from the construction. Property iii can be deduced from the
�structure of Brownian excursions and excursion filtration exposed in 76, 24,

� Ž . Ž .50, 69, 70 . Property iv then follows from iii and the definition of the
conditioned bridge laws P l, t. �

Consider now the family of laws BESŽ3., x � 0 of a three-dimensionalx
Bessel process which may be constructed as the solution of the SDE

R � x ; dR � R�1 dt � d�0 t t t

for a Brownian motion �. For t � 0 let R x, y, t denote a BESŽ3. bridge from x
to y of length t, that is a BESŽ3. process R conditioned on R � y, regarded asx t

� � x, y, tprocess parameterized by 0, t . It is easily seen that such a process R
may be constructed for 0 � s � t by the formula

2 2 2x , y , t br, t br, t br, t'R � x � y � x s�t � B � B � B ,Ž .Ž . Ž . Ž .s 1, s 2, s 3, s

Ž br, t .where the B , 0 � s � t for i � 1, 2, 3 are three independent copies of ai, s
one-dimensional Brownian bridge of length t. As a consequence of this
description and Ito’s formula, R x, y, t can also be constructed as the solutionˆ

� �over 0, t of the SDE

1 y � RŽ .s
29 R � x ; dR � � ds � d�Ž . 0 s sž /R t � sŽ .s

� �for a Brownian motion � . See also 78, 59, 22, 68 for background. The
� � � �following lemma was suggested by the results of 27 and 7 presented in

Corollary 16.

l, 0, t ŽLEMMA 14. For l � 0, t � 0 let R be the process derived from X ,l, t, v
.v � 0 via the formula

v
l , 0, t30 2 R � X for the least v : X du � s where 0 � s � t .Ž . Hs l , t , v l , t , u

0

l, 0, t Ž3. Ž .Then R is a BES bridge from l to 0 of length t, and X , v � 0 canl, t, v
be recovered from Rl, 0, t via the formula

s dr
l , 0, t31 X � 2 R for the least s : � v.Ž . Hl , t , v s l , 0, t2 R0 r
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Consequently, starting from any BESŽ3. bridge Rl, 0, t from l to 0 of length t,
Ž .the process X defined by 31 has the same distribution as X defined by the

Ž .SDE 2 .

Ž . Ž .PROOF. The recipe 31 for inverting the time change 30 is easily checked,
Ž l, 0, t . Ž .so it suffices to show that if R � R , 0 � s � t solves the SDE 29 , fors

Ž . Ž .x, y � l, 0 ; that is

1 Rs
dR � � ds � d�s sž /R t � sŽ .s

Ž . Ž .for some Brownian motion � , then X � X , v � 0 defined by 31 solvesl, t, v
Ž . Ž . Ž .the SDE 2 for some Brownian motion �. But from 30 and 31 ,

v
dX � 2 dR where s � X du.Hv s u

0

A level increment dv for X corresponds to a time increment ds � X dv forv
R, and R � X �2, sos v

1 X �2v
32 dX � 2 � X dv � 2 X d�Ž . 'v v v vvž /X �2 t � H X duŽ .v 0 u

for some other Brownian motion �, where the factor X appears in the' v
Ž . Ž .diffusion term due to Brownian scaling, and 32 simplifies to 2 . As a

technical point, the definition of � above the level H t dr�2 Rl, 0, t when X hits0 r
� �0 may require enlargement of the probability space. See 68 , Chapter V, for a

rigorous discussion of such issues. �

LEMMA 15. The laws of a Brownian excursion Bex, t and a Brownian
meander Bme, t, each of length t, can be expressed as follows in terms of the
laws of BESŽ3. bridges R x, y, t:

Ž . � �i 77 .
33 Bex , t � R0, 0, t ;Ž . d

me, t 'Ž . � �ii 22 . The final value B of the meander has the distribution of t Rt
Ž . Ž 2 .for R with the standard Rayleigh distribution P R � r � exp �r �2 , r � 0,

and
me , t � me , t 0, y , t34 B B � y � R .Ž . Ž .t d

The above results now combine easily to yield the corollary.

Ž .COROLLARY 16. For a process Y � Y , 0 � s � t admitting a locals
ˆ ˆŽ Ž . . Ž . Ž .time process L Y , v � 0 , define a process L Y � L Y , 0 � r � t byt, v r

ˆ � ˆŽ . Ž . Ž . 	 4 Ž .L Y � L Y where v r � sup y � 0: H L dx � r . So L Y is ther t, vŽr . y t, x r
Ž .local time of Y at a level v r above which Y spends time r.

Ž . Ž� � .i 27 , page 264 If Y is a Brownian excursion of length t, then so is
ˆŽ .L Y �2.
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Ž . Ž� � Ž ..ii 7 , Theorem 5.3 If Y is a reflecting Brownian bridge of length t,
ˆŽ .then L Y �2 is a Brownian meander of length t.

t, l � br � , t � br � ˆ Ž3.Ž . Ž .iii If Y has the law P of B given L � l, then L Y �2 is a BESt, 0
bridge from 0 to l of length t.

Ž . Ž .Indeed, by combining 28 and Lemma 14, for Y as in iii , the process
ˆ l, 0, t 0, l, tŽ .L Y �2 is seen to be a time-reversed copy of R , that is, a copy of R by

Ž .a well-known property of one-dimensional diffusion bridges. Now i is seen to
Ž . Ž . Ž .be the special case l � 0 of iii by Lemma 12 and 33 , while ii is an

Ž . Ž . � br � me, tintegrated form of iii by 34 and the fact that L �2 and B have thet, 0 t
Ž .same distribution. In view of Lemma 12, the Biane�Yor result ii can be

Ž .disintegrated by conditioning on the local time of Y at 0 to recover iii .
Ž .Theorem 4 can then be deduced from iii by retracing the above argument

via Lemmas 15 and 14. Theorem 4 can even be deduced from the special case
Ž . Ž . Ž . Ž .i of iii . For i implies the special case l � 0, t � 1 of Theorem 4 by the

Ž .argument just indicated, hence the case l � 0, t � 0 by Brownian scaling.
By application of Lemma 13 it is clear that the bivariate process W * derived
from the local time representation of a nonnegative process Y of length t, say,

v
W * � L Y , t � L Y dw , v � 0Ž . Ž .Ht , v t , wž /ž /0

is Markovian with the same transition probabilities whenever Y has the
l, t Ž �distribution P for any l � 0, t � 0. Denote this process W * by W ,l, t, v

.v � 0 . For Y on excursion of length t, corresponding to l � 0, for each v � 0
� Ž . Ž .the distribution of W has a strictly positive density over 0, � � 0, t as0, t, v

Ž .well as an atom at the absorbing state 0, 0 . Due to the Markov property of
Ž .W *, the transition mechanism of this process starting at any state l, s with

l � 0 and s � t is therefore determined by the evolution of W * starting in
Ž .state 0, t corresponding to an excursion Y. But by inspection of the SDE in

the excursion case, the same SDE must be solved starting in an arbitrary
Ž .state l, s with l � 0 and s � t. Since t was arbitrary, the conclusion of

Theorem 4 follows.

5. Some explicit formulas. Previous results combined with existing
results in the literature yield a number of explicit formulas regarding the

Ž � br � .distribution of the process of local times L , v � 0 of a reflecting Brown-1, v
ian bridge of length 1. As a consequence of the Biane�Yor result of Corol-

Ž .lary 16 ii ,

35 sup L � br � � 2 sup Bme � 4 sup B � br � , 1 ,Ž . 1, v d u d u
v�0 0�u�1 0�u�1

where Bme is a Brownian meander of length 1, the second equality is due
� � � br � , 1to 29 and the distribution of sup B is given by the well-known0 � u�1 u

Ž .Kolmogorov�Smirnov formula. Also by Corollary 16 ii ,

36 L � br � , sup L � br � � 2 Bme , sup Bme .Ž . 1, 0 1, v d 1 už /ž /
v�0 0�u�1
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The joint density of this distribution can be read from known results for the
� � Ž . � br �Brownian meander 23 . By conditioning 36 on L , or by Lemma 14,1, 0

� br � � br � 0, l , 137 sup L L � l � sup X � 2 sup R ,Ž . 1, v 1, 0 d l , 1, v d už /
v�0 v�0 0�u�1

where R0, l, 1 is a three-dimensional Bessel bridge from 0 to l of length 1. The
density of this conditional distribution can be read either from the joint

Ž . � �density in 36 , or from the general formula in 32 for the distribution of the
maximum of a d-dimensional Bessel bridge.

For fixed v, the distribution of
� br � � � br �38 L L � l � XŽ . Ž .1, v 1, 0 d l , 1, v

' 'Ž .can be evaluated by Theorem 7 as the limit distribution of 2Z 2v n � nk , n' Ž .as n � �, with 2k� n � l for Z h as in Lemma 9 the number of verticesk , n
� �at level h in a uniform random forest of k rooted trees labeled by n . A

� �formula for the density of this limit distribution was found by Pavlov 54 ,
Theorem 6, in terms of an integral with respect to a two-dimensional proba-
bility distribution with an explicit Fourier transform: For l � 0 more explicit

Ž .formulas are known from the representation 10 of X as the distribution0, 1, v
� �of local time of an excursion at level v. See 16 for a review of various

representations of this distribution and transform expression for the higher
� �dimensional distributions. Drmota and Gittenberger 17 give similar trans-

Ž � br � .forms for the finite-dimensional distributions of L , v � 0 . Presumably1, v
similar transforms can be given for the finite-dimensional distributions of
Ž . � �X , v � 0 . Pavlov 55 , Theorem 2, found a transform for the asymptoticl, 1, v
distribution of the maximum height in a random forest of plane rooted trees,
which with appropriate scaling can be interpreted via Theorem 7 or geomet-
ric offspring distribution as the distribution of

1 du1� br � , 1 � br �� 	 439 sup B L � l � inf v � 0: X � 0 � .Ž . Hu 1, 0 d l , 1, v dž / 0, l , 12 R00�u�1 u

This distribution does not seem to have been studied in the Brownian
literature, except in the case l � 0, when it reduces to the distribution of the

� �maximum of Brownian excursion 15, 29, 7, 3 .
� �See 35 for applications of results of this paper to the computation of

moments of the area under a RBB conditional on its local time at zero.

6. The local time process of an unreflected Brownian bridge. Let

Lbr � L Bbr , tŽ .t , v t , v

denote the local time up to time t at level v of an unreflected Brownian
Ž br .bridge of length t. In principle, the law of the process L , v 
 � ist, v

� �determined by Ray’s 67 description for each 
 � 0 of the process of local
Ž Ž . . 2times L B , v 
 � for T an exponential variable with rate 
 �2 inde-T , v 



pendent of B. According to that description, which is reviewed from a modern
� � Ž .perspective in 8 , conditionally, given B � 0 and L B � l, the pro-T T , 0
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Ž Ž . . Ž Ž . .cesses L B , v � 0 and L B , v � 0 are independent copies of theT , v T , �v
 


Ž .time-homogeneous diffusion process Y � Y , v � 0 defined as the solu-l, 
 , v
tion of

Y � l , dY � �2
 Y dv � 2 Y d�'0 v v v v

for a Brownian motion �. Effectively, this describes the distribution of local
times of a Brownian bridge of random length with distribution that of T


Ž 2 .given B � 0, which is easily seen to be the gamma 1�2, 
 �2 distribution.T


Ž br .By application of Brownian scaling, it is clear that the law of L , v 
 � ,1, v
Ž br .hence that of L , v 
 � for each t � 0, is determined by this description oft, v

Ž Ž . � .the law of L B , v 
 � B � 0 even for 
 � 1. However, it is not easyT , v T
 


to use this description to deduce more explicit descriptions of the finite-
Ž br .dimensional distributions of L , v 
 � . For instance, it would be painful to1, v

recover from Ray’s result the formula

2br � �40 P L � x � exp �2 v � x �2 for x � 0, v 
 �Ž . Ž .Ž . Ž .1, v

� � � �given by 48 for v � 0 and x � 0 and 12 for general x and v. That the
Ž br .higher-dimensional distributions of the process L , v 
 � are not so1, v

�simple is clear already from the complexity of Proskurin’s formula 66, 1, 72,
� � br � br br73 for the density of L � L � L for v � 0.1, v 1, v 1, �v
Let �I denote the infimum of the standard bridge Bbr, 1, so

�I � inf Bbr , 1 � inf r : Lbr � 0 a.s.	 4u 1, r
0�u�1

� �As observed in 6 ,

41 Lbr , v � 0 � L Bex , 1 , v � 0 ,Ž . Ž .Ž . Ž .1, v�I 1, v

where Bex, 1 is the standard Brownian excursion derived from Bbr, 1 by
� �Vervaat’s 75 transformation. Combined with Corollary 5, this yields the

following description of the process of bridge local times.

COROLLARY 17.

42 Lbr , r 
 �; I � X , r 
 �; J ,Ž . Ž .Ž .1, r d 0, 1, Ž J�r .� 0

ŽŽ � .where on the right side P J 
 du X , v � 0 � X du, u � 0.0, 1, v 0, 1, u

Ž . Ž � ex, 1.PROOF. In view of 41 it suffices to show P I 
 du B �
Ž ex, 1.Ž .L B du , and this follows easily from Biane’s observation that the time1, u

of the minimum of Bbr, 1 is independent of Bex, 1 with uniform distribution on
� �0, 1 . �

� �See 14 for related results. As shown by Levy, the random variable´
�1br br, 1 brA � 1 B � 0 du � L dvŽ .H H1 u 1, v

0 0
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� � Ž br br .has a uniform distribution on 0, 1 . The joint distribution of L , A , while1, 0 1
not as simple as its marginals, is in principle determined by transforms
which can be read from Ray’s description up to time T , or from the Feyn-


� �man�Kac formula 26 . By consideration of the kind of transformation
� �between reflecting and unreflecting bridges described in 5 , Lemma 5.2,

Theorem 4 yields also the following corollary.

Ž br br . Ž . Ž brCOROLLARY 18. Conditionally given L , A � l, a , the processes L ,1, 0 1 1, v
. Ž br . Ž .v � 0 and L , v � 0 are independent copies of X , v � 0 and1, �v l, a, v

Ž .X , v � 0 , respectively.l, 1�a, v

� �7. Concluding remarks. Perkins 56 showed that for each fixed t � 0
the process of local times of B at levels v up to time t is a semimartingale as
v ranges over all real values, and he gave the semimartingale decomposition

� �of this process. Jeulin 27 gave a version of Perkins results that allows
� � � �conditioning on B . See also 74 and 47 for descriptions of Brownian localt

time processes at a fixed time which are closely related to the results of this
Ž Ž � �. .paper. Presumably, a similar description of the process L B , v � 0 couldt, v

be obtained, and then Theorem 4 should appear after conditioning on B � 0.t
As remarked in the discussion below Theorem 7, the left side of formula

Ž . Ž12 has no meaning for l � 0 and t � 0, even though the process X ,0, t, v
.v � 0 is a well-defined process identical in law to the process of local times of

ex, t Ž .B , a Brownian excursion of length t. However, for l � 0, 12 amounts to
� .the following identity of probability measures on C 0, � :

�
Ž0. Ž0.43 Q � Q q dt ,Ž . Ž .Hl l , t l

0

where QŽ0. is the law of the BESQŽ0. process starting at l � 0, where Q isl l l, t
Ž . Ž0.the law of X , v � 0 for l � 0 and t � 0 and q denotes the distributionl, t, v l

of H�X dv for X with distribution QŽ0., that is, for t � 0,0 v l

l l 2
Ž0. �3�244 q dt � P � 
 dt � t exp � dt ,Ž . Ž . Ž .l l ž /' 2 t2�

Ž .where the first equality is read from the Ray�Knight theorem 11 , and the
Ž .second is Levy’s formula for the density of the stable 1�2 variable � . If this´ l

Ž . Ž .form 43 of formula 12 is divided by l, and the limit taken as l�0, the
Ž .result is the following corollary, where according to 5 , the law Q of0, t

Ž .X , v � 0 may be interpreted as the law of local times up to time t of a0, t, v
� �Brownian excursion of length t, as in 63, 64 .

Ž � �.COROLLARY 19 Pitman-Yor 63, 64 . The formula

�
�3�2t dt

45 M � QŽ . H 0, t '2�0

� .defines a �-finite measure on C 0, � under which the coordinate process is
Markovian with the BESQŽ0. semigroup, with almost every path starting at 0.
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� � Ž .As shown in 63 , 4.2 , this �-finite law M is the distribution of the
Ž Ž . . � .ultimate local time process L 
 , v � 0 for 
 an element of C 0, � subject�, v

� �to Ito’s �-finite law of Brownian excursions. See 46, 60, 63, 64 for variousˆ
developments and applications of this result to the Levy�Ito representation of´ ˆ
squared Bessel and related processes.

� �Le Gall and Yor 46 educed from the Levy�Ito representation of squared´ ˆ
� � Ž� .Bessel processes 63 that BESQ for � � 0, can be constructed as the0

Ž Ž Ž� .. . Ž� .process of ultimate local times L Y , v � 0 of Y constructed from a�, v
� � Ž� . � � Ž � �.reflecting Brownian motion B as Y � B � L B �� for t � 0. Car-tt t, 0

� � Ž� .mona, Petit and Yor 13 found a similar construction of BESQ for x � 0,x
� � � �� � 0. See also 57, 58 . Norris, Rogers and Williams 53 Theorem 2, showed

that the distribution of a local time process derived from another kind of
perturbed Brownian motion, with a drift depending on its local time process,

Ž .can be characterized by a variation of the Bessel square SDE like 2 , but
Ž . � �with a different form of path-dependent drift coefficient � X . See also 79v

and papers cited there for various other Ray�Knight type descriptions of
Brownian local time processes and further references on this topic.

Acknowledgments. Thanks to David Aldous and Marc Yor for many
stimulating discussion related to the subject of this paper. Thanks also to
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