ON TRANSFORMATIONS USED IN THE ANALYSIS OF VARIANCE
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1. Introduction. Transformations of variates to render their distributions
more tractable in various ways have long been used in statistics [12, chapter
XVI]. The present extensive use of the analysis of variance, particularly as
applied to data derived from designs such as randomized blocks and Latin
squares, has placed new emphasis on the usefulness of such transformations.
In the more usual significance tests associated with the analysis of variance, it
is assumed a priors that the plot yields are statistically independent normally
distributed variates which all have the same variance, but which have possibly
different means. The hypotheses to be tested are then concerned with relations
among these means. But in practice, it sometimes seems appropriate to specify
for each variate a distribution in which the variance depends functionally upon
the mean; moreover, in such cases, the specification is generally not normal.
For example, when the data is in the form of a series of counts or percentages, a
Poisson exponential or binomial specification may seem in order, and the vari-
ance of either of these distributions is functionally related to the mean of the
distribution. Before applying the usual normal theory to such data, it is
ciearly desirable to transform each variate so that normality and a stable vari-
ance are achieved as nearly as possible.

Various transformations have been devised to do this, and a number of articles
explaining the nature and use of these transformations have recently been
published.! However, the available literature on the subject appears to be
mainly descriptive and non-mathematical. The object of this paper is to pro-
vide a general mathematical theory (sections 2 and 3) for certain types of trans-
formations now in use. In the framework of this theory we shall discuss in
particular the square root and inverse sine transformations (section 4), and also
several logarithmic transformations (section 4 and section 5).

2. General theory. As it arises in the analysis of variance, the problem of
stabilizing a variance functionally related to a mean may be stated as follows:
Suppose X is a variate whose mean u = E(X) is a real variable with a range S of
possible values, and whose standard deviation ¢ = ox = ¢(k) is a function of u
not identically constant. Required, to find a function T = f(X) such that
both f(X) and o7 = E{[T — E(T)]’} are functionally independent of " for u
on S. | By “functionally independent,” we mean that % = 0, and %‘;—T =0

for u on S.)

! See references [1], (2], (3], (4], [5], [6], [13], [16].
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The following line of argument is adopted in certain of the references men-
tioned above ([1], [2], [3], [4]): From the relation dT = f'(X)dX, we deduce as
an approximation by some sort of summation process that or = f'(u)a(u).
Setting this expression equal to a constant, say ¢, we obtain f'(u) = c¢/o(u),
80 f(x) is an indefinite intégral of ¢/a(z). The roughness of the approximation
used here is only too apparent.” For example, if X is normally distributed, then
the variance of T = X’ as given by the approximation is 4¢°4’, while actually
it is 4%’ + 20°.

Indeed, it is easily seen that in important special cases the problem of sta-
bilization as above stated could have no solution other than the trivial one in
which T is identically constant on the set of points of increase of the d.f.? of X,
For instance, if X has a Poisson exponential distribution, then the identity
E[{f(X) — E[fX)1}’] = ¢, or E{[f(X)I'} =c + {E[f(X)]}’, becomes

SubrSE = o+ [ZumGE],  w>o

Expanding both sides in powers of u, we need only equate the coefficients of the
zero-th power of u on each side to find that [f(0)]* = ¢ + [f(0)]}, which implies
that ¢ = 0 and hence that f(0) = f(1) = f(2) = --- . A similar demonstration
can be given for the case in which X has a binomial distribution with a fixed
number of values of the variate.

As to the problem of choosing T = f(X) so that its distribution is exactly
normal, we can observe immediately that a single-valued function f(X) will
never transform a variate X with a discrete distribution into a variate with a
continuous one. On the other hand, any variate X with a continuous d.f.
F () can be transformed into a normally distributed variate T by the transforma-
tion T = f(X) defined by the equation

T o1 .
F(X) = L Tt

However, aside from the practical difficulty of solving this equation for T,the
resulting function T = f(X) will not generally be functionally independent of
the mean of X. '

These considerations lead us to seek asymptotic solutions to the problems of
normalization and stabilization. Such solutions are considered in the next
section.

3. Asymptotic theorems. In the remainder of this paper, we shall suppose
that the distribution of X depends on a parameter n which is to tend somehow to

2 Tippett [14] says: ‘“This derivation is not mathematically sound, and the result is only
justified if on application it is found to be satisfactory.”

31i.e., distribution function. For any given one-dimensional variate X we shall denote
the probability or relative frequency assigned to a set R by P(R). The d.f. of the variate
then is the point function F(z) = P(X < z). This function is sometimes called the cumula-
tive frequency function of X. .
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infinity. The mean u = pu, of X, with range S, , will in general depend upon n
(although by this we do not mean to exclude the case in which u, is constant for
all values of n), and perhaps will depend also on some further independent
parameters, which we shall denote collectively by 6, with range =. We shall
seek a variate T = f(X), in which f(X) is functionally independent of x and of
the parameters 6 for x on S, , 6 on Z, and such that the dlstnbutlon of f(X )
f(u.) tends as » — « to a normal dlstrlbutlon while lim,_..o7 = ¢, where ¢ is
an absolute constant. It is implied here that in case the additional parameters
6 are present, the function f(X) may depend non-trivially on n; but if n is the
only parameter on which the distribution of X depends, then f(X) must be
functionally independent of n.

A solution to the problem just proposed is given in certain cases by Theorems
3.1 and 3.2 below, which are suggested by the heuristic reasoning of the second
paragraph of section 2.

THEOREM 3.1. Let ¢.(z) be a non-negative function of x and n, defined almost
everywhere and integrable' with respect to x over any finite interval of the z-axis for
eachn > 0. Let

T = 1X) = [ i)

where a is an arbitrary constant. Let F.(y) be the d.f. of the variate ¥ =
(X — un)¥n(ua). Suppose further that a continuous d.f. F(y) exists such that
lim,oF.(y) = F(y) for all values of y. Then either one of the following two con-
ditions is a sufficient condition for the d.f. H,(w) of the variate W = f(X) — f(u,)
to tend uniformly to F(w), — © < w < o

(a) To each w for which 0 < F(w) < 1, there corresponds for all n sufficiently
large at least one root T = z, to the equation

3.1) fz ¥a(u) du = w,

and this root x, has the property that
3.2) limaow(@n — pa)¥a(ua) = w.

(b) For all n sufficiently large, ¥n(us) > 0, and limu—ug.(w) = 1 uniformly in
any closed finite subinterval of the open interval defined by 0 < F(w) < 1, where

¥n (w[% (I‘n)] ! + I-‘n)
(3.3) In (W) '/’n (I‘n)

To prove this theorem we shall first suppose that condition (a) is satisfied.
Let w; and w; be the end points of the open interval (possibly infinite) defined by
0 < F(w) < 1. If w lies in this interval, and if » is large enough for the root

X
z, in (3.1) to exist, then from the monotonic character of f ¥ (x) dr we can

+ “Integrable’” here means absolutely integrable in the sense of Lebesgue.
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infer that
Hatw) = PUCD = flu) S 0l = P[ [ vale) de 5 0]

(3.4) = P(X =< x,.) = P[Y = (xn - Fn)wn(l‘n)]
= n[(xn - Iin)'/’n(#ﬂ)]’

Since F(w) is continuous, lim,_.F.(w) = F(w) uniformly on any finite or in-
finite interval of values of w, as is well known.” Therefore lim,_,oF,(w,) =
F(w) if im,_,w, = w. Thus from 3.2) and (3.4), we find that im,_,.H,(w) =
F(w) forw; < w < ws, .

If w < w,and wy < w”’ < wy,then 0 = H,(w') < H,(w"') = Fw"”) +
[H.(w”) — F(w”)]. We can make the right hand member of this relation less
than any given positive number e by first choosing w’’ so that F(w'’) < e (it
will be remembered that F(w) is a continuous d.f., and F(w;) = 0) and then
choosing 7 so large that the quantity in square brackets is also less than %e in
absolute value. Thus lim,_ .H.(w') = 0. Similarly if w’ = w,, we can show
that lim,_H,.(w') = 1. Hence lim,_ . H,(w) = F(w) for all w, and it follows
that the limit is uniform on any finite or infinite interval of values of w.

We shall now show that condition (a) in the theorem is a consequence of con-
dition (b). The result follows at once from the following simple lemma.:

LemMMA. If vy.(w) is a non-negative function integrable over any finite interval
of values of w; and if lim,_,oy.(w) = 1 uniformly in any finite closed subinterval of
an interval wy < w < wy , then for every value of w in this interval there exists for all

v
n sufficiently large a solution y = y. of the equation f n(2) dz = w, and the solu-
o

tion y, has the property that lim, .y, = w.
For it is clear that if w satisfies the inequality vy < w < ws, andif 7 > 0
be chosen so that w; < w — 9 < w + 5 < we, then for all n sufficiently large,

w—n w+n
f () dz S w = f 7.(2) dz.
) o
Thus for each n sufficiently large, there exists a root y. of the equation
v
f ¥(2) dz = w, and furthermore, this root satisfies the inequality w — n <
]

Y. < w + 7n. Since 7 is arbitrarily small; the proof of the lemma is complete.
To apply the lemma, we make the change of variables z = (4 — un)¥n(us)
in the integral in (3.1), which reduces it to the form

(3.5) _/o.” 4s(2) dz, Y = ( — pa)¥nln),

and the conclusion that (a) is implied by (b) now follows at once.

8 See [7], Theorem 11, pp. 29-30; also [8].
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We add the remark that the uniformity of the limit of ¢.(z) in condition (b)
may be replaced by the condition that for each closed finite sub-interval there
exists a function ¢(w) which dominates ¢,(w) for all n sufficiently large.

Our second theorem, which is stated in the terminology and notation of
Theorem 3.1, is concerned with the limit of the variance of T = f(X). From
the mere fact that the distribution of W tends to a limiting form, it by no means
follows that the mean and variance of the distribution of W approach those of
the limiting form, as may be shown by trivial examples. Thus additional
hypotheses on ¢,(x) and on the behavior of the distribution of ¥ become nec-
essary.

Tueorem 3.2. Let T (or (X)), Y, F.(y) and F(y) be defined as in Theorem
3.1. Let the mean and variance of the distribution defined by F(y) exist and have
respective values 0 and ¢. Then the following three conditions, taken together, are
sufficient that

(3.6) lim,o[E(T) — f(un)] = 0,
3.7 iMooy = ¢

() E(Y?) exists for n > 0, and lim,.E(Y?) = ¢
(i1) Condition (b) of Theorem 3.1 holds.
(iii) f(Yn(ua)]™ + sn) — f(ua) = O | Y | uniformly innas | Y | — o.
As a preliminary step in the proof, we observe that (i) and the relations
+o0
lim,_F.(y) = F@), & = f y* dF (y), imply that the improper integral
y* dF .(y) converges uniformly in n for n > 0. As the integrand is positive,

o0

the following result is equivalent to the uniform convergence of the integral:
For every € > 0, there exist numbers Ay and Az, Ay < A., such that for all n suffi-

ciently large,
A 00
([ +f >y2 dF.(y) < e
) A
To prove this, we write’

([: + f:) y' dF.(y) = [E(Y") — ]

+ [ [[rarw - [ "y an(y)J + [02 -/ y dF(y)]-

1

We first choose .4; and A4, so that the last bracket here is less than 1e in absolute
value. By condition (i), the first bracket approaches zero as n tends to infinity,
and the Helly-Bray theorem [10, p. 15] states that the second bracket also ap-
proaches zero as n tends to infinity, so for all n sufficiently large, the sum of the
first two brackets is in absolute value less than je.

It is important to notice that we can always choose A; and 4, in the above
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demonstration so that A, > w;, A, < w., where w; and w, are as usual the
endpoints of the interval defined by 0 < F(w) < 1.

To continue with the proof of the theorem, we remark that by a change of
variables similar to the one used to derive (3.5), the function W = f(X) — f(u.)
may be expressed as a function of Y in the following manner:

W = j;n l//n(x) dx = j‘; qn(w) dw = Qn(Y)’

where q,(w) is given by (3.3). In terms of W, (3.6) and (3.7) become, respec-
tively,

(3.8) lim E(W) = 0,
(3.9) lim {E(W?) — [EW)I'} = ¢,

and these are the equations which we now establish. )

Conditions (ii) and (iii) obviously imply that lim,.@.(y¥) = y uniformly in
any finite closed subinterval of the interval w; < y < w., and that a constant M
exists such that | Q.(y)| £ M |y|for all n. If E(Y®) exists, so will E(Y).
Now

+o0
EW) = [ Quw) dFa)

+00

+o0
- [ ewarw - [ var.w

- ( [T+] ) Q1) — i aFuw) + | [@x(y) — 4] dFa(3),

where w; < A; < A < wy. Therefore

mom i< ([ + Do+ il anw + [ 106 - vl anw,

+0
From the uniform convergence of [ y*dF.(y), proved above, we can conclude

that the pair of improper integrals in this inequality can be made less than an
arbitrary ie > 0 by proper choice of A; and A». The third integral approaches
zero, by the general Helly-Bray Theorem [10, p. 16], and so becomes less than
1e for all n sufficiently large. Thus we have established (3.8). To show that
(3.9) is true, we have merely to prove that lim,..E(W*) = ¢*. Since E(Y") =

~+o0
[ y*dF.(y), we may write

B = ¢ = [ (1T — ¥} dFaly) + [E(F) — ¢l
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The integral may be shown to approach zero by the argument used in the case of
E(W), and the required result then follows from condition (i) of the theorem.
The proof is now complete.
The sufficient conditions in Theorem 3.2 can be modified in various more or
less obvious ways. The existence of the limiting d.f. F(y) was essentially used
+00
in the proof only to secure the uniform convergence of y’dF,.(y). Condition

(ii) can again be modified along the lines suggested at the end of the proof of
Theorem 3.1. Condition (iii) was used only to secure the uniform convergence

+o0
of the integral _Lo [Q-(w)I'dF .(y).

For later reference, we shall supplement Theorems 3.1 and 3.2 with the follow-
ing simple result, which is practically self-evident.

TuEOREM 3.3. Let the distribution of a variate Y depend upon a parameter n,
let F,(y) be the d.f. of Y, and let F(y) be a continuous d.f. with the property that
lim—oFa(y) = F(y). Let a, be a function of n such that lim,_..a, = a = 0.
Then the d.f. of the variate Z = a,Y tends asn —  to the d.f. F(z/a) if a > 0,
and to the d.f. 1 — F(z/a) if a < 0. If the variance of Y exists and tends to ¢
asn — o, then the variance of a,Y tends to a’c’ asn — .

If F(y) is the d.f. of a reduced normal distribution, i.e.,

v
F(y) = \/—1—% L-e‘“’ dt,

then F(z/a) is also the d.f. of a normal distribution with mean zero and variance
a@’. More generally, any affine transformation of a normal variate yields
another normal variate.

4. Applications. The theorems of the preceding section have the effect of
referring the properties of the distribution of the transformation 7' = f(X) of
Theorem 3.1 back to those of the distribution of a related variate ¥. In the
applications given in the present section, we shall let ¥.(u,.) be proportional to
the reciprocal of the standard deviation of X. The theorems of section 3 state
in this case that if the reduced, or standardized, distribution of X approaches a
limiting form, then under certain circumstances, the distribution of f(X) —
f(u,) will approach a similar limiting form, and o7 will approach a quantity
independent at least of n. In the applications considered here, the reduced dis-
tribution of X will always approach the reduced normal distribution.

(I) The square root transformation for a variate with a Poisson exponential
distribution. Let X have a Poisson exponential distribution with parameter n.
If a is an arbitrary constant, and if A

_ VXt a X2 —a
4.1) T=J5X)= { 0 , X< -a
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then the distribution of T — \/n + a tends asn — o to a normal distribution
which has mean zero and variance &, and lim,_ooy = 1. For p, = n, ox = \/n,
and it is well known® that the distribution of the reduced variate (X — n)/v/n
tends to the reduced normal distribution as » — . By Theorem 3.3, the dis-
tribution of the variate

y=_X_:L=1.|/_ﬁ__.Zf_:_n
vVn+a 2 n+a +/n’

will tend to normality as n — o, and the variance of ¥ will tend to the value 1,
which is also the variance of the limiting distribution. Setting

J‘*—-—————-______, r> —a
‘l’n(x) = ]2\/:4: + [+
l o , Tz = —a,

p.¢
we obtain from T’ = f(X) = [ ¥a(2)dz the formula given in (4.1). To prove

the statement in italics, we must show that conditions (ii) and (iii) of Theorem
3.2 are satisfied. We have, assuming n > —a,

_*
(1 + —3“’—) , w> -InFa
ga(w) =

\/n + a
0 , ws —3vVn+ a
so clearly (ii) is satisfied. Also,
W = f(Y[¥n(ua)]™ + #a) — f(pn)
VeYvVn+a+n+a— Vn+a Y> —3Vn + a
={_\/n+a, Y= -3vVnta

from which it follows at once that | W | < 2| Y |forall ¥, and so (iii) is satisfied.

The degree of approximation involved in the equation lim,_,.c7 = } has been
investigated numerically by Bartlett [1] for values of #» from .5 to 15.0 in the
casesa = 0 and « = 3. He found that the variance of v/X + (%) is consider-
ably closer to the limit (}) for 1 < n <'10 than is the variance of v/X. At
n = 15, the variance of /X is .256, and that of /X + (3) is .248.

The question of the degree of convergence to normality and of the possibility
of selecting an optimum value of « remain open. By expanding the function
VX F a in a Taylor series about X = n with remainder in the form due to
Schlémilch, it is possible to derive as accurate an estimate of | o7 — (3)| as may

¢ See (e.g.) [9].
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be desired. A rough result easily obtainable by this method is that | o7 — (})| <
3/(4n),n > 0.

(II) The square root transformation for a variate with a I' distribution.
Let X have a distribution whose density function is of the following type:

(4.2) @) ° =0
. o(z) =
K" e™, z=0,k>0.
If a is an arbitrary constant, and if
\/X + o X2z —a
(4.3) T =f(X) =
0 , X < —q

then the distribution of T'— \/(n/2h) + a tends asn — » to a normal distribu-
tion which has mean zero and variance 1/4h, and limn—oor = 1/(4k). For p, =
n/2h), ox = V/n/(hA/2) = A/ un/h. The distribution of the reduced variate
tends to normality as n — ,” so that of the variate

Y = T — Wn =l n .x_ﬂ-n
T 2V + a 2“’ nh + 2k2a  \pa/k

tends to normality also with limiting variance 1/(4h). Setting

_1_______ T> —a
Yalz) = {2V + o’
l 0 ’ T = —a

X
we obtain T in (4.3) from the relation T' = [ ¥a(x) dx. The work of verifying

that the conditions of Theorem 3.2 are satisfied is the same as in the case of the
Poisson exponential distribution treated above, and will not be repeated.

For example, if s* denotes the variance of a random sample of n + 1 observa-
tions drawn from a normal parent distribution with variance ¢°, then it is well
known that. (n + 1)s* is distributed according to (4.2) with k = 1/(2¢*). We
thus can deduce the further facts, also well known, that the distribution of
v/n 4+ 1s — o/n tends to normality, and that the variance of svVn + 1
approaches the limiting value ¢°. If n is an integer and h = %, the distribution
defined by (4.2) is called a x* distribution with n degrees of freedom, and the
variate is often denoted by x*. Our conclusion in this case is that the distribu-
tion of 4/2x2 — v/2n tends to a normal one with zero mean and unit variance.
From this result and the fact that /2 n— 1 — v/2n = O(n™?), it follows im-
mediately that /2y — v/2n — 1. has the same limiting distribution as
V2% — A/2n. Thisresult,’ due to Fisher, is familiar to all users of his table of
the probability levels of x*.

7 See (e.g.) [9].
8 For a discussion of the degree of convergence involved here, see [9].
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(ITITI) The inverse sine transformation for a binomial variate. Let X have
a binomial relative frequency distribution with parameter p and the n values 0, 1/n,

2/n, -+ ,n/n. If ais an arbitrary constant, and if
VMM“VX+9 —2<x=<1-2
n n n
(44) T =fX) =
0, X< -2, X>1-2,
\ n n

where T is measured in radians, then the distribution of T — \/nsin™ \/p + (a/n)
tends as n — « to a normal distribution which has mean zero and variance %, and
limyoo> = L. For here, u. = p, and o5 = pg/n, where g =1 — p; and the
familiar DeMoivre-Laplace theorem states that the distribution of the reduced
variate v/n(X — p)/A/pg will tend to normality as n — «. Hence by
Theorem 3.3 the distribution of B

V(X — p)

"l e

will tend to normality with a limiting variance of 1, which is also the variance of
the limiting distribution. Setting

Vn , —$<x<1—$

a a

wiw =24/ (= +5)(1 -2 =)
0 e -2,z221-2,
n n

we obtain (4.4) from the integral
X
7= [ @)ds

In proving the conditions (ii) and (iii) of Theorem 3.2 are satisfied, we shall
assume for simplicity that « = 0. We find that

qa—7 4w“’>“ 1/‘/71,_1) l/‘/'r_z,‘q
—= 27 —4/ Ecw<y34/XA
<1+2w\/npq p , B 7 w 5 »
ga(w) = 1 —
0 ws —-4/"P wzl ™
2 P

so obviously (ii) is satisfied. From the Law of the Mean in the form due to
Schlémilch, we have

W = \/ﬁsin_’1/p+2@Y— Vnsin™ \/p
1-8

=2Y ,
" [(1 Foy/ ) (- Y)]
np nq
_1, fup 1 /ng
0<6<1, §V;<Y<2,‘/p.
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The denominator of the coefficient of 2Y here is a quadratic function of ¥ with a
negative coefficient of ¥*, and so must assume its least value in the ¥ range
indicated in (4.6) at one end or the other of the range. From this it is readily
seen that the coeflicient of 27 is actually always less than unity. For values of
Y outside the range, the second member of (4.6) indicates that W = 0(1/7) =
O(Y). Hence (iii) is satisfied, and the proof of the statement in italics is com-
plete for the case « = 0. The more general case presents no important new
difficulties.

In practice, it is often convenient to express X as a percentage. This merely
has the effect of multiplying ¥ in (4.5) by 100. We find in this case that \/n
sin’'v/X + 100a/n — +/n sin'A/100p + 100a/n has a distribution ap-
proaching normality, and ¢r — 50 instead of 1.

Bartlett [1] gives numerical results in the cases » = 10, @ = 0 and » = 10,
a = %, which indicate that perhaps the choice @« = % is more suitable if the
estimated p is near 0 or 1, but the choice @ = 0 is preferable if the estimated p
lies between .3 and .7. However, there seems to be no good reason to believe
that these conclusions should be valid for other values of n. The question of an
optimum «, and of the degree of convergence to normality remain open. We
note in passing that the latter problem could doubtless be profitably studied by
combining the methods of proof of Theorem 3.1 with the results of Uspensky
[15, pp. 129-130] on the degree of approximation of the reduced binomial d.f.
to the normal d.f.

IV. Other transformations of a binomial variate. Let X have a binomial
relative frequency distribution with the parameter p and the n values0,1/n,2/n, - - - ,
n/n.

(a) If

Vasinh™? VX = vVnlog(WX +V1IF+X), X0
0 , X<o,

then the distribution of T — A/n sinh™ A/p tends as n — « to a normal distribu-
tion which has mean zero and variance q/(4 + 4p), and lim,..o7 = q/(4 + 4p).

(b) If

T=j5X) =

Vnlog X, X >0,
o , X =0,

T=f(X)={

then the distribution of T — ~/n log p tends as n — « to a normal distribution
which has mean zero and variance q/p, and lim,—..o7 = ¢/p.

(c) If

1 - X
T = f(X) = Q\/nlog——:_——)—(, 0<X<1,

0 ’ X=0 X221,

? All logarithms in this paper are to the base e.
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then the distribution of T — —é V/n log l_—p—p tends as n — o to a normal distribu-

tion which has mean zero and variance 1/(4pq), and lim,_ .05 = 1/ (4pq).
Since the limiting variance of each of these transformations involves the
parameter p, they are not to be regarded as solutions of the problem of asymp-
totic variance stabilization proposed at the beginning of section 3, although it is
perhaps of some interest that their distributions become asymptotically normal.
In case (a), f'(z) = v/n/(24/2* ¥ z), > 0. Setting y.(z) = S @),z >0,
and ¥.(z) = 0, z < 0, we obtain

VX —-p) Vi

Ve  2V1i+p’
and this variate obviously has the limiting distribution ascribed to T —
V/n sinh™ 4/p in the statement in italics. The truth of that statement now
follows by an argument similar to that used in the case of the inverse sine transfor-
mation.

If p is allowed to vary with n in such a way that lim,..np = o, it is known
that the reduced distribution of X will still tend to normality.” If we suppose
that lim,_.p = 0, but lim,..np = «, we find from Theorem 3.3 that the
limiting distribution of ¥ in (4.7) will be normal with mean zero and variance
1, and that o} — 1. It is easily verified that the conditions (ii) and (iii) of
Theorem 3.2 are still satisfied, so we find that the limiting distribution of [v/n
sinh™ v/X — +/n sinh™ /p] is normal, with mean zero and variance %, and
oy — 1. ‘However, since n is now the only independent parameter, we cannot
here regard the transformation T =+/7n sinh™ /X as a solution of the problem
of variance stabilization, because the variate T' depends explicitly upon n.

If in case (b) we proceed as in case (a), we obtain as the analogue of (4.7)
the formula

(4.7) Y = (X — plu(p) =

Vr(X —p) /g

V'pg P’
and this variate has the limiting distribution ascribed to ' — /% log X in the
statement in italics. It now turns out that although condition (ii) of Theorem
3.2 is satisfied, condition (iii) is not satisficd. We are then faced with the
problem of proving directly that the improper integral

[j: [Vnlog (p + py/v/n) — /n log p* dFa(y)

Y = (X — pia(p) =

converges uniformly." The. trouble occurs only at the lower limit of integra-
tion, and may be resolved by first integrating by parts, then dividing the range

10 See (e.g.) [9].
11 See the remarks following the proof of Theorem 3.2.
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(—4/n, A;) into two ranges (—+/n, —log n) and (—log n, A,), and then
applying Uspensky’s results [15, pp. 129-130], on the degree of approximation
involved in the DeMoivre-Laplace theorem.

Case (c) may be handled in a similar manner.

6. The logarithmic transformation. We shall suppose throughout this section
that X is a variate whose mean u, and standard deviation ¢ in the relation
¢ = ka.(un + @), where a is an arbitrary constant, k, > 0, and lim,_.k. exists
and is finite. If k., is constant for all n, say k., = k > 0, and if we use the
heuristic argument of the second paragraph of section 2 to attempt to find a
transformation which will stabilize the variance of X at k°, we arrive at the
function T = log (X + a), X > —a. It is the purpose of this section to study
the asymptotic properties of this transformation.

The theory of such a transformation differs in certain important respects
from that of the transformations considered in sections 3 and 4. For one thing,
our starting point in the study of each transformation considered in section 4 was
the fact that although P(X < 0) = 0, nevertheless the reduced distribution of
X tended to normality asn — . But in the present case, if X is a variate such
that P(X = —a) = 0, then the corresponding reduced variate ¥ = (X — u,)/
[kn(pn + )] has a d.f. F.(y) such that F,(—1/k,) = 0. Thus if limu.k, =
k > 0, the limiting distribution of Y, if it exists, must have a d.f. F(y) such that
F(—1/k — 0) = 0. Therefore the limiting distribution of ¥ can never be nor-
mal if £ > 0.

Moreover (in contrast to the situation in Theorem 3.1) if the reduced variate
Y does have a limiting distribution, the variate

1

k—n—mdu, X>—a

1 1 *
(5.1) W=Elog(X+a)—E10g(un+a) =./;n

may have a limiting distribution which is not the same as that of ¥. More
specifically, we have the following result:

TaEOREM 5.1. Let P(X £ —a) = 0, let lim,.ok, = k = 0, let F.(y) be the
d.f. of the reduced variate

X—“n

Y = kn(lfﬂ + a) ’

and let H,(w) be the d.f. of the variate W given by (5.1). If a continuous d.f. F(y)
exists such that lim,_..F.(y) = F(y) for all y, then

F[e’m_—.}], E>0
lim H,(w) = k

n—s0 F(w) , k= 0.
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The proof is simpler than the statement; essentially we have only to notice that

kn

kaw __
=F,,|:e A l], —o < w< o,

and apply the reasoning used above in connection with (3.4).

From the study of the distribution of T, we now turn for a moment to the
question of the limit if o5 . Here the situation is more consistent with the
results of section 3.

TaEOREM 5.2. Under the hypotheses of Theorem 5.1 and under the additional con-

0 0
ditions that the improper integral [ w dH ,(w) (or [ M k22 llog (1 + kay)l dF’,.(y))
) 1/kn

kaw __
Ho(w) = P[—kl <vs? 1]

~+o0
converges uniformly in n and that [ ' dF(y) = 1 = E(Y?), the following relations
hold:

1
(5.2) lim E(W) = {f L,,Jc log (1 + ky) dF (y), k>0,
n-—+00 l O , k —_ 0’
o 1 \
(5.4) lim E(W?) = L,kp llog (1 + ky)I* dF(y), k>0
n—+c0 1 , k _ 0

The variance o7 of the variate T = log (X + a) is related to these mean values
by the equation o7 = k% {E(W?®) — [E(W)F}. Thus if F(y) is independent of
any unknown parameters 6, and if % is positive and is presumed to have the same
value for all variates in any given problem, then the transformation 7' =
log(X + a) is seen to yield an asymptotic stabilization of the variance under
the conditions of Theorem 5.2. If k¥ = 0, we find from either Theorem 5.2 or
the proof of Theorem 5.2 that T = log(X 4+ a) converges stochastically to
log(u. + ).

The proof of Theorem 5.2 is similar to that of Theorem 3.2 and will be omitted.

Theorem 5.1 raises the following question: Just what limiting distribution
must Y have if £ > 0, in order that the distribution of W tend to normality?
To answer this, we shall note the following simple non-asymptotic result:

THEOREM 5.3. A necessary and sufficient condition that X have a continuous
distribution with density function

1 1
Verlog(#® + 1) 7t e
(6.4) o(x) = < [—(log (@ + o) \/my]
X exp 7 Tog (;:2-:_01‘) , T> —a
0 , TE —a
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Jor which ox = k(u + a), 1s that the variate T = log(X + «) have a normal dis-
tribution with mean log(u + a)—log \/k* + 1 and variance log(k* + 1).

The proof may be given by a routine change of variables.”” It is to be noticed
that the heuristic argument of the second paragraph of section 2 would lead to
the incorrect result that the variance of T was &’ instead of log(k* + 1). In
case k = 1, the mean and variance of T are respectively log(u + a) — .347 and
.693. If the transformation 7 = logi(X + a) is used, the new mean is
logio(u + @) — logi v/k? + 1 and the new variance is .189 log(k* + 1, which
for values of k near zero has the approximate value .189%."*

If X is distributed according to (5.4), the density function F’(y) of the corre-
sponding reduced variate ¥ = (X — u)/[k(x + a)]is

4 k 1
Vorlog (8 + 1) 1 + ky

(55) F'(y) = - X exp [—{log [(; 11;’?;‘2 _,_' k;)+ 1”2], y> —%

1
{ 0 y = %
The d.f. of the variate W = k'[log(X + a) — log(u + )] is F[(** — 1)/k],
and, of course, the distribution of W is normal with mean —k™" log\/k* + 1,
and variance k> log(k* + 1). These are the respective values of the integrals
in (5.2) and (5.3).

If now the distribution of X depends on a parameter z in such a way that as
n — o, the distribution of the corresponding reduced variate ¥ = (X — u.)/
[kn(un + a)] tends to the distribution given by (5.5), it follows from the above
remarks and from Theorem 5.1 that the variate W given by (5.1) has a normal
limiting distribution. Furthermore, under the uniform convergence condition
of Theorem 5.2, it follows that ¢7 tends to the value log(k* + 1), where T =
log(X + a).

These facts provide a sound mathematical basis for the use of the logarithmic
transformation, which has had a long history of empirical success in problems of
normalization [12, chapter XVI] and stabilization ([6], [16]). When it appears
from a reasonably large number of observations on a variate (which is essentially
bounded from below) that the standard deviation of the variate is proportional
to the mean, then a possible specification for the variate is a distribution of the
form (5.4); or, at least for large values of u, it may be assumed that the distribu-
tion of the reduced variate is given by (5.5). Then the variate T = log(X + a),
where — a is any number less than the lower bound of X, will be exactly or ap-
proximately normally distributed with a variance independent of the value of u.

Since (5.4) is only one of an infinity of various different types of distribution

12 Finney [11) has considered the problem of efficiently estimating the variance of the X
of Theorem 5.3 in the case « = 0. (The actual density function (5.4) appears nowhere in

his paper.)
"13 Given (without explanation) by Cochran [6, p. 165].
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in which the mean and standard deviation are proportional, the user of a loga-
rithmic transformation in the analysis of variance should always apply tests for
departure from normality to the observed distribution of T values. From the
point of view of specification, the situation here would seem to be less reassuring
than in the cases considered in section 4. While it is true that the Poisson
exponential distribution is only one of many types of distribution in which the
variance and mean are equal, nevertheless the specification of a Poisson distribu-
tion can generally be preceded by a fairly strong chain of a prior: inductive
reasoning.. This would not seem to be the case in the specification of (5.4).
Theorems 5.1 and 5.2 furnish some grounds for a suspicion that the logarithmic
transformation may possibly be more successful in stabilizing the variance than
in normi),lizing the data. The burden of proof, however, lies with the experi-
menter.'
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