FURTHER CONTRIBUTIONS TO THE PROBLEM OF SERIAL
CORRELATION

By WiLrrip J. Dixon
Princeton University

1. Introduction. Recently, there has been an increasing interest in the study
of the serial correlation of observations. The development of the distribution
theory and significance criteria was retarded by the fact that the successive dif-
ferences or successive products of statistical variates are not independent. How-
ever, these difficulties have been overcome to a considerable extent by recent work
of several authors. In order to indicate the nature of the contributions embodied
in the present paper, it will be necessary to describe rather precisely the contri-
butions of these authors.

Suppose z;, 22, - -+ , Z, are n independent observations of a random variable
z which is normally distributed with mean a and variance ¢*. Let us define

n—1

Frot = Z_:l (@ip1 — @) 0 = 2 (T — x)°

i=1

n—1

1) Ci= T @ = Da =D Co= X — D — )

Cn = 21 (@ — 2)(Tiyr — ) Ve = ; (z: — )°
in which x,4; = z;. The ratio of any of the first five values to V, will be a
measure of the relation between the successive observations ;.
Von Neumann [2] has studied the ratio n = 85,_1/V,. He obtains an expres-
sion for the sampling distribution of the ratio 5. He solves the equivalent prob-

n—1

lem of determining the distribution of Z A where the point (41, %2, -+, Yn_1)
i=1
n—1

is uniformly distributed over the spherical surface Z y? = 1 and the A; are the

=1

characteristic values of 8%_,. He obtains the distribution wly) of y = Z B’
=1
(m even) where the point (x1, 22, ---, x,) is uniformly distributed over the
spherical surface Z i =1land By > By > --- > B,. w(y)isfound by solving
=1

the equation

m

(1.2) [ o=ty =11 B - 27

n i=1

The distribution of # is then a special case of this distribution. The first four
moments were obtained by Williams [5] by the use of a generating function. In
119
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120 WILFRID J. DIXON

the present paper we shall study the ratio 65/V, . The moments of this ratio
will be developed and the moments and approximate distribution of [2 — 8% /V,].

Von Neumann [4] in a paper which removed a restriction (that m be even)
on the distribution of n indicates how to determine the distribution of C,—y/V, .
Koopmans [9] considers the stochastical process . = pz. s + 2, (t = 1,2, --+),
|p] < 1. The 2, are independent drawings from a normal distribution with
zero mean and variance ¢*. To test the hypothesis that p = 0 he shows that it
is sufficient to know the distribution of C,_;/V,. He finds the distribution of
Cun1/Vnand C,/V, but finds that the numerical computation of these functions
is very cumbersome. This prompts him to obtain approximate formulas for
these distributions. The approximate formula for the distribution of 7 =
Co/V, is

(1.3) (Gn — 1)2" 77! f (cos @ — A sin Lna sin « da.
0

A similar approximation will be used in this paper to find the moments of
C./Vn. It will be shown how good the approximation is and how by using this
approximation we may obtain a tabled function (Pearson Type I) which fits the
distribution of 1 — (C,/V.,)* up to in moments.

The quantity 1 — (C,/V.,)?, we shall find, is equivalent to a likelihood ratio
function for testing the hypothesis that the serial correlation is zero.

Anderson [8] obtained the distribution of ;C,/V, = .R,. He proved that the
distribution of R, is the same as that of ;R, when L and n are prime to each
other. He has computed the 1 per cent and 5 per cent significance values
(L=1)upton = 75. For values of n > 75 he indicates that a normal distribu-
tion which is an asymptotic approximation may be used. He has also computed
some significance values for the cases of N/L = 2, 3, 4.

In this paper we shall develop the moments of LR, .

The use of the ratio 7 in the study of serial effects in ballistics at Aberdeen
Proving Ground is given in references [1] and [2]. The use of the ratios C,—y/V,
and C,/V, in the study of economic time series is discussed by Koopmans [9].

2. Likelihood criteria. Given a sample of n observations 1, 2z, -+, 2,
we shall assume that they are distributed according to the law:

2.1 dP R 1<1<
= —— 0% a=1 PR .
(2.1) - VZro e 21 Tn s 1<£iLn)
It will be convenient to use the phraseology that ‘“the variate at the time « has
as its mean value a linear function of the variate at the time « — 1.” We shall
take z; = Tnyi. Due to the symmetry we may use @ + ! in place of « — 1.
This will be done to obtain agreement with previous work. We wish to test
the hypothesis H; that each variate is independent of the other variates, that is,
that b = 0. The Neyman-Pearson specification of H, may be written as follows,
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where © is the space of admissible values of ¢°, @ and b, and w the subspace de-
fining H, :

Q>0 —w < a, b<
(2.2) )

wio >0 —0 < g < «, b=0.
The likelihood criterion A suitable to this hypothesis is the ratio of the maximum
(w (max.)) of (2.1) with the restriction that b = 0 to the maximum (Q (max.))
of (2.1) without this condition. Now,

__ dPn(w max)
" dP,.(Q max)’

We see that the likelihood function is

(2.3) AL

'

2.4) L= —nlog (W3ro) — ;72 3 (@ = @ = bt

and to maximize L over the space @ we compute the following derivatives

oL 1
%0 = o 2(Ta — @ — bTayr),
(2.5) g—é = %22(1% —a — bxa+l)xa+l,
oL 1
Pl —-?—2 + = (e — @ — bZay).

The solutions of the equations obtained by setting the above derivatives equal
to zero are:

= %E(x., — G — brap)?

2.6) 4= %Exa(l — b

§ = "TaTars = (C2a)’
nZxs — (5%,)°

If we now maximize L over the space w we obtain

# =Lz — o
n

2.7
4 = —]-' p
n
so that we will have
(2.8) dP,(@ max) = [2r(1 — )Z(z. — B)T e,
(2.9) dP.(w max) = [2r2(zs — 2) e,

(2.10) a =1 =)
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where b is defined as in (2.6) above. If we sét a =0 in (2.1) we may follow a
similar procedure and find the criterion oA\; = (1 — ba)* for testing the hypothesis
that b = 0 if it is known that the population mean equal zero. Here

2o xa.H

2.11 by =
(2.11) 0 2

We notice that b is the criterion chosen by R. L. Anderson as a measure of
serial correlation. He has obtained the distribution of b and has computed a
number of significance values from this distribution. The distribution is a
function of n and I, and Anderson points out that the larger the values of n the
smaller the extent to which the significance values depend on I.

In the next section we shall find a distribution which approximates very
closely the exact distribution of b and which is independent of the lag I.

3. Moments of the likelihood criteria. We shall determine the moments of
bo and oA; when the hypothesis (H; is true and the moments of b and \; when the
hypothesis H; is true. Let us first consider bo = Z&oasi/Zxs , the criterion we
obtained for testing the hypothesis ¢/;. The moment generating function for
the joint distribution of Co = Z&aasi/o" and Vo = Zxi/d” is

o(t, t2) = Elexp (Cots + Votz)]
(3.1) (7;;) f_m f exp (Coh + Vot = 5 2:::,,,) H dza .

By reference to this last expression it can be seen that

0
(3.2) Eb) = W%@ﬂ dts,
© 6t1 £1=0
and further
° a"«:(tl,tz)] 5
(3.3) B = f_ [ T ., e,

k
in which we set &, = 2 fo; .
=1

Now if we write (3.1) as follows:

1 more —2-3 ijeiz;
G (vass) [ ] =8 naa,

we see that o(f1, &) = | Ai; | and Asj = Aita,jta ; that is, this determinant is
a circulant. Let us write A;; = a, where hequalj — ¢4+ lorj —¢s+ 1+ n
taking that subscript which gives 1 < h < n, so that we have

QG G a3 - Gy
an Q1 Q2 *°° QGp
(3.5) S =

Qy az ay - a
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“which expanded by the method of circulants becomes
H Z ‘a; wli—ly
k=1 i=1

where the wy are the nth roots of unity.
First we shall consider by (lag 1). Here a; = 1 — 2t;, as = a, = —{; and a3
to a,—: equal zero.

0(0;2(t1, t) = kI_]; 1 — 2t — ti(wn + wl:l))

(3.6) R
=11 (1 — 2t — 2t cos gﬂ;)
k=1 n
Forlagl, a1 = 1 — 26, @110 = @41 = —b and the remaining a’s = 0.
wi'th, ) =TI (1 = 26 — ot + i)
@3.7)

= H(l — 2t — 2t cos @@)
=1 n
‘We shall develop an approximation to these functions (3.6) and (3.7) as follows:

—1 2 log (4+B cos ay)

(38) NAGE t2) = ];-I (4 + B cos a/‘.)_% = =1 ,

where in thiscase A = 1 — 2, , B = —2t; and o = 2nlk/n. Let us now alter
the form of this exponent and replace the sum of a finite number of terms in-
volving a; by an integral of a continuous variable a.

3.9 op1(t1, &) = exp < n 2::l kz:l g (A + B cos ak)>.

Let us write 2xl/n = Aay, then we shall have
(3.10) oo1(t1, &) = exp (Z—;; ; log (A + B cos ak)Aak).

If we take B < A we see that A + B cos a is never negative; therefore as
we let n increase the summation will approach the value of the integral:

2wl
f log (A + B cos a) do.. Let us then replace this summation by its limiting
o
integral. The resulting function will then be an approximation for n large
enough. We shall obtain then

27l

(3.11) oor(t1, f2) ~ exp <47;f log (A 4 B cos a) da) B <A,

from which by the use of the integral' we obtain
(3.12) opi(t, ) ~ exp (—3n log 3(4 + /4% — BY).

1 This integral may be verified by differentiation with respect to the parameter a. It
may be found as formula 523 in Pierce’s ‘“Short Table of Integrals.”
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So that
(3.13) oer(ty, &) ~ [3(4 + /42 — BY)|™".

We now have ¢(t: , #;) represented approximately by a power of a single quantity.
The question of how good this approximation is will be discussed in a later
paragraph. This is similar to the approximation used by T. Koopmans in the
distribution of ,. He makes the substitution “to obtain what intuitively seems

T
to be in some sense the closest approximation.” He approximates || (x — &)™
t=1

where i, = cos g}-t by the process followed in (3.8)—(3.13) in order to find the

distribution given in (1.3).
To obtain the corresponding function for
- S2aZart — (STa)'/n

(3.14) szt — (32a)°/n

’

we follow the same procedure as above for by. Here
C = [Zxelats — (Exa)2/n]/°'2:
V = [Z22 — (Sza)’/n)/d’,

andin (3.5) a1 = 1 — 26 + 2(k + t2)/n; @ = @n = —t + 2(h + t2)/n; and all
the other a’s = 2(4; + %)/ so that the expansion of this circulant becomes

n

et ) = ] {[1 — 26+ 2(t + &) /n) + [—t + 2(h + &)/n)(wr + wi)

(3.15) = et
+ (200 + #)/n 2 w;;'l},

and since‘

ni! i1 _ /—-(wk—{—wk-,—l"]—l) k#n,

= { n—3 k=,
we get

n—1
(3.16) kHl {1 — 26 — tox + @)},
and for lag [ we get

n—1
(3.17) IT {1 = 26 — ti(wr + w2h)}.

k=1

These two results are the same as those obtained previously except that the
final term, 1 — 24 — 2t = A + B, of the products is missing. We will then
obtain as an approximation to these finite products ¢1> = op1 /(4 + B) or

(3.18) altn, b) = HA + VA = B "4 + B
where A =1 — 2t.and B = —2; .
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A method of finding the moments of b, and b was outlined in (3.1), (3.2) and
(3.3) above. If we perform these operations on ¢e1(f1, %) as defined in (3.13)
we find

w1l = ’u_h

.‘z‘f = -1 u_;"_l 6_11
(3.19) ot 2 oty

o 1 i n ) 6u>2 u

= — — — 1) 7>
ot a [( 2 an) T ot
ou u —2 .

where u |p = 1 — 24, Erl AU RPY Rl R Vi etc., and the zero subsecript

indicates that ¢ has been set equal to zero after differentiation. If these values
are substituted and the required number of integrations with respect to #, are
performed, we find the moments of the criterion b, when (H; is true.

M1=0 ZV[z =n_::;2
My=0 M= ———
e T+ 2+ 4)
3.20 My =0 Mg = 15
(8:20) My = "= @+ 2+ o+ 6)
ete., or
ﬂfzk—1=0

1-3:5--- (2t — 1)
(n+2)(n+4) - (n+2k)°
M, may be verified by the use of an expansion of the generating function (3.13)

by a method of Laplace [10]. He gives the expansion of ™ where u is given by
the equation v> — 2u + ¢ = 0 as follows:

My =

1 4 | il +3)e* | i@+ 4)(@ + 5)es
U =gtomT To9m T T 1.2.3.0%
Lt E+D) - G2 — e
toet TGoor o ww

We see that u = 1 + v/1 — ¢%, and if weset e = /(2 — &) and ¢ = in. We
obtain op; = % " as a series in the even powers of &, . From this we can see that
the odd moments are zero and from the form of the coefficients we can verify
My .

These moments are not contained in the works of the other authors writing
on this subject. Although these moments are obtained from an approximate
generating function they are, as will be shown later, the exact, not approximate,
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moments for k& < n, for lag 1 and are the exact moments for k¥ < n/a for any lag
! where o is the largest common factor of 7 and the lag .

To obtain the moments of b we follow a similar procedure with
o= w1 — 2 — 26)h Differentiating ¢; the required number of times with
respect to ¢, and integrating an equal number of times with respect to ¢, gives the

following moments:
-1 1
n— 1 M =2 +1
—3 3
M= ———
T4 D+ 3)

M,

M= =D + 3)
(3.21) :
e —1.3.5 ... (2k — 1)
TELT - D+ 3)m+5) - (nF 2% — 1)
1.3.5 ... (2k — 1)
m+1Dn+3)-- - n+2k—1)°

Examination of the moments of b, will show that b = x is distributed accord-
ing to the law

(3.22) K1(1 _ x2)%(n—l) — K1(1 + x)%(n——l)(l _ x)%(n-q)

up to n moments. This distribution is symmetric and we may wish a normal
approximation to this curve. The mean is zero and the variance is 1/(n + 2).
The X criterion \}'” = (1 — b3) = y is distributed according to the law

AM% =

(3.23) Ka(1 — y) 7y

dth ) ) 2(n + 1)
an € variance 1s (n + 2)2 (n + 4) .

up to 3n moments. Here the mean is Z ::__ ;

If we inspect the moments of b we see that the distribution of A'™ = (1 — ) = 2
follows the law

(3.24) Ks(1 — z) 2

up to 3n moments, which is the same as the distribution immediately preceding
except that n is replaced by n — 1. The distributions (3.22), (3.23), and (3.24)
are the same for lag | except that the fit is up to n/a, n/2a, and n/2a moments
respectively where « is the largest common factor of I and n. These restrictions
are necessary since the moments as given in (3.20) and (3.21) are obtained from
the approximate generating functions (3.13) and (3.18). The exact generating
function is given in (4.8) for lag 1 and it is found that the nth or higher deriva-
tives bring contributions from the part of the generating function which was
neglected in approximating the generating function. The additional restriction
for lag I > 1 will be seen in the last two paragraphs of section 4. The extra
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factor § in the second and third case above is due to the fact that only the even
moments of (3.20) and (3.21) are used.

We have in (3.23) and (3.24), then, very close approximations to the dis-
tributions for the two A criteria for testing serial effects. '

The following table is a comparison of the exact and approximate 5 per cent
and 1 per cent points for the distribution of b. The exact values are taken from
the table given by R. L. Anderson. The normal approximation as given by
Anderson in his table does not show such close agreement since he used an asymp-
totic second moment. He indicated that the exact values would have to be
used for values of n < 75 in place of the values from the normal approximation
which he obtained. Here we see that the normal approximation may be used
for n somewhat less than 75. The Pearson Type I approximation was obtained
by using the first two moments of b. The curve obtained is:

1+ 2'a — )

(8:25) B(p, g)2¢+e
. . _(n=1n —2) _nn —1)
in which p = T —3) and ¢ = 3n = 3)

The exact values marked with an asterisk in the table differ slightly from
those previously published. They are more precise values from the exact dis-
tribution which R. L. Anderson has made available to the author.

Positive tail

5% - 1%

N Ezact Type I Normal Ezact Type I Normal

5 .253 317 .281 .297 .527 .501
10 .360 .362 .350 .525 .533 .541
15 .328 .329 .323 475 477 .486
20 .299 .299 .296 432 433 440
25 .276 .276 .274 .398 .398 .404
30 .257 .257 .255 .370 .371 .375
15 .218 .218 217 .313* .313 .316
75 A74* 174 - 174 .250 .250 .251

Negative tazl
5% 1%

N Ezact Type I Normal Ezact Type 1 Normal

5 .753 .742 781 .798 .858 1.000
10 .564 .562 .572 .705 .702 .763
15 .462 461 .466 .597 .596 .629
20 .399 .399 .401 .524 .524 .545
25 .356 .356 .357 .473 473 .487
30 .324% .324 .324 .433 433 .444
45 .262 .262 .262 .356 .356 .362

75 .201* .201 .201 .276 .276 .278
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4. Alternative expansions of the generating functions. In this section we
shall determine the exact generating functions which were approximated in (3.12)
and (3.16) and obtain these same approximations in another manner. This
development will enable us to see how good the approximation is in the sense
that it gives a certain number of exact moments. The determinant in (3.4) for
lag I and mean zero can be written

ab b
bab
bab 0
4.1) An = <.
0 babd
b bals
where ¢ = 1 — 26, b = —t; and all the other elements are zero. The b in the

upper right corner and lower left corner indicate the value b in the a1, and au
positions. Let us define the following determinants:

) bab
!bab babd
! bad 0 babd O
B,.=! 0. =
! 0 0
| babd ba
b bai, b bla
4.2)
ab
babd
babdb O
D, =
0 .babd
| bal
We see that

An = By + (—=1)""0Cp,
4.3) B. = D, + (—1)"",
Co=0b"+ (=1)""bD,,

and A, can be expressed in terms of D, by substituting for B, and C, in the equa-
tion for A4.,..

(4.4) A, = Dy — b'Dney + 2(—=1)"7".

We can obtain an expression for D, if we expand this determinant by the first
row. This gives
(4.5) D, = aDny — b'Das.
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Since this is a second order difference equation, the solution may be written
D, = kw" + kw" where u, v are roots of the equation z* — ax + b° = 0. Now,

Dy =u+v=ku+ kw,
D=4+ 0"+ w = kndd + ko’
so that we can determine k; and k. We now see that
Wt — gt
u—v

(4.6)

4.7) D, =

which upon substitution in the equation for A, gives
A, = u" + 0" 4 2(=1)"b",

(4.8)
=u" 4+ " — 27,

where u, v = 3(1 — 2f) =+ \/(1 — 2t,)° — 482, Now eer(ts, &) = A7} and it is
easily seen from the form of A, directly above that derivatives up to the nth
order with respect to # in which ¢ is then set equal to zero will be given by de-
rivatives of A, = «" and this is the approximation (3.13) found by other methods.

The determinant in (3.4) for lag 1 and mean not equal to zero can be written

ab b‘ a=1— 2tg+2(t1+lz)/n,
babd c :
babd 1 b = -t + 2(t1+ tz)/’n,
) A, = « e e i
(49) 4 : c = 2(ts + &)/n.
¢ |
babd|
b bai
Let us define the following determinants:
babd ; ab I
babd c babd c I
babd | babd
nol ot l
c i c
bal babl
b bi b ba;
(4.10) .
babd ; ab
babd c babd c
babd ‘ babd
D, = . . : E, = . .
c 5 c
b aj babd
b ba
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If we replace the b in the upper right corner of ;1" by ¢ + (b — ¢) we obtain
(4.11) A= Cod (=1)"'(b — ¢)Bua.
If we replace the b in the lower left corner of B, and C, by ¢ + (b —.¢) we obtain
B, = D4 (=1)"7(0 = 0)Eu,

w=En+ (=1)""(b — ¢)Dps.

We now have A, in terms of D, and E,. We must now evaluate D, and E, .

(4.12)

111.- - - 1 111 - - 1
0babd- —Ccrsr
0 babd c —c rsr O
(413) Do = | . =
c 0
ba : r s
0 bn+1 —C T {nt1

where r = b — cand s = a — ¢ and the second determinant above is obtained
from the first by subtracting ¢ times the first row from all other rows. Writing
this last determinant as the sum of two determinants by separating the first
column we get

(4.14) D, =1" — cFpy1.
Combining the above difference equations we obtain
(4.15) A, = Ey — PEns + 2(—1)"rcF, + 2(—1)""'r"

and see that we must obtain E, and F, .
Expansion of F,;; by the second column gives

(4.16) Fopw = —G, + rF,
and expanding G, by the last row we get
(4.17) Gn = 1Gpy + (—=1)"'H,s .
o11- - - li 1sr
1lrsr O | 1lrsr O
1 rsr 1 rsr
Pa=| 6. -
0 0
rs rs
1 T |41 1 T in
(4.18)
sr
rsr 0
rsr
H, =
0
rsr
TS
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W = o™
U — v
roots of the equation #* — sz + r° = 0, so that (4.17) becomes

H, is the same type as (4.1), therefore H, = where u and v are the

- un _ vn

(4.19) G, — rGpy = (—1)
U — v
and the solution of this equation gives
_ Tn (_l)n—l[r(un _ vn) + un+1 _ vn+1}
(4.20) Gn = 2r + s + (uw — v)(2r + 9)
Introducing this expression into (4.16) we find
n 7 n—1
_ (_1y*1 u — v _ nr
(4.21) B = (1) (u—0v)2r+s) 2r+s
111 - 1 111--- 1
0Oabd —csr
0Obabd ¢ —crsr 0
“22) E.=| = S
c 0
babd rsr
0 b alu —c T8 |nt1

where the second determinant is obtained from the first by subtracting c times
the first row from all other rows. If we separate this last determinant on the
first column we get

(4.23) E,=H, —cl,na
o11. .- 1 o11 . - - 11
1sr 1sr
1rsr 0 1rsr O
(4.24) I, = . J, =
0
rsT 0 rsr
1 s TS
1 rr

Expanding I, by the last row, we get

(4.25) I = (=1)""'Gna — rd s + 8l .
Expanding J, by the last column, we get
(4.26) Jn = (=1)""'Goes + rIns.

If we combine these last two equations we find
(4.27) I, — slhy + Py = (—1)" (Gnaa + 7Gas).
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If we now solve this difference equation for I, , substitute this solution in the
equation for E,, and in turn substitute this result and the expression we ob-
tained for F, in (4.15), we get
un + vn + 2(_1)n—1rn

2r 4+ s
w4 0" — 2
1— 2 —2,°

The final form results since 2r + s =1 — 2 — 26,7 = —#; . w and » have the
same values as before. If we compare this result with that obtained in (4.8) for
mean equal to zero we see that this is the same except that here we have the
added factor, 1 — 2f — 2¢,, in the denominator. We have a similar result then
for the approximation for derivatives of ¢i(f; , &) = A7t for t; = 0. Here this
approximation is 4, = u"/(1 — 2f; — 2t,), the same result as that obtained in
(3.18). This approximation will yield moments which are exact for n > ok for
any lag [ where « is the largest common factor of n and I. The reason for this
restriction is easily seen if we consider the expansion obtained in (3.7), for

4, =

(4.28)

—2 cos %—Hc
de(t:,
(4.20) 28— o, 0 3 n
1 — 2t — 2t; cos il
n
with ¢, = 0,
—9 cos 2nlk
a¢(t1 ) t2)] = l z‘”: T
(4.30) T P 2% a7 1-2
0 Z": 27rlk
k=1
Further
3ot t»] _ o0, 1) [< < Wzk) o 21rlk]
@3 =5 | = @ =2y & +23 cos

and the mth partial derivative will contain the sum of the mth powers of the
cosines. These are the sums of the powers of the real parts of the roots of unity

and it is easily seen that Z cos 271;”0 Z cos™ 2%’-0 only for m < ak where a is the

largest common factor of n and [. . i
To change the moment generating function of b, to that of b we must drop the
n—1
m 2wl
last term of the product. In the above expressions we then have  cos™ :zk
k=1

and the same conclusion will hold.
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6. Application to successive differences. If we change slightly the function
n = 6n_1/ V. investigated by von Neumann and Williams we find the moments
and distribution greatly simplified. Let us define

n

(5.1) 8% = D (@ — zipn)

=1 .
where .41 = 2, and consider the ratio om; of 8% to 7. Now,
5.2) 8% = 2327 — 23x:%is1
therefore

8 .
(53) om = E—nz = 2(1 - bo)

aAmd we may find the moments and distribution of ¢y directly from those of
bo. We find the moments to be:

_ _2(n+3)
=2 T TE

_2(n + 5) 2+ 5)n+T7)

(5.4) "= F2 ™S Tmrom+
2(n + 2k — 1)!

™t Rt m D) - w2y E<™

and the ratio on: is distributed according to the law
(5.5) Cioni™ ™" (4 — om)**™

up to n moments.
If we replace «; in the above ratios by x; — & we find the moments of the ratio
m = 83/2(x: — )* to be:

_ _2n _ 2n(n + 3)
! "= = Din + 1)
56 m— ZrEYOtE 2t E+ 6 +7)

(n — Dn + 1(n + 3) " (n =1+ 1)(n + 3)(n + 5)

_ 2n(n + 2k — 1)!
"=+ W) - D+ ) +3) - (n+ 2 — 3)

and (g — 2)° = z has the distribution
(5.7) CzH4 — 2P

up to #n moments.
The ratio 85/Zx compares the variation of the first differences to that of the
original variates. We might wish to compare the variation of the second
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differences to that of the first differences. For this purpose let us form the ratio

n

2
; (@ — 2Ty + Tiyo) Tor1 = T1
(5-8) N = P _
2 (@ — @) Triz = 2

7=

to test the hypothesis H,, that the variation of the second differences compared
to the variation of the first differences is such as would occur by chance. Let
Ty, T2, -+, &, be normally distributed with mean @ and variance o'. The
ratio 7. is independent of the mean value of the variates, therefore we may
consider a distribution with mean equal zero. We shall develop the mean and
variance of 7, when the hypothesis to be tested is true. The moment generating
function for the joint distribution of Dy = =(x; — 2%ip1 + i42)’/26" and D, =
Z(x; — x,~+1)2/202 is

o(t, t) = Elexp (D2ty + Dity)]
(5.9) 1 \* = 1 2\ 15
=<_\/§;0> [;--feXP<D2t1+D1t2—2—‘:’_—22271‘)11;]1:(1%.

We may find the moments then by a process similar to that outlined in (3.2)
and (3.3). The next few steps are identical with (3.4) and (3.5). For the pres-
ent problem, however, @y = 1 — 6l — 2{, a2 = 4t + 2, a3 = —1; so that

n

o, k) = [T 11 — 66 — 26 + (4 + ) (wt + wr?) — tlwr + wi)],

k=1

[1 — 661 — 2t + (8t1 + 2t) cos 2—:,&0 — 2t cos ‘%%k],

P

(5.10) =

k

[
-

n

= [a+bcos2—7rlc+ccos%7r——k].
n n

k=1

If we follow the same procedure indicated in (3.8) to (3.13) we obtain succes-
sively

(5.11) o, ) = 1] (@ + b cos ar + ¢ cos 2a)~*
k=1

1 n
-3 > log (a+b cos ag+c cos 2az)
k=1

(5.12) =e

exp (j 2n > log (a + b cos ax + ¢ cos 2ak)>
dr n =1

and replace the summation by the integral which is the limit of the summation
as n — o«

(5.13)

It

21

(5.14) oty t2) ~ exp (—}g log (@ + b cos a + ¢ cos 2a) doz)
o

(5.15) ~ exp <__glog [K 1+ \21 — &1+ \21 - ,,2]>
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, o b=/ + 8¢ — 8ac
where K=a— ¢ 7,0 = 3@ = 0 .

We then have approximately
(5.16) oltr, ) ~ k@ + VI = ®A + VI ="

(5.14) follows from (5.13) if we replace the summation by an integral, and (5.15)
is obtained in the following manner: replace cos 2o by 2 cos® @« — 1 and factor
the resulting quadratic and integrate the factors separately.

2T 27
f lOg(a+bOOSa+ccOSZa)da=f log (@ — ¢ + b cos a + 2¢ cos’ a) da
o o

27 27 2T
5.17) = fo log « do + fo log (1 + & cos a) da +£ log (1 4+ 5 cos ) da

= 2rlog x + 27 log 3(1 + /1 — &) + 2 log (1 + /1 — »).

If we now -expand (5.16) by multiplying the factors within the brackets and
substitute for x, » and & we find

(5.18) o(ti, &) ~[A + B+ C + D" = p,

where
a=1—6t1—2t2, A=i—(1—4t1—'2t2),

b =8t + 2., B = 1[1 — 12t — 4ty + 8tits + 283
5.19) — 204t + )VE + 4],
' ¢ = —2%, C = 31 — 12t — 4t + 8tit» + 203

+ 204t + &)V + 40P,
D = 1(1 — 164 — 4)".
From 518) P=A + B+ C+ Dandatty =0
P =311+ V1 = 4n),

(5.20) gff = —2[1 + 2(1 — 4671,
1
FP_  —-32 _ (1—V1-—4p)
atr (1 — 4b) 21 )
Now
a‘p 1 —3n—1 ﬂj
W P i
(5.21)

& bt | 1 oPY | ,oP
2 —3nP (—3n 1) A +P0tf .
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If we substitute in this formula and integrate the first with respect to & we shall
obtain the first moment of the ratio #.. If we integrate the second twice with
respect to 2 , we shall obtain the second moment of the ratio 5. We find these
moments to be

€ 2
M, o3 t2 g 9n' 4 23n 412

n+1 T (n+ D+ 2)
2 oan® + Tn + 4

o =

T (n+1)n+2)°

(5.22)

6. Likelihood criteria for multiple serial correlation. Given a sample of
n observations, z;, T2, +** , Zs, We shall assume that they are distributed
according to the law

L\ B e S
6.1) dP, = (m)ne 202 4o i=1 ! dzy - -+ dz,, (@i = Tnys)

that is, that each variate, say at the time ¢, has as its mean value a linear function
of the variates at time ¢ — l;,t — lo, ete. Let usinvestigate the likelihood criteria
for testing the hypothesis, H,, that each variate is independent of the others;
ie. that the b, =0 (¢ =1, ---,r). For the hypothesis H, we define the space
Q and the space w, as follows:

Q: @ >0 —o < a,b; < o
62) {w: >0 —w<a<owo, b=0,
we find the likelihood ratio criterion

.. , 1 =0, 1 r
6.3 L LUIR Bl =L
©63) a0 g pg=1, -,
in which
Qo = E (xa - j)z

6.4) a0 = 2 (Ta — &) @att; — %)

aij = 2 (apt; — %) (@ap; — )
[+3

and it is noted that a;; = ae and if the I; are equispaced a;,iye = @.. A isa
statistic which measures how completely each variate at time ¢ can be expressed
as a linear function of variates spaced at time ¢t — I, ¢ — [, ete.

Next we shall develop a statistic for testing the hypothesis, H,, , that of the
set of the values b; (¢ = 1, ---, 7) in (6.1) the subset bui1, bmi2, -+, b, = 0.
Here we have the same likelihood function but for H, ., we define the spaces
Q and w as follows:

{SZ: @ >0 —wo < a,b; < o

(6.5) PF>0 —w<ab <o, by=0,

u=(l7"';m)7 w=(m+1,"',7'):
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and obtain the ecriterion

,j=0,1,---,1
p,q=1,-~,r,
n Qsj
(6~6) )\3./m=%llzuvll 8,t=0,1,"‘,m,
e o u,v=1,-~,m,
(m < 7).

The form and the derivation of these X criteria parallels very closely that of the
likelihood ratio criteria obtained in multivariate analysis for testing significance
of regression coefficients. -

Case I. If we set r = 1 in A\, we obtain

Qe Qor .

a A

6.7) A = J0n Gwl _ 1 — B
Qoo oo Qoo

for which the distribution is given in (3.24).
CaseIl. If wesetr = 2, we have

Qoo Qo1 Qo2
Qo1 Aun g2
Qe Qai2 Qa2
Qi1 Q2
Q12 Qg2

(6.8) Nt =
Qoo

for which if we take ; = 1, I, = 2 we get

Qo Qon1 Co2
Qor Qo oy
Qpz Qo1 Goo
a0 Go|
Qo1 Qoo

(6.9)
Qoo

The expanded form of this numerator is a3 + 20510 — d00ae2 — 251000 -
Let us consider

1 \* r= 1 22(1—00)—01 2Tt 1—02Z Tata
(6.10) (;‘(00, 01’ 02) = <m a) [~ . .f e 202{2 (1—89)—01 2 +1—02 +2}H dxa.

We shall find the mean and variance of p\3'" (mean = 0) when the hypothesis
oH, (r = 2) is true. We can find the first moment of \3'" then by performing
the following operations: (a) compute

(6.11) Vo yoPpde 0o ,000

300 067 90, 96, 96; a0; 96
(this will give the first moment of the numerator) and set 8, = 0, (b) integrate
from — % to 6, + 6 with respect to 6, + 6, = ¢, from — o to 6, — 6;, with
respect to 6p — 6; = £, and set 6; = O (at this point we will have the first moment
of the third order determinant divided by the second order determinant), (c)
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integrate with respect to 6 from — « to 0. The reason for step (b) is easily
seen since the second order determinant ago — ag may be written (ap — @)
(a0 + ao).

Further moments may be computed in a similar manner. o¢2(6o, 61, 62)
may be written as a determinant in the manner indicated in (3.4) and (3.5).
Here,a; = 1 — 6y, 02 = @, = —361and a3 = an1 = —36; and a to @,z = 0,
then

—2 ul “ i—1 il 27!"]{7 4:71’]0
(6.12)  oz2(6s, 01, 02) = I > @ =11 (al + 2a, cos 4 2a3 cos —)
k=1 i=1 k=1 n n

We shall approximate ogz(6o, 61, 62) by the method contained between (5.11)
and (5.18). We set

(6.13) o200, 01, 62) = fI (a + b cos 2rk + ¢ cos 4—7"16)_%
k=1 n n

and obtained '
(6.14) o280, 01, 6) ~[A+B+C+ D" =pH
where

A=%(a—o

B = 14’ — 4¢ — 2b° — 2bEY) = 36
(6.15) C = 3(4d’ — 4 — 2V’ + BEH! = 3y

D = }(a+ o' = &) = i

E =0 + 8 — a).

It is easily seen that we may operate (differentiate and integrate) with a, b,
¢, in place of 6, 61, 8. respectively. Therefore, we compute

-a—‘P = —%nP—%n—l.a_[)

(6.16) E be
' o 4 e[, s aP>2 & P]
and since P = A + B + C + D we compute
o4 _ 1 dA_
ac 4 ac?
0B _ 1 498, 62_3— LI 15 ﬁ@)z —%‘f_@]
_6?_166 ac’ ac 16 28 ac + 8 dc?
aC _ , 49y, 9C_ 1 [_; _%(ay>2 _5027]
(6.17) g i6Y 3’ oE 16 Y \ac + o
8D _ | _3 e, D _1[ _, 4 (a:)z Y e]
% % a0 3@'5[ ' \3) T ae
2
F _ 6c —8a; 2L - 1.

dc ac?
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In order to evaluate the expressions in (6.17) we must find

B _ o 0B o o[ 1 aE) a_E]
Cae - TEB TGS ge = T8 —o\%) TP s

2 2
©18) - _gc+ bE‘%‘-’g; Fv_ gy bE"*[—% (%g) +E6—£J]

dc a ac? ac?
Jde e
F i 2(a + ¢); Fr

If we now set ¢ = 0, we obtain
P =+ @ - )
f_)_l_’__a—(az—bz)%
d  2(a® — b}
P _ 2d' — 4a’b" 4 b* + (—20° + 20b°) (@’ — b*)?
act 2b%(a? — b2)} )
We may now substitute these values in (6.16) and then substitute the resulting

expressions in (6.11). The remaining values that are required for (6.11) are
easily computed since they may be obtained from ¢ with ¢ = 0, i.e.

(6.20) oe2(0o 5 01, 0) = [3(a+ (@ — BT,
The result of these substitutions gives
—n’(n + )P
8(a> — b2’
in which we set d = 4(a — b) and ¢ = 4(a 4+ b) and integrate with respect to
d and e. "We obtain

(6.22)

(6.19)

(6.21)

g [+ @ — B,

and if we set b = 0 and integrate with respect to a, setting a = 1, (6 = 0), we
finally have

. E\N™ =
(6.23) OV - + 3

We shall now obtain the first moment of \; without the restriction that the
mean equal zero. For this purpose let us consider

1 n 0
(6.24) ¢2(00, 01 , 02) = (m) [. . .f e’(llzaz) [ago(1—09)—ap101—ap2f2] H dxa .

Herean =1 — 0+ my0s = @0 = —301 + m, 05 = @y = —36: + m, as to
Gn2 = m Where m = (6 + 6 + 6»)/n. Expanding the determinant as in
(6.12) we find

o100, 01, 02) = H Z awn

k=1 i=1

n—2
= II (al + 2a, cos 27 + 2as cos—— + X w "1)

T=4

(6.25)
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Now
n—2 n—2
2omwi=m ) wp
= =1
(6.26) 1 1 2 —2
_m(1+w+w_+w + )7 k;én’
| mn - 5), k=mn,
so that
n—1
(6.27) 0z (0, 01, 6:) = I (al + 2a; cos g%k + 205 cos 4—:,@> )
k=1

We have obtained here a product which is the same as that in (6.12) except that
the last factor is missing. The approximation corresponding to (6.14) will
then be

[4+B+C+D

(6.28) ¢2(60, 61, 6:) =2 @+bF o ,
since we may take the approximation for the product from 1 to n and divide
by the last factor, (@ + b + ¢). The procedure for finding the first moment for
Az (mean = q) is exactly the same as that outlined for finding the first moment

of A2 (mean = 0). We obtain

2/ny __ n—1
(6.29) EQ™) = s
Case III. If wesetr = 2, m = 1in \,,» we have, if we take [y = 1,1, = 2
Goo Qo1 Qo2
Gor Qoo Qo1 | Qoo
(6-30) >\§,/1n — Qo2 Qo af)()2 .
Goo Qo1
Qo1 Qco
To find the moments of A;,; let us consider the following distribution,
1 " —2—1; 2 la—i-Blear1—)12
+\0. n = o 7" a=1 IId )y
(6.31) dP, (\/21r a> e 2z

in which 8 represents the population value of the serial correlation coefficient.
The moment generating function for the joint distribution of aw/2¢", @o/20"

and ag/2¢” will be

0o, 00,0 = (7, ) [ [ o (5 150 = ©) = Gzass — 2F

(6.32) — apbo — anby — a0202}> I dza

= (’\/%o)n [w -fexp (—%l l[an(l 4+ 8 — o)
+ an(—28 — 61) + ao2(—02)]>ﬂdxa.
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This function is very similar to (6.24). The approximation to ¢z,:(6, 61, 62)
here will be exactly the same as that obtained in (6.28) for ¢2(6, 61, 62) except
that herea = 1 + 8° — 6o,b=—28— 6,,c = —06;. For the case where the
mean is zero, we find the approximation (6.14) in which a, b, and ¢ have the
above values.

We may obtain the first moment of My by operating on the function
¢2,1(60 , 0: , 62) proceeding as follows: (a) compute (6.11) as before and set . = 0,
(b) integrate from — o to 6o + 6, with respect to o + 61 = ¢ from — e« to 6p — 6;
with respect to 60 — 6, = £ (at this point we will have the first moment of the
third order determinant divided by the second order determinant), (c¢) differen-
tiate with respect to 6o , (d) repeat step (b), and set 6, and 6, = 0.

The first two steps for obtaining the first moment of o\2; (mean = 0) were
performed for the first moment of oA: so that we may perform step (c) on (6.22).
We obtain
w3 + @ — HYH !

4(a? — b2)} ’

(6.33)
and finally by step (d) we have
(6.34) E@) = 2 B + @ = 591,

in which @ = 1 4 §*and b = —28 since 6, and 6, have been set equal to zero.
Substitution of these values in (6.34) shows that it is independent of 8, and we
find

2/n — n
(6.35) E@\2") i
Using ¢2,1(60 , 61, 62), the generating function for Az;; (mean = a), we find
(6.36) Boyn ="

The procedure for obtaining the second moments of the above criteria consists
essentially of performing twice the operations prescribed for obtaining the first
moments. The details given in connection with the first moment are sufficient
to indicate the procedure. The details for the second moments are too com-
plicated algebraically to list here. Table I indicates the second moments ob-
tained as well as other moments obtained in the earlier parts of the paper.

7. Serial correlation in several variables. Given a sample of 7 observations

on each of k variables z:o, ¢ = 1, -+ - , k, we shall assume they are distributed
as follows:
in
(7.1) dP, = (2AW‘7° —324j(za—0i—bizi,a+k) (Tja—0;—bjTj,a+k) I d2ia .
™

We wish to test the hypothesis Hx, that there is no serial correlation, i.e., that
b;=0,7=1, ---, k. For this purpose let us define the space @ and w as follows:
7.2) Q: || A:j|| pos. def. —o < @i, bi <

: || Aij|| pos. def. —w < a; < ®o; b; = 0.
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TABLE I
z formula no. E(x) E@=?) a2
bo (2.11) 0 - i 5 h-}-—z
b | (@6 " T (nf—(yll)%ﬂ_n
om (5.3) 2 4_(:{”4_1;23—) 7:%_2
w60 G G | oD

3n+2 | 90+ 23n + 12 20’ + Tn + 4

no (58 "+l | mFDmF2 (n F 1’(n + 2)
woleon ) S GI0ED | atae D
voem s G e | aroees
M| GO | it e
w9 A s GRS
oo | @08 iy GRS | G ra T
N1 i (6.30) | “ ; : (n ;(73 )j—n 2_; 2 | r%%?:-—l;)

The mean of by and b were also obtained by Anderson [8].

The development of the appropriate \ criterion for this case parallels very closely
the development of the A criteria in multiple regression analysis. The criterion
obtained for testing the hypothesis Hi, is

Q;j bij

b.. Qs
73 A = b Gy
) T ek
where

Qz; = E (Tia — %) (@ja — a_;j):
a

bi; = 32 @ia — ) @jarr — T) + 2 @iars — 2 (@ia — 7).
The probability theory for the A criteria in (7.3) remains to be developed.
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8. Summary. A problem in serial correlation which has received considerable
attention is that of devising a statistic for indicating the presence of a relation
between successive observations, i.e. a lack of independence of the order in which
the observations were drawn. Von Neumann developed the distribution and
moments. of the ratio of the mean square successive difference to the variance.
R. L. Anderson presented the distribution of a serial correlation coefficient which
is the ratio R = ZZaati/Zzs (I > 1, subscripts reduced mod 7).

The present investigation was undertaken with the object of developing the
likelihood ratio functions for testing various hypotheses connected with serial
correlation in one or more variables and determining the moments and in some
cases the distributions of these likelihood ratios.

The variates are considered to be ordered by their subscripts & = 1, --- , n.
The introduction of Z,41 = @1, Tuiz = T2 ete. is made to obtain a symmetry
which greatly simplifies the problem.

The likelihood ratio criteria were developed for testing the hypotheses

a) that x, is independent of .4,

b) that z. is independent of x4y, ¢ = 1, -+, 7}

¢) that z, is independent of some subset of the Za;

d) that in the case of several variables %ip, ¢ = 1, -,k & = 1, -+, n
the ;o ,72 = 1, - - - , k are independent of the x;,.4r . These criteria are similar

in form to those obtained in regression analysis.

The likelihood ratio criterion for testing the hypothesis a) turns out to be
A = (1 — R)™* where R is the function given above. The moments of R are
obtained and from these the moments of A¥". These moments are found to
agree with those of a Pearson Type I curve to n/2 moments. A simple trans-
formation gives us the moments of a ratio differing from that used by von
Neumann by the addition of the term (x, — 21)” to the numerator. A simplifica-
tion of the moments is attained by this change. In fact, if we denote this
altered statistic by 7 we find that (n — 2)* is distributed according to a Pearson
Type I curve to n/2 moments.

The mean and variance were determined for the ratio of the sum of squares
of the second successive differences to the first successive differences.

The mean and variance are obtained for the likelihood criteria for testing
the hypothesis b) for r = 2, and for testing the hypothesis ¢) for r = 2 where
Zorl, I8 the subset of z.is; ; ¢ = 1, 2).

All the above moments were obtained under the assumption that the hypothe-
sis to be tested was true. No results have been obtained thus far in cases b)
and ¢) for a general r nor for hypothesis d).

The moments for the several cases above were obtained by the use of moment
generating functions which, for the criteria used, took the form of the product of
n terms. In the case a) it was shown that the product could be approximately
represented by the nth power of a single expression which was equivalent for the
purpose of obtaining the first » moments. A method was developed for making
analogous approximations to the generating functions for cases b) and c) since
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it was not found possible to obtain the moments from the products in their
original form.

Thé author wishes to express his gratitude to Professor S. S. Wilks under
whose helpful direction this paper was written.
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