THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING COMPOSITE HYPOTHESES¹

By S. S. WILKS

By applying the principle of maximum likelihood, J. Neyman and E. S. Pearson² have suggested a method for obtaining functions of observations for testing what are called *composite statistical hypotheses*, or simply *composite hypotheses*. The procedure is essentially as follows: A population K is assumed in which a variate x (x may be a vector with each component representing a variate) has a distribution function $f(x, \theta_1, \theta_2, \dots, \theta_h)$, which depends on the parameters $\theta_1, \theta_2 \dots \theta_h$. A simple hypothesis is one in which the θ 's have specified values. A set Ω of admissible hypotheses is considered which consists of a set of simple hypotheses. Geometrically, Ω may be represented as a region in the h-dimensional space of the θ 's. A set ω of simple hypotheses is specified by taking all simple hypotheses of the set Ω for which $\theta_i = \theta_{0i}$, $i = m + 1, m + 2, \dots h$.

A random sample O_n of n individuals is considered from K. O_n may be geometrically represented as a point in an n-dimensional space of the x's. The probability density function associated with O_n is

(1)
$$P = \prod_{\alpha=1}^{n} f(x_{\alpha}, \theta_{1}, \theta_{2}, \dots \theta_{h})$$

Let $P_{\Omega}(O_n)$ be the least upper bound of P for the simple hypotheses in Ω , and $P_{\omega}(O_n)$ the least upper bound of P for those in ω . Then

(2)
$$\lambda = \frac{P_{\omega}(O_n)}{P_{\Omega}(O_n)}$$

is defined as the likelihood ratio for testing the composite hypothesis H that O_n is from a population with a distribution characterized by values of the θ_i for some simple hypothesis in the set ω . When we say that H is true, we shall mean that O_n is from some population of the set just described. In most of the cases of any practical importance, P and its first and second derivatives with respect to the θ_i are continuous functions of the θ_i almost everywhere in a certain region of the θ -space for almost all possible samples O_n . We shall only consider the case in which $P_{\Omega}(O_n)$ and $P_{\omega}(O_n)$ can be determined from the first and second order derivatives with respect to the θ 's.

¹ Presented to the American Mathmatical Society, March 26, 1937.

² Phil. Trans. Roy. Soc. London, Ser. A, Vol. 231, p. 295.

A considerable number of currently used statistical functions for making tests of significance can be expressed in terms of λ ratios, and in many cases involving normal distribution theory, the exact sampling distribution of λ is known. However, it is often useful when dealing with large samples to have an approximation to the distribution of λ . We shall consider such an approximation for those cases (which include most of the ones of any practical importance) in which optimum estimates of the θ 's exist. That is, we shall assume the existence of functions $\tilde{\theta}_i(x_1, \dots, x_n)$ (maximum likelihood estimates of the θ_i) such that their distribution is

(3)
$$\frac{|c_{ij}|^{\frac{1}{3}}}{(2\pi)^{h/2}} e^{-\frac{1}{3}\sum_{i,j=1}^{h} c_{ij}z_{i}z_{j}} (1+\phi) dz_{1} \cdots dz_{h}$$

where $z_i = (\tilde{\theta}_i - \theta_i)\sqrt{n}$, $c_{ij} = -E\left(\frac{\partial^2 \log f}{\partial \theta_i \partial \theta_j}\right)$, E denoting mathematical expectation, and ϕ is of order $1/\sqrt{n}$ and $||c_{ij}||$ is positive definite. Denoting (3) by $Jdz_1dz_2\cdots dz_h$, and differentiating J with respect to θ_k , we get

(4)
$$\frac{1}{2} \left(\frac{1}{|c_{ij}|} \frac{\partial |c_{ij}|}{\partial \theta_k} - \sum_{i,j} \frac{\partial c_{ij}}{\partial \theta_k} z_i z_j + \sqrt{n} \sum_i c_{ki} z_j \right) J, \quad k = 1, 2, \dots h$$

Since $c_{ij} = O(1)$ and $|c_{ij}| \neq 0$, it can be seen from (4) that the values of θ_k which maximize J differ from $\tilde{\theta}_k$, $k = 1, 2, \dots, h$, by terms of order $1/\sqrt{n}$. Therefore, the maximum $P_0(O_n)$ of J with respect to the θ_k is $\frac{|c_{ij}|^{\frac{1}{2}}}{(2\pi)^{k/2}}(1 + \phi')$, where $\phi' = O(1/\sqrt{n})$.

To get $P_{\omega}(O_n)$, we let $\theta_i = \theta_{0i}$, $i = m + 1, m + 2, \dots h$, and note that J can be written as

(5)
$$J_0 = \frac{|c_{0ij}|^{\frac{1}{2}}}{(2\pi)^{h/2}} e^{-\frac{1}{2} \sum_{i,j=1}^{\infty} c_{ij}z_i'z_j' - \frac{1}{2}\chi_0^2} (1 + \phi_0')$$

where

(6)
$$\chi_0^2 = \sum_{i,j=m+1}^h c'_{ij} z_i z_j, \qquad \phi'_0 = O(1/\sqrt{n})$$

and $||c_{ij}'||$ is the inverse of the matrix obtained by deleting the first m rows and first m columns from $||c_{ij}||^{-1}$ and $z_i' = z_i - L_i$, L_i being a linear function of $\theta_{0,m+1} \cdots \theta_{0h}$, and c_{0ij} is the value of c_{ij} with $\theta_i = \theta_{0i}$, $i = m+1, m+2, \cdots h$, that is, when H is true. Taking the maximum $P_{\omega}(O_n)$ of expression (5) with respect to θ_1 , θ_2 , \cdots θ_m , we get

(7)
$$P_{\omega} = \frac{|c_{0ij}|^{\frac{1}{2}}}{(2\pi)^{h/2}} e^{-\frac{1}{2}\chi_{0}^{2}} (1 + \phi_{0}^{"}) \qquad \qquad \phi_{0}^{"} = O(1/\sqrt{n})$$

^{*}For conditions under which the $\hat{\theta}$'s exist which are distributed according to (3), see J. L. Doob, Probability and Statistics, Trans. Amer. Math. Soc. Vol. 36, p. 759-775.

Hence, when H is true, we have, from (5) and (7)

(8)
$$\lambda = \frac{P_{\omega}(O_n)}{P_{\Omega}(O_n)} = e^{-\frac{1}{2}\chi_0^2} (1 + O(1/\sqrt{n})).$$

Therefore, except for terms of order $1/\sqrt{n}$,

$$-2\log\lambda=\chi_0^2.$$

Now, the characteristic function of $-2 \log \lambda$ is

$$\phi(t) = E(e^{it(-2\log \lambda)}) = \int \cdots \int J_0 e^{it(\chi_0^2 + O(1/\sqrt{n}))} dz_1 \cdots dz_h$$

$$= \frac{|c_{ij}|^{\frac{1}{2}}}{(2\pi)^{h/2}} \int \cdots \int e^{-\frac{1}{2} \sum_{i,j=1}^{m} c_{ij}z_i'z_j' + \chi_0^2(it-\frac{1}{2})} (1 + O(1/\sqrt{n})) dz_1 \cdots dz_h.$$

It can be shown that on any finite interval $|t| < a, \phi(t)$ approaches uniformly, as $n \to \infty$, the function

(11)
$$(\frac{1}{2})^{\frac{h-m}{2}} (\frac{1}{2} - it)^{-\frac{h-m}{2}}.$$

But (11) is the characteristic function of any quantity distributed like χ^2 with h-m degrees of freedom.

We can summarize in the

Theorem: If a population with a variate x is distributed according to the probability function $f(x, \theta_1, \theta_2 \cdots \theta_h)$, such that optimum estimates $\tilde{\theta}_i$ of the θ_i exist which are distributed in large samples according to (3), then when the hypothesis H is true that $\theta_i = \theta_{0i}$, i = m + 1, m + 2, \cdots h, the distribution of $-2 \log \lambda$, where λ is given by (2) is, except for terms of order $1/\sqrt{n}$, distributed like χ^2 with h - m degrees of freedom.

PRINCETON UNIVERSITY, PRINCETON, N. J.