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I. INTRODUCTION

In problems of statistical estimation we often express the joint frequency
distribution of the sample observations ;, @, - - - &, in the form

1 f(xl,~~-,xn;a,ﬁ,7,~--)1'[dx,~, E=1,---,n)

where the functional form, f, is assumed known, and «, 8, v, - - - are certain popu-
lation parameters whose values may or may not be known. Given this specifica-
tion, statistical theory provides routine mathematical processes for obtaining
estimates of the parameters a, 3, v, - - - from the observations 21, 3, -+, Zn .

In performing tests of significance we often assume that the data follow some
distribution

(2) fl(xl)"'7xﬂ;aiﬁy77”')ndxif (i=17"';n)

where fi is a known function or family of functions. We may wish to test the
hypothesis that the data follow the more specialized distribution

(3) fZ(x17”'7xn;alrﬁ,:7,’"')dei, ('i=17"';n)

where f; is some member or sub-group of the family f; . Given this specification,
statistical theory provides routine mathematical processes for testing such
hypotheses.

In the application of statistical theory to specific data, there is often some
uncertainty about the appropriate specifications in equations (1), (2) and 3).
In such cases preliminary tests of significance have been used, in practice, as
an aid in choosing a specification. We shall give several examples frem the
literature of statistical methodology.

(1) In an analysis of variance, in order to obtain a best estimate of variance,
we may be uncertain as to whether two mean squares in the lines of the analysis
may be assumed homogeneous, [1]. Suppose that it is desired to estimate the
variance o1, of which an unbiased estimate s; is available. In addition, there
is an unbiased estimate s; of o3 , where from the nature of the data it is known
that either o2 = o3 or o3 < o1. As a criterion in making a decision the following
rule of procedure is used frequently: test si/s3 by the F-test, where s; and s;
are the two mean squares. 1f F' is not significant at some assigned significance
level use (nis + n83)/ (1 + M) as the estimate of oi. If F is significant at the
assigned significance level, use s? as the estimate of a7 .

(2) After working out the regression of ¥ on a number of independent variates
we may be uncertain as to the appropriateness of the retention of some one of
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the independent variates, [2]. To illustrate let us consider the choice between
the regression equations ¥y = b, + bur, and 3 = bz, after having fitted
y = b1 + bazr, ; the population regression equation being y = Bty + B .
In this case a procedure commonly used in deciding whether to retain z, is as
follows: we test s3/s3 by the F-test, where s; is the reduction in sum of squares
due to z; after fitting 21 , and sj is the residual mean square. If F is not signifi-
cant at some assigned significance level we omit the term containing x, and use
by as the estimate of B;. If F is significant we retain the term containing z»
and use by as the estimate of 8. A similar example occurs in fitting a poly-
nomial, when there is uncertainty as to the appropriate degree for the poly-
nomial [3].

(3) In certain analyses we may be uncertain as to the appropriateness of the
use of the x* test. Bartlett gives an illustration in a discussion of binomial
variation, [4]. He performs two supplementary x* tests of significance as an aid
in deciding to abandon the main use of the x” test altogether, and proceeds to use
an analysis of variance instead. It is of interest to note that the main use of the
x* test gives a significant difference at the 5% level while, in the analysis of
variance, Fisher’s 2z is not significant at the 5% level. Here again we might
formulate a “rule of procedure” and follow through the analysis as in the pre-
ceding cases.

This use of tests of significance as an aid in determining an appropriate speci-
fication, and hence the form that the completed analysis shall take, involves
acting as if the null hypothesis is false in those cases in which it is refuted at some
assigned significance level, and, on the other hand, acting as if the null hypothesis
is true in those cases in which we fail to refute it at the assigned significance level.
An investigation of the consequences of some of these uses is the purpose of this
paper.

It is proposed to consider the first two cases mentioned above: (1) a test of the
homogeneity of variances, and (2) a test of a regression coefficient. A complete
investigation of the consequences of the rules of procedure would be very exten-
sive, since these consequences depend on the form of the subsequent statistical
analysis. As a beginning, it is proposed to limit the study to the efficiency of
these “rules of procedure” in the control of bias.

The need for solutions of a whole family of problems of this kind has been
pointed out recently by Berkson [5].

II. EXAMPLE ONE: TEST OF HOMOGENEITY OF VARIANCES

1. Statement of the problem. s; and s are two independent estimates of
variances o1 and o3 respectively, (such that n;s3/0} , nsss/o3 are distributed inde-
pendently according to xi and x3, with 7, and ng degrees of freedom). It is
known that o3 < oi. To obtain from these an estimate of o} , tobe used in the
particular analysis in hand, we formulate a rule of procedure.

2. Rule of procedure. Test si/s; by the F-test. If F is non-significant at
some assigned significance level, we use (ms: + nzsg) /(ny + ns) as the estimate
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of oi. If F is significant at some assigned significance level we use s; as the
estimate of 67 . The estimate of o1 obtained by this rule of procedure will be
denoted by e*.

3. Object of this investigation. If we follow such a rule of procedure, what
vill be the bias in our estimate e* of o3 ?

4. Derivation of the expected value of ¢*. First we wish to find

2 2 2
n181 + N2 S2 . S1
E<——> TR D
m+mn /) s

where A is the value on the F-distribution corresponding to some assigned sig-
nificance level for n; and n, degrees of freedom.

Letv; = 1,0 = s3. Since st and s3 are independently distributed, the joint
distribution of »; and v, is

C1 vi”"l U%nz—l exp [—1 (72231 + @32)] dvy dve )
2 01 g2

where ¢, is a constant and #n; and n, are the respective degrees of freedom.

Let us make the transformation of variables

U = Moy + ngvs, O<wy < w
uy = 2 0<wm <\,
v
U

then the expected value, Ey, of o for us < M is given by

m +
u;nl—l

(1 + m)E =fof°° ,
1 1 Plus <N Jo o (mus + m)%(nrl-nz)

vy (n1tng) _l % Tty | T
ui exp[ 3 o & m( . + U§>] duy du,

where P(u; < \) is the probability of us being less than A.
Integrating out u; and expressing the result in terms of the incomplete beta
function we obtain

mI,Gm + 1, 3m)ol + mI(Gm, 3m 4+ 1)o3
P(us < N)
where 7 = (nip\)/(n2 + MmeN), ¢ = o3/01 .

We wish now to find the expected value of s} when si/s3 > \. Again we start
with the joint distribution of »; and v, , given above and this time let

4) (m + no)Ey =

]
__-_—Y, Ul=”1,
0
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then the expected value, E, of v1 when ¥ =

C i n {(nytng 1 n2Y
E2=—1~>f f Yy (‘+)exp[ v (?+ )]dvldY

P<Y<)‘ 1 0'2

>«|._.

Integrating out v; as a gamma function, and expressing the results as incomplete
beta functions we obtain

_ 1 = L,Gm + 1, np)lo}
(%) E, = P(Y <1/ ,

where
Zo = mpN/(n2 + mp)) as before.

5. Final Results. The probability that we use (msi + nas3)/(ny + ny) is
P(u, < A). From equation (4) the contribution from this case to the mean
value of e* is

mI(3m + 1, ing)ol + g L.o(3, 312 + 1)02
1+ Mg

The probability that we use s is P(Y < 1/A). From equation (5) the contribu-
tion from this case is

[1 = IyGma+ 1, 3n0)]ot .

The expected value of e* is obtained by combining the two cases, i.e.,

2
(6) E(e*) = [1 + {I«’Bo(%nl ) %’ﬂz + 1) ‘O_E - Iz'o(%nl + 17 %m)}] 0'%
o1

e
1+ e
Hence the bias in e*, expressed as a fraction of o} is

(7N [Izo(znl , 312 + 1) - I:co(%nl + 1, %n?)]

n1+

We note that in estimating o7 there will be a positive bias, no bias, or a negative
bias according as

LyGm, im + 1)
LyGGm + 1, im)

is greater than, equal to, or less than o3/d3 .
6. Identity and checks. If o1 = o3, then in section 4, B; = o} and
P(up < N) = Iz,(Gm, 3ma).
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From (4) this gives the identity
(n + na)Loy(3n1 5 312) = mlz(3ma + 1, 3m2) + nalzg(3na, 3m2 + 1)

where o = m\/(n2 + m\). This identity may be established easily by ele-
mentary calculus.

The first result in equation (6) may be checked by noting that when A = o,
i.e. when the two mean squares are always pooled, z, is 1 and equation (6)
reduces to (n107 + neo3)/(ny + ng). Similarly when A = 0, in which case there
is no pooling, z, = 0, and equation (6) reduces to o} .

7. Discussion. In making a choice of an appropriate estimate of ¢ we may
consider three procedures:

(1) Use si always. This has the merit of having no bias, but is likely to have
a large sampling error.
st + mass

m+ng
compensation will have less sampling error than (1) since it will be based on
(ny + ng) degrees of freedom.

(2) Always pool, i.e., use When oF # o3 this is biased, but in

2

(8) Use the test of significance of $—; as a criterion in making the decision
S2

as to whether to pool the two mean squares or not. If the test discriminates
properly between cases where pooling should or should not be made, the pre-
liminary test of significance criterion will utilize the extra n, degrees of freedom
whenever permissible and also avoid the bias in method (2).

In Table I the expected value E(e*) divided by o1, is given for two sets of
values of n;, n, somewhat typical of those frequently encountered in applied
work, and for a series of values of ¢3/s1. In addition to the case of always pool-
ing (\ = ) and that of never pooling (A = 0), the results for A at the 1 percent,
5 percent, 20 percent levels and for A = 1 have been tabulated. By subtracting
unity from the results the bias is obtained as a fraction of ¢; . The Table was
computed from the incomplete beta function Tables [6].

When the two mean squares are always pooled, the fractional bias is negative
and increases numerically as o3 becomes small relative to o; . By examination
of the values in Table I for o3/07 = .1, it will be seen that the preliminary test
of significance controls the bias well when a3 is much smaller than ¢}, that is
when a large bias from pooling is most to be feared. This result happens be-
cause in such cases the preliminary test allows pooling only in a small propor-
tion of samples.

If \ is taken at the 1 or 5 percent levels, the maximum bias appears to oceur
when o2/0} is in the region 0.4-0.5, there being little bias when o3 is near o} .
The lower values of A (20 percent or A equals 1) control the bias satisfactorily
in the region 3 < .601 , but have a fairly substantial positive bias when o5 = a1,
that is when pooling would actually be justified. By use of the relation between
the incomplete beta function and the sum of the terms of a binomial series it
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can be shown that there is always a positive bias when ¢ = o3 and that for
given numbers of degrees of freedom this bias is greatest when A = 1.

To summarize from the example in Table I, it seems that for small values of
n; and 7, none of the values of A which have been investigated controls the bias
throughout the whole range 0 < o3/07 < 1.

TABLE 1
Expected Value of ¢*/o3: E(e*)/o}

Case 1: ny = 4, ny, = 20

a3/of
.1 .2 .3 4 .5 .6 7 .8 .9 1.0
A = .250| .333| .417| .500| .583| .667 .750| .833| .917| 1.00
Ma = 4.43 .965| .870] .791| .750| .748| .775| .821| .880| .948| 1.02
Mo = 2.87 .991| .960] .924| .901| .892| .903| .930| .970(1.02 | 1.08
A2 =0.00 |1.00 | .999/1.00 {1.01 {1.02 {1.04 [1.07 |1.11 |1.15 | 1.20
A =1 1.00 {1.00 (1.01 |1.03 [1.05 |1.08 |1.11 |1.15 |1.20 | 1.25
A =0 1.00 {1.00 {1.00 {1.00 {1.00 {1.00 {1.00 {1.00 |1.00 | 1.00

Case 2:m; =12, m2 = 10

a3/at
.1 .2 .3 4 .5 .6 7 .8 .9 1.0
A = .591) .636| .682| .727| .773| .818| .864| .909| .955 1.00
Ao =4.71 .981| .896| .833| .814| .824| .850| .884| .922| .963| 1.00
Ao = 2.91 .998| .973] .935| .909| .901| .908| .928| .955| .989| 1.03
A2o = 0.00 (1.00 | .998| .993]| .987 .986| .991{1.00 [1.02 [1.04 | 1.07
A =1 1.00 {1.00 {1.00 |1.00 |1.01 {1.02 |1.04 {1.06 {1.08 | 1.11
A =0 1.00 {1.00 {1.00 |1.00 {1.00 |1.00 {1.00 {1.00 {1.00 | 1.00

8. The variance of ¢*. Using the same method we may obtain the variance
of ¢*. The final result is

m(m + 2)L,(3m + 2, 3ot + 2mna Ly(3ma + 1, 3np + 1)o} ol
+ na(ne + 2)I;,(3n1, 32 + 2)o3
(ny + ma)?

(8) m+2. 1 1 4 g
R T A B R

V=

2

{L.,(%nl D %= LG+ 1, r»,)}] o
g

1
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From the relations in deriving this result the following identity was obtained:
(1 4+ g + 2)(m + no)Lo(3ma, 3m) = m(m + 2)1,(3n1 + 2, 3ne)
+ 2nimel (3 + 1, §ne + 1) + na(ne + 2)Iz,(3n1, 302 + 2).

This identity can be readily established by elementary calculus.

As a2 check on the result in equation (8), we note that if A = o, then 2 = 1,
S1
s3
2(mot + mee3)/(n1 + my)’, which checks with the variance of (nisi + mas3)/
(n1 + mg) for the case of always pooling. If in addition oi = o3, then
V = 201/(ny + my). IfX = 0, then 2, = 0, and si/s; = A always. The variance
of the estimate of variance becomes 2¢1/n; which checks with the variance of s!
for the case of never pooling.

The expression for the variance of ¢* enables us to investigate how much has
been gained in terms of reduction in variance by the use of the preliminary test.
The quantity {V + (Bias)’} is the appropriate value for the whole sampling
error, where V is given by (8) and the bias by (7). For the two numerical
examples these quantities are shown as fractions of o1 in Table II.

As a standard of comparison the variances of the estimate s: (no pooling) will
be used. In these examples the preliminary test with A = 1 produces a variance
smaller than that of s; for all values of o3/} except the lowest (0.1) where the
two variances are equal. As A is taken successively higher there is a substantial
reduction in variance when ¢j is near o3 but an increase in variance over that of
s; when o3/0} is small. Throughout nearly all the range of values of o3/0},
the smallest variance is obtained by always pooling (A = =), despite the rela-
tively large bias given by that method. This result is a reflection of the in-
stability of estimates of variance which are based on only a few degrees of
freedom.

III. EXAMPLE TWO: TEST OF A REGRESSION COEFFICIENT
1. Regression and some properties of orthogonal functions. Let

Yy = Burr + Barz + e

be a linear regression of y on the two variates z; and 2, in which 8; and B, are the
respective population regression eoefficients and e is the error. We assume that
Z1 , T2 and y are measured from their respective sample means and that the values
of x; and z, are fixed from sample to sample. In order to make comparisons
among samples of different sizes we assume that x; and x. have unit variances
and correlation coefficient’ p so that

S =n—1, 8@ =n—-1, S@x) = p(n — 1),

and < X always. The variance of the estimate of variance becomes

1 Although p is commonly used to denote a population correlation coefficient, we are
using it here for the sample correlation coefficient between the fized variates 2; and z. .
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TABLE II
V + (Bias)’
4

o1

The Variance of ¢* About its True Mean:

Casel:n = 4, n. = 20

P HLA
.1 2 .3 .4 .5 .6 7 .8 .9 1.0
A = 577 .462( .360] .275| .205| .149| .111| .087| .076| .084
Ao = 4.43 .560| .620[ .603| .523| .350| .323| .243( .184| .150| .137
Moz = 2.87 .514| .545| .554| .528] .479| .414| .353| .299| .260| .237
Aa2o = 0.00 .501| .500{ .493| .480| .458| .435| .408| .374| .367| .360
A =1 .499| .493| .480| .462| .441| .423| .401| .389| .381| .387
A =0 .500] .500| .500| .500/ .500| .500| .500{ .500| .500| .500
Case‘2:n1 = 12, ny = 10
o3/ot
.1 .2 .3 A4 5 .6 7 .8 .9 1.0
A = .217) .183| .154| .130] .112| .097| .088| .084| .085| .091
Ao = 4.71 J185( .218| .203| .171| .141| .118| .103| .094| .092| .096
Nos = 2.91 .170( .187| .194| .183| .163| .142| .125| .114| .109| .109
A2 = 0.00 .167] .169| .171} .170| .164| .156| .146, .139| .135| .135
A =1 .167| .166{ .165| .162| .158( .152| .148| .144| .144| .147
A =0 .167| .167| .167| .167| .167| .167| .167| .167| .167| .167

where S(z}) denotes summation of zi over the sample, with similar meanings
for S(z3) and S(zix,), where n is the sample size.
We make the orthogonal transformations

b=x, &=mx— pm,
then

y = Bis + Ba(&e + pb1) + e.
But

Sg=n—1 SE=@-D1-p) Sk =0,
therefore
SyE) = Bi(n — 1) + Bwp(n — 1) + S(ze),

and

S@e) = Bn — (L — o)) + S@ — pzre.
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Now if we represent the regression coefficients of ¥ on the &'s as B’s we
BiS(£) = S(tw), B:S(&) = S(&y).
The reduction in the total sum of squares due to z; ignoring . is

[SEy)P _ [(n = V(B + Bop) + S
sE T n—1

The reduction in the total sum of squares due to z, after fitting , is

SEyE  [(n— 1)BA — p*) + Sz — pael)e]2
BiSwa) = Ty = (n— 1A — )

The reduction in the total sum of squares due to regression is

[(n — 1)(8: + B2p) + S(me)]* [Se(xz —pz1) + (n — (1 — p )]2
n—1 . (n— 1A — p?)

in which the two parts are independently distributed.

B:S(yt) =

have

Let b: be the regression coefficient of y on z; when the term containing =, is

omitted from the regression equation. Now,

Sy)  (n— 1)(B1 + Bp) + S(xle)
NG n—1

b = B, =

Hence
© E@M) = B + B
Let by be the regression coefficient of y on , if both z, and x. are used.

S8y)  (n— 1A — p) + S — p:cl)e
S (n — 1)1 = p’)

b2=Bz=

And

S@ _ 1 _ 1
SE@F 86 a-Da -

The normal equations for Y = biz; + b.zy are
bS(x3) + beS(zia) = S(awy),
- blS(xlxz) + bzs(xg) = S(x&y)

V(b)) =

Now
S (:cl y) S(x xg)
by = by 4 by =
) S(ad)
Therefore
b1 = b + bu,
or

b = b; — bap.

Then
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Therefore

(10) EMb) = B + Bw — pE(be).

We notice that if p = 0, b, is unbiased in any selected portion of the population.
2. Statement of the problem. - To obtain an estimate of b;, in a particular

analysis in hand, in which it is desirable to choose by means of a test of signi-

ficance between using the regression equation Y = bix; + bz, and V' = bizy
we formulate a rule of procedure.

3. Rule of procedure. Calculate the following analysis of variance:

Degrees of freedom Sum of squares Mean square
Reduction due to z; 1 [tn — 181 :_ﬁz :) + 8@ st
Reduction fiue to z, 1 [(n — 1Bl — p°) + S(z2 — par)el’ &
after fitting (n— DA — 2
Residual n—3 Sy — Y)? S3

2
Test Z—;by the F-test. If F is non-significant at some assigned significance
3

level we omit the term containing x; and use

b, = (n — 1)(8: + B2p) + S(x1€)

n—1

as the estimate of B;. If F is significant, we retain the term containing z.,
and use b, as the estimate of 8;. The estimate obtained by this rule will be
called b*.

4. Object of this investigation. If we follow such a rule of procedure, what
will be the bias in b* as an estimate of 8, ?

5. Mathematical derivation of the bias. First, we wish E(b;) when

2 2

S2 b2 A

<M o < —Q——

3 s5 (1—p(n—1)
where ) is the value on Snedecor’s F-distribution corresponding to some assigned
significance level for 1 and (n — 3) degrees of freedom. From (9) we have

(11) Eb) = B + B,
2

no matter what the value of %: ; since from section 1, s; and s3 are independently
3

distributed.
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bz A
- (1 - —1)"

find it more convenient to find first E(bz) when

Next we wish E(b;) when —; = or To obtain this we
S

b; A s 1
2> - . or <
ss 1 =pPmn-—-1) b2 = Aew’

where
) 1
w=shand en = g

The joint distribution of b, , vs is
Ko 0o lens )J=9) ¥nbos g gy
where K is a constant. We make the transformation of variables
U3

2
u = 73, dvs = bz du;
2

then the joint distribution of . and u is
K e—(bz—ﬂz)2/2czz (ubg)%(ﬂ—ﬁ) e-—%(n—3)b§u b§ du dbs .

1
Taking the expected value when u < — we have

ACa2
K
B = 713
P (u < X—)
1/Aec22 s 3ines b . 2 n — 3
..[w‘/o‘ b2lb2| 3uz( )exp[_(22czzﬁ2) . ( 5 )bgu]dudbz,
1
where v, = s3, and P(u < v ) is the probability that w be less than or equal
to. -
O yom®

Dropping subscripts for convenience and expanding the factor which involves
e to the first power of b, we have

B@) = —ﬂ2/2c [ fl/xc . | b I"“s 18)
(<D
{1 () 5 o

1
—x <b< w, O<u<_.
Ac

where
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Now, clearly the even terms of the series vanish whether » is odd or even when

b is integrated out.
After integration with respect to b, we have an infinite series in which the

typical term (apart from constants) is of the form
u%(n——!i)/[l + (n — 3)cu]%(n+r)

where r is an even positive integer. Subsequent integration with respect to «
leads to an infinite series of incomplete integrals of the F distribution. By
transforming the integrals, the series may be expressed in terms of incomplete
beta functions as follows:

P
(es,2)
(59 + @n (52
BTANET

B (1 - pn— 1)133.

a=-—— or a=
2

E() =

Let

Then we have
(12) B(b) =~ 3 ‘%I(”—;—?’% i),
P (u < ) =0 2!

1
where 2y = X

1
n—3 t1
and X is the desired % point of the F-distribution for 1 and (n — 3) degrees of
freedom. Now from (10) we have

E®) = B + Bw — pE(by)
which enables us to obtain E(b;) from (12).

6. Final result. From (10), (11) and (12) we have

B0 = P(2<2) 6+ o) + [1-2(2 <)+ otos - B

= B+ 0B — [1 - P(z—i < x)] pE(by).
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p[Bz - P(’g < )\)}E(bg)].

Substituting the value of E(bz), we obtain

The bias in b* is

0

Bias = pﬁz[l -3, ("—;—3 g + z)]

=0

1 _
where xp = ——, a = (1—p2)<n2 1)
+1

B .

n—3

7. Checks. From section 5 we have

Be) = — < 220 L, (”—_—3 3+ z)
P<£2>)\)i=0 ! 2 2
U3
1
N .
n—3 1
If A = 0,then o = 1, and E(by) = 8.
Also from section 5 we have

Bias = pﬁz[l - E‘f;’TI,‘, (’—‘;—3%+z):|

where xp =

=0

If A\ = 0, thenx, = 1, and Bias = 0.
If A = «, then z, = 0, and Bias = pB; .

8. Discussion. From the mathematical form of the bias,

m =1 - £ 0 (52549

i=0
1

A )
n— 3 +1
four deductions follow immediately: (i) There is no bias in estimating B, if
p or B; is zero. (ii) The coefficient of 8. in the formula is less than or at most
equal to one in absolute value. (iii) The sign of the bias depends upon the signs
of p and B: ; it is positive if both are positive or both negative, it is negative if p
and B, have opposite signs. (iv) The bias is estimating 8, is independent of g .
We shall discuss the bias in a few special cases by means of selected values of
n, p, B: and A. In Table III are exhibited the values of the bias for n equal
to 5, 11, 21, each at p equal to .2, .4, .6, .8, and B, equal to .1, .4, 1.0, 2.0,

where 2 =
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and 4.0. These values have been computed at the 5% point for A, and at A = 1.
These special cases seem to indicate: (i) If we fix p, 8;, and A and increase n,
then the bias decreases. (ii) If we fix p, 8, and n and change \ from the 5%
point to A = 1, the bias decreases considerably. (iii) If we fix p, n, A and increase

TABLE III
The Bias in Estimating 8,

Aos = 18.513 Ao = 5.318 Nos = 4.414
n=35 n =11 n =21
~
a2 | 2| 4| 6| 8| 2| 4| 6| 8] .2|.4].6].8
~

0.1 .017| .034| .051| .069| .015| .030| .046|.061|.014|.029|.044/.059
0.4 .067] .134] .202| .272| .049] .101] .159].227).033|.071|.122.193
1.0 .142] .292] .455| .640] .028| .072| .164(.350/.001|.006|.025|.132
2.0 .162| .358| .6271.038 .000| .000| .001}.083{.000j.000|.000}.001
4.0 .035| .101| .282| .898| .000| .000{ .000|.000.000|.000|.000.000

=1 A=1 A=1
n=235 n =11 n =21
-
32\\"\ 2| 4| 6| 8| 2| 4| 6|8 |.2|.4]|.6].
~
0.1 .004| .008| .011| .015] .004| .008| .011|.015|.004|.008|.011|.015
0.4 .012| .026| .040| .057| .009| .019| .032|.051{.005(.011|.022{.041
1.0 L011| .025| .049] .095/ .001] .003| .010{.039|.000{.000{.001|.009
2.0 .000| .002| .008| .043| .000| .000| .000|.000{.000{.000i{.000;.000
4.0 .000| .000| .000| .000! .000| .000| .000|{.000{.000{.000{.000{.000

B: the bias increases and then decreases. This may be explained in the following
manner. From section 6, the bias may be written in the form

P<2'2<>\> © i —a |
V3 Zae Ix°<n—3 3+z’).

P(zf>)\>i=° 7! 2 2
Vs

Now if p, n, \ are held constant and 3. is relatively small, P(:—2 < >\> is relatively
3

large and E a—;—[ ,o(n—;—s , —g + z) is relatively large, but P(Z—2 > >\> is rela-
=0 . 3

tively small. Hence, for a while as we increase 3, the bias will increase, but as 8,

gets larger P(f—)—2 < )\) and 2 a'.e_“Izo(n—;—g, g- + z) becomes smaller while
3

=0

Bias = pf:

P(z—2 > )\) becomes larger. Hence, a value of 8; will be reached at which the
3
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bias begins to decrease. (iv) If we fix n, 8., and X and increase p, the bias in-
creases without exception.

The above results were obtained under the assumption that a test of signi-
ficance criterion is used in making a choice as to the number of independent
variables to be retained after the regression ¥y = b1 + bexe has been fitted.
If this test of significance criterion is used, we may wish to have a means of
controlling the bias. From a study of Table IIT we note that the bias may be
decreased by increasing » and by using A = 1. We also notice that as 8. in-
creases from 0.1 to 4.0 the bias increases and then decreases; and so passes
through a maximum value. Hence, if we have a regression in which 8. is fairly
well below or above this maximum value, we would expect a smaller bias.

The bias in estimating 8, is “unstudentized,” i.e., is a function of the population
parameters p and 8. . In any particular analysis in hand, it would be necessary
to know the values of p and 8. or be willing to use estimates of them obtained
from the data.

It is realized that only a beginning has been made on the regression problem:
an investigation should be undertaken of the more general problem of the use of a
test of significance criterion in making a choice as to the number of independent
variables to be retained after the regression

y = by + by + -+ + baza
has been fitted.
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