THE EXPECTED VALUE AND VARIANCE OF THE RECIPROCAL AND
OTHER NEGATIVE POWERS OF A POSITIVE BERNOULLIAN
VARIATE'

By FrepERICK F. STEPHAN

War Production Board, Washington

1. Introduction. The expected value of the reciprocal of a Bernoullian
variate appears in certain problems of random sampling wherein both practical
considerations and mathematical necessity make zero an inadmissible valce
of the variate. This special condition excluding zero is necessary from a practical
standpoint because statistics can not be calculated from an empty class. Itisa
necessary condition, in the mathematical sense, for the expected value, and
variances involving it, to be finite. When subject to this condition the Bernoul-
lian variate will be designated the positive Bernoullian variate.

There appears to be no simple expression for the expected value of the recip-
rocal such as there is for the expected value of positive integral powers of the
positive Bernoullian variate. This paper presents in (15) a factorial series,
which can be computed conveniently to any desired number of terms by means
of the recursion relation (18). Upper and lower bounds on the remainder may
be computed readily from (20), (21), (23), (24), and (26) and the approximation
may be improved by adding an estimate of the remainder taken between these
bounds. A factorial series for the expected value of negative integral powers
is given in (34). A factorial series for the expected value of the reciprocal of the
positive hypergeometric variate is given in (53). Series for the variances follow
directly from the series for expected values.

A simple example of the sampling problems in which this expected value
appears is presented by the following instance of estimates derived from samples
of variable size: ,

An infinite population consists of items of two kinds or classes, A and B.
Lots of N items each are drawn at random. In such lots the number of items,
z’, that are of class A is an ordinary Bernoullian variate. Next, every lot
composed entirely of items of class B is discarded. This excludes all lots for
which 2’ = 0. From each remaining lot the N — z’ items of class B are set
aside, leaving a sample composed entirely of items of class A. The number of
such items, z, varies from s?,mple to sample. It will be designated a positive
Bernoullian variate since x = z’ if ' > 0 and z does not exist if 2’ < 0. Finally,
let there be associated with each item in class A a particular value of a variable,
y, the variance of which in A4 is ¢°. Then if the mean value of y is computed for
each sample, the error variance of such means is E(#/z) = JE(1/z).

Instances similar to that just described occur in the design of sampling surveys
from which statistics are to be obtained separately for each of several classes

1Developed from a section of a paper presented to the Washington meeting of
the Institute of Mathematical Statistics on June 18, 1943.

50

j

l

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,% )20
The Annals of Mathematical Statistics. MIKORS ®

WWw.jstor.org
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of the population, i.e., each statistic is to be computed from some part of the
sample instead of all of it. They also occur in certain sampling problems in
which some of the items drawn for a sample turn out to be blanks.

A related problem concerning the error variance of the proportion of males
among infants born in any one year was considered by G. Bohlmann in a paper
on approximations to the expected value and standard error of a function [1].
His approach to the problem was to expand the function in a Taylor series and
take the expected value of each term. The conditions under which the resulting
series converges were developed for certain functions of a Bernoullian variate.
The present paper provides a different and, in certain respects, superior approach
to the problem employing a method due to Stirling [2]. While the method is
applied to the reciprocal and negative powers it is also applicable to certain
other functions of a Bernoullian variate.

2. The positive Bernoullian variate. Let x be a random variate defined by a
Bernoullian probability function subject to the special condition z > 0. The
probability of z in n is

6 P(z) = (:) P ¢" /(1 — ¢")

where x and n are integers, 1 < xz < n, and

n n!
@ (x) T zl(n — )
The probabilities p and ¢ are constants, 0 < p =1 — ¢ < 1.

The divisor 1 — q" arises from the condition excluding zero. (Bohlmann
omits this factor, assuming that ¢" is negligible, an assumption that is not
always valid. In fact, ¢" ~ ¢ "".) An extension of this condition to exclude
all values of z less than a specified constant will be considered in a later section.

Throughout this paper summation is understood to be from z = 1tox = n
unless it is shown otherwise.

3. Expected values and moments. The expected values of z and its positive
integral powers are
3 E(@) = np/(1 — ¢")
) E@) = (npg + n'p")/(1 — ¢")
and, in general |

J
(5) E@) = »/( — ¢") = 2 &ij! (n) P, i>o0
7 J1—q
where »; is the 7th moment about zero of an ordinary Bernoullian variate with
the same n and p and the &' are the Stirling numbers of the second kind (see
Table 1).
The moments about E(x) are somewhat more complicated than the corre-
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sponding moments of the ordinary Bernoullian variate. For example, the
variance

and the third moment
— 3n2p2 qn+l nsz qn (1 + qn)
@ Bl - E@)} = 9= P"Pe _ )
())} I—Q" (l_qn)2+ (l_qn)a
The moments about np, the first moment of an ordinary Bernoullian variate,
are

®) E{(z — np)’} = (u: + (=1 (np)'¢")/Q — ¢")
TABLE 1
Stirling numbers of the second kind, S}
7\’\ 1 2 3 4 5 6
~
1 1 0 0 0 0 0
2 1 1 0 0 0 0
3 1 3 1 0 0 0
4 1 7 6 1 0 0
5 1 15 25 10 1 0
6 1 31 90 65 15 1
7 1 63 301 350 140 21
8 1 127 966 1,709 1,050 266
9 1 255 3,025 7,770 6,951 2,646
10 1 511 9,330 34,105 42,525 22,827

where y; is the ith moment, about the mean, of an ordinary Bernoullian variate
with the same values n and p.

The expected value of the reciprocal is
1\ _ 1 1 1 11 _ 2 n—2
E(&) = i=¢ {1 npg" + 550 = 1p'g
i n—i 1 n
@ +---+1.(".>pq +---+;Lp}.

AT
This equation is not suitable for the computation of E(1/x) to a satisfactory
degree of approximation unless np is small, say less than 5 for most purposes.
The number of terms necessary to obtain a computed value with four significant
figures, for example, may be estimated to be approximately 8v/npg/( — ¢*).
Expressed as a function of ¢, E(1/z) becomes

1 _ 1 qz—l — qﬂ»

(10) E(5>_l—q"zn—x+l

a series which may be convenient for small values of g.
E(1/z) may be expanded in a power series by Taylor’s Theorem. It may
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also be expanded in a finite series of expected values of powers, either in E(z),

E(@?), --- orin E(x — ¢), E(x — ¢)’, -- - ¢ being any positive constant. The
]

second of these three series may be obtained by expandingi 1- %’ and taking
expected values, and the third by dividing outi = (ﬁ_—c) and taking ex-
pected values. For all three expansions, however, the terms become progres-
sively more complicated and laborious to compute. A simpler and more con-
venient series for actual computations may be obtained by expanding 1/z in a.
factorial series.

4. Expansion of E(1/z) in a series of inverse factorials. It is easy to prove

by induction that, z > 0,

1_ 0! 1! (@ — 1)!a!
aw FET itTeFera T T @
t — 1!x!
+ -+ m + R (x)
where
(12) Riz) = tiz — 1)V (x + !

is the remainder after the first ¢ terms. This is, of course, an expansion in
Beta functions. It is also a simple special case of the expansion of a function
in a “faculty series” or series of inverse factorials [3] with an exact expression
for the remainder.

Let

- z+i n—z K R
(13) s = z(’””.)p ¢ __ 1 (1_2(”+%)pzq»+¢_z).

z+i/ 1—¢ 1-—¢ =\ oz

Then, since

z! n\ e nls;(1 —q")
as G+ (x) PO oy
the expected value of (11) is
1 0!s; 1!s, @ — 1)Inls;
E(2) = veo g BT RS,
) (x) wtip T arDmror T T mrDp
4o G DNl op P

n+t)!p
When developed as infinite series, both (11) and (15) are convergent since the

remainders R,(z) —» 0ast{— o,
For computing purposes it is convenient to write

(16) B(}) = S w+ ER @)

in which, since

17) $i = 81— @

. in—-l\
n—l—z—l)pq
) 1—q’
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the following recursion relation exists between u; and i1
G —Dinls; _ @ — Duga — k/f7

(18) BRI ;n—+1:)p S
M mF Dp

where

(19) k = npg"/(1 — ¢") ~ np/(e” — 1).

This reduces the computing of the u; to a simple repetitive procedure. The
computing is still simpler in those problems in which, for the degree of precision
desired, k is negligible.

An estimate of E(R.(z)) should be added to the sum in (16) to improve the
approximation. To determine a suitable estimate, a lover bound for the ex-
pected value of the remainders may be computed from one of the following

inequalities:

Gt (=1t
ER.(x)) = E; DN P(x)
_ 1 _z—m (z — m)*\ ¢ — 1)!x!
(20) - Et(m m? + mix (z+ 0! P)
1 + t
>7—ntu ——t(t—l)u¢_1+ tu,, m # 0
which is maximized by setting m = {(¢ — 1)’”;_1 tu:}/u., whence
(21) ER.(z)) > tii/{(t — Duen — tus}, ¢ > 1.
Also, since when m = E(z)
22) 2@ —m) L2 Pe) < 26~ mP@ =
a simpler inequality is
(23) ER.(z)) > tu(l — ¢")/np.
Further, if only the first ¢ < » terms in (20) are taken,
gl (x — 1)! ¥
(24) E(R.(x)) > ; _—(x T ol P(x) = “El vz
where
__k _G@-Dmn—=z+1)p
(25) v = = and v, 2z F D4 Va1 .
An upper bound may be computed from
tu, (26.1)
1 1
§ tu, + §vl (26.2)
(26) ER@) <ily 42,41, (26.3)
3 3 6
1—1
- tu; + E (- - -') Vz (26'j)
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the choice among which may be governed by computing convenience. Taken
with (16), these inequalities provide lower and upper bounds for E(1/x).

6. Examples. Two examples will serve to illustrate the factorial series (15).

ExamMpLE 1
Computation of E(1/x) forn = 100 and p = 0.1
np =10 k= .000,265,621 E(1) = .111,527

Binomzial Factorial
sum of ¢ Sum of t series lower Upper
t terms terms bounds* bound**
1 .000,295 .098,984 .099,647 .132,167
2 .001,107 .108,675 .109,006 (.111,034) .115,247
3 .003,071 .110,548 .110,752 (.111,313) .112,498
4 .007,039 .111,082 .111,223 (.111,381) .111,852
5 .013,813 .111,280 .111,385 (.111,452) .111,657
6 .023,743 .111,370 .111,452 (.111,478) .111,587
7 .036,442 .111,416 .111,483 (.111,489) .111,556
8 .050,796 .111,444 .111,500 (.111,497) .111,544
9 .065,287 .111,461 .111,509 (.111,503) .111,537
10 .078,474 .111,472 .111,514 (.111,508) .111,534
11 .089,372 .111,481 .111,518 (.111,511) .111,532
12 .097,604 .111,487 .111,520 .111,530
13 .103,320 .111,492 .111,521 .111,529
14 .106,985 .111,495 .111,523 .111,529
15 .109,164 .111,498 .111,524 .111,529
16 .110,369 .111,501 .111,524 .111,528
17 .110,992 .111,503 .111,525 .111,528
18 .111,294 .111,505 .111,525,4 .111,527,5
19 .111,431 .111,506 .111,525,6 .111,527,3
20 .111,489 .111,508 .111,525;8 .111,527,1

24 111,526

100 .111,527 (end of series)

* Sum of ¢ terms plus lower bound for E(R(z)) from (24) with ¢ = 3. Num-
bers in parentheses are calculated from (21).
** Sum of ¢ terms plus upper bound on E(R(x)) from (26.3).

ExampLE 2
Computation of E(1/x) for n = 1000 and p = 0.3

np = 300 E=9.7X10"

t Sum of t terms Factorial series upper and lower bounds*
1 .003,330,003,330

.003,346,7
2 -003,341,081,185 {.003,341,0 (.003,341,155,4)

* Computed as in Example 1.
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t Sum of t terms Factorial series upper and lower bounds*

3 .003,341,211
.003,341,154,817 {.003,341’155

4 .003,341,156,29
-003,341,155,549 {.003 ,341,155,56

5

.003,341,155 559 {'003’341 155,58

.003,341,155,57

For the binomial series, the sum of the largest eight terms of (9), not the
first eight terms, is approximately .0007 which is less than 1/4 of the
value of E(1/x).

In.the first example the value of np is almost small enough to make computation
by (9) convenient. In the second example about 120 terms of (9) must be com-
puted to obtain an approximation to four significant figures but only four terms
of the factorial series are needed to obtain seven significant figures. It is evi-
dent that as np increases, the number of terms of (16) required to obtain an
approximation to a given number of significant figures decreases. The opposite
is true of (9) as n increases, or as p approaches a value near 1/2.

6. Extending the special condition. In some sampling problems all values
of z less than a specified value, g, and greater than another specified value, &,
are inadmissible. Then the probability of z in = is

27 P(z|g, h) = (:) P°¢" /%008, g=<zZh,

where

(28) S0 = E )

Zm=g

With this new condition, E(1/z) is given by (15) if s; is replaced by

z+€ u—z
(29) Siah = Zmg ("c + 7’) 80,94

and the summation in the remainder term is from g to A. Also since

_ _ 4 n+i—1) o+i-1_n—g
Siom 8i-1,9.h oun {( g+i—1 P q

(30) .
_frnt+ =1\ ai nna
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a recursion relation similar to (18) may be used in computing

(‘i ot 1)!1&!83,,,;.

31
@1 _ G = Dusron — @ — D{K/@g+ ¢ — D! + kan/(h + 9)}
(n+9)p

where

_ alp'g""
®2) ko= e T

ph qn —h+1

33) ky = (—__n— W) Tomn

The inequalities (20) to (23) inclusive and (26) are applicable to this extension
on substitution of u;,,x for u; .

7. Expansion of E(z ") in a factorial series. Equation (11) may be extended
to other negative integral powers of z. If a is a positive integer

-y _ w1 _ bues 2.0 83
o B =22P@ = it ¥ @ F Din T 28
bg.,s;n
ot e IR @PW)
where
R - ' 2V P(z)
(35) R (x) = ’Z_I bes1i m

and the b;, ; are the absolute values of the Stirling numbers of the first kind (see
Table 2) formed by the recursion relation

(36) bs; = biaj1+ G — 1bin,j, bij=0 if j>¢ or j<1.
It is evident that

@7 ,Z} bi; = 1!
(38) by = ¢ — 1! and b;; < 2! if 7 > 1,
whence
RiW) = 4 PO)
’ (¢ + D! — Hz!P(x)
39) R.(z) < CET s z>1
P(x).

(t+ (¢t + 1)
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Hence R:(z) — 0 and E(R:(z)) — 0 as t — « and the sum of the first ¢ terms of
(34) converges to E(x™") as t — .

The following recursion relation corresponding to (18) provides a simple proce-
dure for computing:

(us'—l.a/ bi——l,a) - k/?«!
(n+ 1p )

The computing procedure, then, follows a cycle of four simple operations:
1. Divide {k/(z — 1)!} by =.

2. Subtract the quotient from {u;_1,./bi-1.4}.

3. Divide the difference by {(n + ¢ + 1)»p} + p. The quotient is u;.a/bia .
4. Multiply this quotient by bi.a .

(40) Uia = bs‘.aui/(i - 1)! = bt’.a

TABLE 2
Absolute values of Stirling numbers of the first kind, b;, ;*

\ i
2 3 4 5 6
AU
AN
1 1 0 0 0 0 0
2 1 1 0 0 0 0
3 2 3 1 0 0 0
4 6 11 6 1 0 0
5 24 50 35 10 1 0
6 120 274 225 85 15 1
7 720 1,764 1,624 735 175 21
8 5,040 13,068 13,132 6,769 | 1,960 322
9 40,320 109,584 118,124 | 67,284 | 22,449 4,536
10 | 362,880 | 1,026,576 | 1,172,700 | 723,680 | 269,325 | 63,273

* These numbers are also known as differential coefficients of zero [4].

The expressions in braces are quantities obtained in the preceding cycle.
The u;, may also be calculated from (18), or checked by such a calculation.
A lower bound for E(R'(x)) after ¢ terms may be calculated from the first ¢
terms of

ER@) = T R@PE > X Ri@PE)
(41) -, .
buyrsnlp®e"™

gli;x“"“(x +Ol(n —2)!(1 — ¢»)

or from an inequality similar to (23)

’ Ue . ben,
“) ER@) > &=y X @y
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which may also be written

BRG) > T g™ | B + 0E@ + =D - B

43) 1 ,
- E b,+1,5(E(x))’}.
jmatl
An upper bound may be calculated from
(44) BR®) < —— > buss < 1 + Due
t— D=
or
' N o Sy __alP@@) _
E[R'(x)) < g R'(x)P(z) + z_;“ ’Z-; et @+ le—
~ oo U = biri _ N
(45) <L R@P@+ gy 5 o = 2 F@OP@

Ue t+41 A
+ @ 1)!c¢+1{(0 + t).(c +t—1) ---c— i_;ﬂ bH-l.ij}~
8. The positive hypergeometric variate. The theory of sampling without
replacement from a finite population rests on the hypergeometric variate. Its
probability function is

(46) P&|N, M,n) = (1;’)(1‘7’& - f)/(f:’)

In applications to finite sampling, N is the number of items in the population,
M is the number of them that are of a certain kind, » is the number of items
drawn for the sample, and z is the number of items of the designated kind in the
sample.

As in the case of the Bernoullian variate, it is necessary to exclude zero in
defining the expected value of 1/z. The probability function of the positive
hypergeometric variate, then, is

47 Py(z) = P(x|N, M, n)/s, z>0
where
(48) ss = 1 — PO|N, M, n).

Throughout this section the notation will have reference to (47) instead of (1).
The expected values of positive integral powers of z are

(49) E(z) = Mn/(Nsy)

1 [M(M — 1)n(n — 1) , Mn
sT.{ N - D +7v—}

(50) E@’) =
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and, in general,

(61) E@') = Zl SlEG@!Y/(z — j))
=

where the & are the Stirling numbers of the second kind and

z! MInl(N — )!
(52) E ((z - j)!) @ =it =) I NTs’

The factorial series corresponding to (16) is

53) £(Y) = £1Puw) = 3 e+ BRita)
where ,
, _ s @ =1t
(54) ui = 2 IOl Pa(z)
and
tlx — 1)!
(55) E(R(=) = 2~ wIO Px(z).

The u; may be computed from

_ (N + 1)81
M= M+ D@+ D)se

(56)

So

and the recursion relation

_ (N + 2)s:
(57) U M+ D)® + s
where
(58) s.'=1—-ioP(x|N+z’,M+z‘,n+i).

1 N+1 (N — M)I(N — n)!
{(M +1D)m+1) NN-M-—n—-D)!M+1Dn+ 1)}

The computing is quite simple in those instances in which 1 — s, is negligible.
Corresponding to (26), an upper bound for the expected value of the re-

mainders after ¢ terms may be computed from
4

tu,
du, + 3P=(1)/(t + 1)
o e <+ 3

\ Ze=1

> tu +t'§(1— 1 Pue) 5 2
j ¢ H z 7z (x+t)!.

(59.1)
(59.2)

(59.3)

(89.7)
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A lower bound for the expected value of the remainders may be computed
from one of the following inequalities corresponding to (23), (21) and (24)

(60) ER(x)) > tudNsy/(Mn)

(61) ER(x) > tui/{(t — 1)uer — tu)
t(x — 1)!

(62) E(Ry(z)) > Z: & =@

The expected values of other negative integral powers of the positive hyper-
geometric variate may be calculated from

©3) B = 3 buaws/6 — D! + ER@)
where

&z Pa(z)
(64) Rt(x) Z beta,; —:c—"(—x—-l-—t_)—'— .

With Pg(zx) substituted for P(z), (39), (42), (43), (44), and (45) provide lower
and upper bounds for E(R;(z)) for the positive hypergeometric variate. Also,
corresponding to (41)

(65) E(R}(z)) > f_,: R:(z)Px(z).

9. Variance and moments of 1/z and z™". The variance of 1/z, which is
EQ1/z") — (E(1/x))?, may be calculated from (16) and (34), with a = 2, for the
positive Bernoullian variate, and from (53) and (63), with @ = 2, for the positive
hypergeometric variate. Likewise, the variance of z™* and the moments of
1/z and 2™* about E(1/z) may be computed by the usual formulae.
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