THE SELECTION OF VARIATES FOR USE IN PREDICTION WITH
SOME COMMENTS ON THE GENERAL PROBLEM OF
NUISANCE PARAMETERS

By Harorp HoTELLING

1. Maximum Correlation as a Test. For predicting or estimating & particular
variate y there is frequently available an embarrassingly large'number of other
variates having some correlation with y. For example, in fitting demand
functions by means of economic time series, the number of series of observations
having some relation to the demand which is sought to be estimated is apt to be
very large, whereas the number of good independent observations on each is
quite small. The proper coefficients in the regression equation must ordinarily
be determined from the observations, and must not exceed in number the ob-
servations on each variate. Furthermore, in order to have a measure of error
that will make it possible to distinguish real effects from those due to chance,
it is necessary that the number of predictors' shall be enough less than the
number of observations on each variate so that the residual chance variance
can be determined with an appropriate degree of accuracy. It is desirable to
select a set of predictors yielding estimates of maximum but determinable ac-
curacy, and at the same time to avoid the fallacies of selection among numerous
results of that one which appears most significant and treating it as if it were
the only one examined.

Considerations other than maximum and determinate accuracy are of prac-
tical importance. The labor of calculation by the method of least squares
becomes a serious obstacle to the use of the theoretically optimum set of vari-
ates when these are very numerous, though the rapid current development of
mechanical and electrical devices suitable for these computations offers a hope
that the limits now set in practice in this way will soon be considerably increased.
Furthermore, predictions or estimates must, as in speculative business or in
military activity, be made from moment to moment, often in a rough manner
by persons incapable of or averse to using complex formulae, and in such activi-
ties frequent revisions of the regression equations must be made to accord with
altered conditions. Also, in temporal predictions, the time of availability of

11 use this term for what are often called the independent variates in a regression
equation, since these ordinarily are not really independent in the probability sense. Simi-
larly Ishall call the ““dependent’’ variate the predictand. By prediction I mean merely the
use of regression cquations to estimate some unknown variate by means of the values of
related variates, without any necessary connotation of temporal order, though the most
interesting applications seem for the most part to be those in which we pass from a knowl-
edge of the past to an estimate of the future.
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272 HAROLD HOTELLING

the values of the predictors is important, since an early prediction (e.g. of the
size of a harvest) is more valuable than a later one of the same accuracy.

If we make the usual assumption’ that the probability. distribution of y is,
for every set of values of the predictors, normal with a fixed variance ¢* and an
expectation that is a linear function of the predictors, we shall wish to minimize
o* subject to appropriate limitations, and this amounts to the same thing as
maximizing the multiple correlation p of y with the predictors, since 1 — p’ is
the ratio of ¢” to the total variance of y, which is the same for all sets of predictors.
The estimates s and R of ¢ and p obtained from the available sample are of
course a different matter. But it is clear that the value of R provides a suitable
criterion of choice under the following conditions: We are called upon to choose
one among two or more sets, each consisting of a fixed number of predictors;
for each predictor we have a known value corresponding to each of the values
%, - -+, Y~ observed for the predictand; and there is no basis for preferring one
of these sets to another either in theory, in observations extraneous to those just
specified, or in cost or time of availability. In particular, if just one predictor is
to be used, that having the highest sample correlation with the predictand should
under these conditions be the one adopted. But in making such a choice a test
of its accuracy is required, to take account of the possibility that the wrong
choice has been made because of chance fluctuations in the sample correlation
coefficients.

There are innumerable economic variates available for prediction of
business conditions, and most of these are highly correlated with each other.
The selection of one business index instead of another for a particu-
lar purpose will involve the question which has exhibited the higher correlation
with the quantity to be predicted, and consequently the question of the definite-
ness with which the difference between the calculated correlations can be
regarded as significant.

Our problem evidently has a bearing on governmental policy in selecting
among the numerous series of data those whose continuation will be most valu-
able. The high cost of assembling these statistics dictates a careful selection of
a limited number of series having little correlation with each others’ current
values, but with correlations as great as possible with those things whose predic-
tion or estimation is most important.

2. The Choice of one Predictor with Two Available. Let us take first the
simplest case, which may be illustrated by a Michigan State College problem of

2 We shall not here go into the question of the applicability of these standard assump-
tions to time series otherwise than to note that some transformations of observations
ordered in time are usually necessary and sufficient to obtain quantities satisfying the
assumptions so closely that deviations from them cannot be detected. Such transforma-
tions include replacing a variate by its logarithm, and eliminating trend and seasonal
variations by least squares. In view of the satisfactory adjusted observations found
empirically by these and similar methods, the usual objcctions to studying time series by
exact methods seem much exaggerated.
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which Dr. W. D. Baten has told me. The ultimate weight of a mature ox is
estimated by means of his length at an early age. The question has been raised,
however, whether a more accurate prediction might not be made by means of
the calf’s girth at his heart. Records were at hand of 13 oxen showing their
lengths and girths as calves and also their weights when mature. A regression
equation involving both length and girth would presumably give greater accuracy
than either variate alone; but it appears that those who make the estimates
desire a simple formula involving only one variate. Suppose, then, that insuch
a sample the correlation of weight with length is r; = .7, that the correlation
of weight with girth is » = .5, and that the correlation of girth with length is
ro = .4. Isthedifference r; — r, = .2 sufficiently great in relation to its sampling
errors to warrant the inference that girth is really a better predictor than
length, or must the question be left in abeyance until more observations can be
accumulated?

A straightforward procedure which would have been used with little question
before the advent of modern exact methods is to calculate the asymptotic ap-
proximation to the standard error of r, — r, by the differential method, assuming
the three variates to have the trivariate normal distribution, and to regard the
difference of the correlations as significant if it exceeds a multiple of this standard
error determined by the tables of the normal distribution. The calculation of
the asymptotic approximation e,,—,, may be carried out in the following manner.
Let p1, p2, and po be the population values of ry, r2, and 7, respectively. Then
if ¢;; denote the population covariance of z; and z;(, j = 0, 14 2), we have

go1

"= Vowon'

with similar formulae for p, and po. Likewise the sample estimates of these
parameters are given by such expressions as

r So1
1= .
V 800811

Taking the logarithm of this last expression, expanding about the population

values, denoting by the operator § the deviation of sample from population values -
of the covariances, and the resultant deviation in r;, and dropping terms of

order higher than the first, we have:

In the same way*

The asymptotic value of the sampling covariance is obtained by multiplying
these two expressions together and taking the expectation. The sampling co-
variance of two estimates of covariance of the usual kind (sum of products



274 HAROLD HOTELLING

divided by number of degrees of freedom) in the same sample, having n degrees
of freedom (which ordinarily means that, there are » + 1 individuals in the
sample and that the means are eliminated), is given exactly by the formula®

E(55:108km) = (0ir0jm + oimoix)/N,

in which the subseripts may have any values, equal or unequal. When this
formula is applied to each of the nine terms of the product and the results are
expressed in terms of the correlations p; , there results the asymptotic expression
for the covariance given by

nE(oridrs) = 3ppe(oi + 2 + ps — 1) + po(1 — pi — pi).
This method provides also one of the derivations of the familiar formula which
may be written
naf‘ = nE(@r)’ = (1 — p}), 'Iw'f2 = (1 - p3)%
The variance of the difference of r; and r; is the sum of their variances minus
twice their covariance. Hence
2 242 2\2 2 2 2 2 2

noy—r, = (1 — p1)° + (1 — p2)" — pip2(p1 + p2 + po — 1) + 2p0(p1 + pz — 1).

We are testing the hypothesis that py = p2. If we put a common value p
for them in the last expression and simplify, we obtain for the standard error
of the difference,

.

Orimry = 1/(1 — ) (2 — 30% + pop?)

n

The second factor in parentheses is always positive because of the inequalities
limiting the correlations among three variates.

This formula contains two unknown parameters, p and py. The classical
procedure would be substitute 1, 7. and r, respectively for p; , p2, and po in the
previous formula, and use the resulting standard error expression as if the ratio
to it of r; — r, were normally distributed. A first modification, more in line with
modern ideas, would be to use some kind of average of r; and 7, as an estimate-
of both p; and ps, since the null hypothesis tested is that these are equal. But
whatever sample estimates we substitute for p and po , the formula remains un-
satisfactory, since no suitable limits of error are available. If instead of the
standard error we were to work out the exact distribution of r; — r. we should
still not be free from the difficulty. This exact distribution clearly involves
both p and p, since its variance does so. Neither can we escape from the
trouble by using some function z = f(r), such as the inverse hyperbolic tangent
suggested by R. A. Fisher, and considering the standard error of z; — 2z, =

3 T have given a derivation of this formula from the characteristic function of the multi-
variate normal distribution [1]. Numerous special cases appear in earlier literature. The
derivation above is a simplification and improvement of several versions, appearing in

-the various early writings of Karl Pearson.
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f(r1) — f(r2); for this standard error will have as the first term in its expansion
in a series of powers of n~' simply the product of the expression above for
Gr—r, DY f'(p); and this must clearly involve both gy and p.

3. Nuisance Parameters. This is not by any means the only statistical prob-
lem in which unknown and undesired parameters enter into the distribution of
the statistic which we should naturally use to test a hypothesis. Indeed, the
early investigation which was perhaps most influential in setting the whole tone
of modern statistical research was that [2] in which W. C. Gosset (“‘Student”)
arrived at the exact distribution of the ratio of a deviation in the mean to the
estimated standard error. The previous practice (which unfortunately survives
today in some quarters, and is even taught to students without explaining its
approximate character) was to neglect the sampling errors in the estimate of
the unknown variance ¢® and to treat the ratio as normally distributed with
unit variance. The rigorous derivation by Fisher [3] of the Student distribution
makes clear the manner in which the nuisance parameter 4 may in this, and in
some other, problems be eradicated from the distribution through integration,
after altering the original statistic (the deviation in the mean) by dividing it
by another statistic. The new statistic, the Student ratio, vanishes whenever
the old statistic, the deviation in the mean, does so, and the same hypothesis
is tested by both. This then is one way to get rid of a nuisance parameter:
when you have a statistic estimating a parameter whose vanishing is in question,
but whose distribution involves another parameter, alter the statistic by multi-
plying or dividing by another statistic in such a way that the new function
vanishes whenever the old one does so; and do this in such a way that the new
dustribution will be independent of the nuisanée parameter. Unhappily, this
method has been applied successfully only in particular cases, and no way to
use it in the problem at hand has been found. .

A second method is that of transformation employed by Fisher in dealing with
such problems as testing the significance of the difference between the correla-
tion coefficients in independent samples between the same two variates. The
need for the transformation in this case is occasioned by the presence in the
distribution of the difference of the sample correlations of the unknown true
value, which is not directly relevant to the comparison. We have seen that
this method also fails to solve our problem.

A third method of dealing with nuisance parameters is the use of fiducial
probability by R. A. Fisher [4] and by Daisy M. Starkey [5] in testing the
significance of the difference between the means of two samples when the
variances may be unequal. Criticisms of these applications of fiducial probability
have been made by M. 8. Bartlett [6] and B. L. Welch [7], and the field of
applicability of such methods is still in need of elucidation.

Some findings of J. Neyman [8] having a bearing on the general nuisance
parameter problem should also be noted.

The only other class of methods for dealing with nuisance parameters of which
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I am aware involves the comparison of the particular sample obtained, not with
the whole population of samples with which a comparison might be made if we
knew the valte of the troublesome parameter, but with a sub-population selected
with reference to the sample in such a way that the distribution, in this sub-
population, of the statistic used does not involve any unknown parameter. An
example is the testing of significance of a regression coefficient. Thus if we
suppose that a sample of values of x and y is drawn from a bivariate normal
population, and calculate the regression coefficient b of y on z in the sample,
the distribution of b involves not only the population value 8, but also the ratio
a of the variances in the population. Since this second parameter is unknown,
and can only be estimated from the sample, it is not possible to use the distribu-
tion of b in the whole population directly to test the significance of b — B.
What we do is to find the place of this difference, not in the whole population
of values in which both z and y are drawn at random, but in a sub-population
for which the values of = are the same as in our sample. We may alternatively
say that we limit the sub-population only to that for which the sum of the
squares of the deviations of the values of x from their mean is the same as in
our sample; the results are the same. The distribution in this sub-population
of the ratio of b — B to its estimated standard error is of the Student form, with
no unknown parameters, and on this basis it is possible to make exact and
satisfactory tests and to set up fiducial limits for b. Another example is that
of contingency tables. The practice now accepted (after a controversy) for
testing independence of two modes of classification, such as classification
of persons according as they have or have not been vaccinated, and again ac-
cording as they live through an epidemic or die, is to compare the observed
contingency table, not with all possible contingency tables of- the same numbers
of rows and columns, but only with the possible contingency tables having
exactly the same marginal totals as the observed table.

4. An Exact Solution. We shall solve the problem of the significance of the
difference of 7, and r. with the understanding that the meaning of significance
is to be interpreted by reference to the sub-population of possible samples for
which the predictors z; and z, have the same set of values as those observed in
the particular sample available. This procedure, besides yielding an exact
distribution without unknown parameters, has the advantage of relaxing the
stringency of the requirement of a trivariate normal distribution. We now make
only the assumptions customary in the method of least squares, that the pre-
dictand y has the univariate normal distribution for each set of values of x; and
7z, independently for the different sets, with a common variance ¢°, and with
the expectation of y for a fixed pair of values of the predictors a linear function
of these predictors. No assumption is involved regarding the distribution of
the predictors, since we regard them as fixed in all the samples with which we
compare our particular sample. The advantages of exactness and of freedom
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from the somewhat special trivariate normal assumption are attained at the
expense of sacrificing the precise applicability of the results to other sets of

values of the predictors.
Since the correlational properties are unchanged by additive and multiplica-

tive constants, we may suppose that
1) Sz =0 = Sz, Sa} =1 = Sx},

where S stands for summation over a sample of N individuals. The notation
may be made more explicit by the adjunction of an additional subscript «, vary-
ing from 1 to N, to denote the individual member of the sample, so‘that instead
of Sz;, for example, we might write Sx,.. The omission of this additional
subscript is convenient and will usually leave no ambiguity when we deal with
sums, but it will be convenient to retain it in connection with individual values.
The correlation ro of x; with 2. in all those samples we shall consider is, by (1)

1o = Sx25 .

Now consider the new quantities

e — 2a ” Z1a + L2a

@ Te= Vel =) TN+
Evidently, from (1) and (2),
(3) Sy’ =0 = qu, erﬁ =1= quz’ Sz'z" = 0.

Since the mean value E(y.) is a linear function of ;. and 2:., ¥ may, upon
subtracting a constant from all these expectations, be written

4) Ya = BiTia + Bo%2a + Aa,

where A, .-+, Ay are normally and independently distributed with variances
all equal to ¢” and expectations zero. The assumption that 2, and z, are equally
correlated with y in the population leads to the conclusion that 8; = 8. ; and
putting 8 = Biv/2(1 + ro), we then have from (4) and (2):

() Ya = Bx: + Ae.
Consequently, by (3)
Sz'y = Sxoy. = BSz'e' + Sx’A = Sz'A;

and this function has a normal distribution with zero mean and variance o°.
If in the sample we work out a regression equation

Y =a+ b2 + bllxll’
the normal equations for determining b’ and b'’ must by (3) take the simple forms

a =4, b’ = Sz'y, b = Sz''y.
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From the general theory of least squares it is known that the sum of squares
of residuals is

= 8@y — Y)* = 8y’ — g8y — (Sz'y)’ — S("y)’,
and that Sv’/e® has the x* distribution with » = N — 3 degrees of freedom,
independently both of Sz’y and of Sz'’y. From these facts it follows that

= Qg n
(6) t =Sz y1/ St

has the Student distribution with n degrees of freedom. Since in accordance
with the foregoing definitions and (1) we have

Sy — 9)°

Sz'y = (ry—1r2) 2(1 ) ’

and since also it is known that

So* = 8y — )"

where
1 r nr
D=|rn 1 nl,
re 1o 1
(6) may be written
™ t=(n—m)g/ ML,

The probability of a greater value of |¢| is given by tables of the Student
distribution with » = N — 3. If this probability is sufficiently small (which
conventionally means less than .05, or sometimes .01) we have a corresponding
degree of confidence that the variate chosen because of a higher correlation in
the sample has actually a higher correlation than the other in the population.

6. The Selection of One Variate from Among Three or More. Suppose that
we are to choose one of the variatesz; , - - - , 2, in order to predict y. (p < N — 1)
We choose the one having highest correlation, and wonder how much confidence
to place in this choice. We shall now determine the distribution of a function
suitable for testing the hypothesis that there i Js no real difference between any
pair of the correlations of z,, - . . , z, with y. ‘ Again we shall assume the values
of these predictors fixed, and look for the place of our particular sample among
all samples having these values, with only y free to vary normally by chance.

Let a;; = S(x; — %:)(x; — %;), and let ¢;; be the cofactor of a;; in the deter-
minant a of these quantities, divided by a. Then

1 ifj=k,

(8) atictk=6i={
b2 o ek

\
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Here Z stands for summation from 1 to p. Let
2 ¢
(9) w; = —— )
Z Z Cij

(10) l; = S(z; — %)y,
(11) = E’w;lg.
From (9) it follows that
(12) Sw; = 1.
From the hypothesis that y is in the population equally correlated with all the
z; it follows that [, - - - , [, have equal expectations, which we may denote by
\; and from (11) and (12) it follows that also E(I) = X\. Obviously
(13) E(l. - )\)(l,‘ - )\) = aza,-,-,

wheére o® is the variance of those values of ¥ corresponding to a fixed set of
values of the z’s. From (11), (13) and (9) we obtain

0_2
EEC.','.

(14) | EQl -2\ =

Since the I; are linear functions of the 3’s, they have the multivariate normal
distribution. From the theory of this distribution and the values (13) of the
covariances it follows that the distribution has the form

(21r)—bpa~ia,~pe—r/2¢2 dly .- dl,,,
where a is the determinant of the a;;’s, and
T = EZc;,-(li - )\)(l, - X)

We may introduce linear functions Iy , - -+, I, of l — A, +- -, l,,,— X such that
2 1?2
T =14+ ... + 17, and such that I} = (I — \)’ZZ¢;;. Now H—————'—'a—'z—tll:‘

has the x* distribution with p — 1 degrees of freedom. The numerator of this
expression equals
T — 1}

.

22l — Nl — N) — (I — N)*22ey;
= EEC;jlil,' - 12226.','
= EEc.-,-(l,- - l)(l, - l)

The penultimate form shows that this function is independent of A; the last,
as a positive definite form in the deviations of the I’s from their weighted mean,
shows that sufficiently large values of the expression will reveal with definiteness
the inequality of the predicting powers of the p variates when this exists.
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It is well known that the regression coefficients of ¥ upon the set of variates
*, .-, &p are completely independent of the sum of squares Sv’ of residuals
from the regression equation. Since the I’s are linear functions of these regres-
sion coefficients, (namely the linear functions appearing in the normal equa-
tions), they also are independent of Sv>. Hence, if we put

8“; - EEc;,-l;lj - 122201','

p—1
2 _ sz
2 = N‘ '__p‘ —_ 17
the ratio F = s}/sj will, in case of equality of the correlations of the various
Z’s with y, have the variance ratio distribution withn; = p — landn, = N —
p — 1 degrees of freedom. When p = 2 this test reduces exactly to (7), as it
should, and F = ¢’

In the numerical application of this method, the regression coefficients b;
of yon z, ..., x, should first be worked out by the inverse matrix method.
The right-hand members of the normal equations are l;, - - - , I, , the coefficients
in these equations are the ai;, and the calculation of s} is simplified with the
help of the identity

8

EEC.’,’Z.’Z,’ = Eb,'l.' .

6. Selection of Additional Variates When Some Have Been Chosen. Sup-
pose now that ¢ predictors have been included definitely in the regression equa-
tion, and that one more is to be selected for inclusion among p additional pre-
dictors that are available. The criterion now is that that one should be chosen
tentatively which has the highest partial correlation with the predictand, elimi-
nating those already definitely chosen; but the confidence to be placed in the
choice is to be'judged by an adaptation of the criterion of the preceding section.
It is only necessary to consider the a;;, l;, ¢;;jand b; (5,5 = 1, -- ., p) as cal-
culated from the new predictors and the deviations of y from the regression
equation on the predictors already adopted. Formulae may easily be derived
for the values of these quantities in terms of those already found and the sums
of products, so as to simplify the calculations. S»* will now stand for the sum
of squares of residuals from the regression equation involving all the p + ¢
predictors. It is to be divided by N — p — ¢ — 1 to obtain sj . The numbers
of degrees of freedom with respect to which F is to be judged are now n; = p — 1
andng, = N — p — ¢ — 1. When p = 2 this test, like that of the preceding
section, reduces to the use of the t-distribution of (7), withn = N — ¢ — 3,
and the correlations standing for partial correlations eliminating the predictors
already definitely chosen.

A special instance in which this procedure is applicable is in economic time
series, in which time, in the form of orthogonal polynomials, must ordinarily be
“partialled out” in order that tests of significance may be sound.
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7. Further Problems. It is natural to ask whether the foregoing work can be
extended to examine the soundness of the selection, on the basis of a greater
multiple correlation, of a particular set of two or more variates, chosen from
among several such sets. The simplest such problem that goes beyond what
has been done above deals with two sets, each of two predictors, having in a
sample multiple correlations R and R’ with the predictand. The question is
whether the difference B — R’ is significant.

Suppose that, in the interests of simplicity and the hope of attaining a solu-
tion satisfactorily free from unknown parameters, we assume as before that the
predictors have a fixed set of values, the same.in all samples. Since multiple
correlations are invariant under linear transformations of predictors, we may
without loss of generality assume that the predictors in each set are mutually
uncorrelated and have sums of squares equal to unity. Indeed, we may go
somewhat further in standardizing the sets of values to which consideration can
be confined without loss of generality, with the help of some ideas introduced
in the paper [1]. In the terminology of that paper, the variates in each set may
be considered canonical with respect to the relationship between the sets. This
means that linear functions x; and z, of the two variates in one set, and linear
functions z; and z; of those in the other set, can be chosen so as to satisfy not
only the conditions

Sz, = Sxy = Szy = Sxz = 0
(15) Sz} = Szi = Sxi* = Sxy” = 1
Szxs = 0 = Sziz7,
but also the further conditions
(16) Stizs = 0 = Szexy .
This means that, for all the purposes in view, the two sets of predictors can be

characterized as to their mutual relationships by the values of the remaining
two sums of products, namely

’ !
L = le:cl f C = ngxz .

In view of the conditions assumed earlier, ¢; and ¢; are what have been called
the canonical correlations between the two sets.

To the sets thus standardized, the predictand ¥ is related in a manner expressed
by the population regression coefficients 8; and B; of y on the first set, and B
and B; on the second. If we take y as having unit variance in the population,
the squared multiple correlation coefficients in the two cases will be

=B+, o =8"+8"
The hypothesis to be tested is that p = p’. If by, ba, by , bs denote the sample

estimates of the regression coefficients, the statistic appropriate for the test
would appear necessarily to be proportional to

w = 3} + b} — b;® — bsP).
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The sample regression coefficients are normally distributed, with population
correlations equal to the sample correlations among the corresponding predictors.
The variance of each is ¢>. Thus their joint distribution may be written down
at once, in 4 rather simple form in view of (15) and (16). From this it is pos-
sible to determine directly the characteristic function M(f) = Ee™ of w. If
we write K(f) = log M(f) we obtain:

2K(t) = Z{(8] — 2¢;8:8; + B + 8] — B} {1 — (1 — )}~
— Zlog {1 — (1 — cHi*}.

Here the summations are with respect to j over the values 1 and 2. If each set
of predictors had had s members, the same result would hold for K(f) except
that the summations with respect to j would then extend from 1 to s.

This is a very disappointing result because it contains so many parameters.
The distribution of w must contain the same parameters as its characteristic
function. All the four parameters 8; , 8; appear in the expression above, though
their effective number is reduced to three by the condition that the two sums
of squares shall be equal which constitutes the hypothesis under test. The
distribution of w thus contains at least three unknown parameters besides o.

The estimate of variance s’ obtained from the residuals from the grand re-
gression equation of ¥ on z,, 72, 1 , and z, is independent of w. Its distribu-
tion is of the usual form and involves a parameter, the population variance,
which is a function of 81, 8, 81, and 8;. We could therefore pass by a single
integration from the distribution of w to that of the statistic w/s’, which vanishes
with w, and which on this account, and on grounds of physical dimensionality,
might be considered appropriate to test the hypothesis that p = p’. The ques-
tion may be raised whether the distribution of this ratio might not be free from
parameters. The answer unfortunately is in the negative, as appears from an
examination of the characteristic function of the ratio. Even in the simplified
case, in which all the ¢; are equal, a troublesome parameter persists in the
distribution.

Thus we meet again the problem of nuisance parameters, and this time no
escape is visible. Perhaps some such artifice as those enumerated in paragraph
3 (for example, some further limitation of the sub-population within which we
should seek the place of our particular sample) is capable of yielding an exact,
or “gstudentized” distribution, but this has not yet been found. The problem
is of considerable interest, not only because of its practical importance, but
because of its suggestiveness in connection with general theory.

Numerous other problems having both practical importance and general
theoretical interest are associated with the selection of predictors. For example,
we have not dealt at all with the problem of the number of predictors that
should be used when maximum accuracy in prediction, or in evaluation of the
regression coefficients, is the sole criterion. A particular case is the determina-
tion of the degree of the regression polynomial which should be fitted to obtain
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maximum accuracy, for example of the number of orthogonal polynomials in
fitting a trend. Such customary criteria as minimizing the estimated variance
of deviations, in which the sum of squares which is the numerator and the
number of degrees of freedom which is the denominator both diminish to zero
as the number of variates is increased, do not rest upon any satisfactory general
theory.

Another related set of problems is concerned with variates more numerous
than the observations on each. It is clear that there is real information in-
herent in data of this kind, but existing theory and methods, including those of
the present paper, are not adequate to utilize it in a thoroughly efficient manner.
A recent paper of P. L. Hsu [9] is unique in not excluding the case in which the
variates outnumber the observations.

8. Summary. A criterion has been obtained for judging the definiteness of
the selection of a particular variate, from among several available for prediction,
on the basis of its having the maximum sample correlation with the predictand.
A variation of this criterion is applied in paragraph 6 to the problem of extending
the list of variates to be used in a regression formula.

Some of the problems of ‘“nuisance parameters’”’ which affect general theory
are illustrated in this problem. Some outstanding unsolved problems related
to these questions are discussed in paragraph 7,
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