NOTES

This section is devoled to brief research and expository articles, notes on methodology
and other short ttems.

——

NOTE ON THE LAW OF LARGE NUMBERS AND “FAIR” GAMES

By W. FELLER
Cornell University

1. “Fair” games. Let {X;} be a sequence of independent random variables
with the same cumulative distribution function V(x). Suppose that the ex-
pectation

@ E(X) = [:ﬂ zdV(@@) = M

exists, and put

@) S =X14 - + Xn.

The weak law of large numbers states® that for every ¢ > 0 and n —
3) Pr{|S,—nM|<en}—1.

In the picturesque language of the theory of games this means that, after a
large number of trials, the accumulated gain S, will, with great probability, be
of the order of magnitude of nM. This led to the definition that a game is
“fair’” if the entrance fee for each trial is M. Unfortunately this definition
creates the erroneous notion that a ‘fair” game is necessarily fair. To disprove
it we shall (section 3) exhibit an example which will show:

(I)* A game can be “fair” and nevertheless such that the probability tends to one
that, after n trials, the player will have sustained a loss L, = nM — 8, of the order
of magnitude n(log n)~", where n > 0 is arbitrarily small. In other words, in our
example

4) Pr{nM — S, > (1 — enllogn)™"} — 1.

Of course, L, is necessarily of smaller order of magnitude than n; however, our
example can be modified in such a way that the ratio of the loss L, to the ac-
cumulated entrance fees 7 decreases as slowly as one pleases.

This shows that a “fair”’ game can be exceedingly disadvantageous. Con-
versely, an ‘“‘unfair” game can very well be advantageous. If a careful driver
insures his car, the game is clearly “unfair’’ according to definition, and yet some

1 Usually (3) is proved only under more restrictive hypotheses. Actually the finiteness
of E(X,) implies even the strong law of large numbers; cf. KoLMoGoROFF, Grundbegriffe der
Wahrscheinlichkeitsrechnung (Berlin 1933), p. 59.
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states impose such games on drivers. Now in this and many other practical
cases the game is of such a nature that there is a very small probability p of
winning a comparatively great amount A; the “fair”” price would be p4. In
such cases the law of large numbers would be significant only if » is large com-
pared to 1/p, whereas actually the maximum number of games to ke played is
comparatively small. Clearly any theory meets practical requirements only
if it makes allowance for the number of trials and makes the ‘“fair’’ price depend
on the number of trials.

2. The Petersburg “paradox.” For obvious reasons the classical theory of
probability was unable to provide a precise formulation of the law of large
numbers and to establish the actual conditions of its validity. Often it has
been looked upon as a direct consequence of the definition of probability, and
this led to the so-called Petersburg paradox which presents no difficulties to the
modern theory. It refers to the case where the expectation (1) is infinite. The
usual example exhibits a game in which the possible gains in each trial are
distributed according to

(5) Pr{X =2} =27"

Here M = ». Now the law of large numbers (3) used to be proved (if at all)
only assuming the existence of moments of higher order. Nevertheless, the
classical theory postulated the validity of (3) even for M = «, and treating «
as a number (with © — x = 0) it argued that « is a “fair’’ price for the game
as defined in (5). Great ingenuity was exercized in order to reconcile this
result with commonsense.” Actually one can pass from (3) to the limit M — o,
but the only result to be arrived at is trivial and could be anticipated without
theory: If the player pays for each trial a fired amount A, he is likely to have a
positive gain provided he plays sufficiently long, i.e., provided n > N(A4),
where N (A) itself increases with A.

Instead of a paradox we reach the conclusion that the price should depend on
n, that is to say vary as the number of trials increases. For best results this
should be the case even if M is finite. It should be noticed that in the Petersburg
case (5) a variable price can be determined so that a law of large numbers will
hold which is in every respect analogous to (3). In this formula n is simply
the accumulated amount of entrance fees; denoting it by P, , formula (3) takes
on the equivalent form

‘

2 Among the latest textbooks, von Mises (Wahrscheinlichkeitsrechnung, Leipzig-Wien
1931, p. 108f.) avoids the difficulty by declaring that (5) can not represent a collectif because
of its infinite tail. This viewpoint is legitimate, but makes the law of large numbers inap-
plicable to practically all useful distributions. Fry (Probability and its Engineering Uses,
New York, 1928, p. 197) says: “The true explanation of the paradoxis ... based upon the
fact that in our every-day experience we have to deal only with individuals who have finite
fortunes and who would therefore be incapable of paying back the sums which are required

... The problem does not seem to be mentioned in Uspensky’s book.
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6) Pr{| 8. —P.|<el,}— 1.

It is this interpretation of (3) that leads to the notion of “fair” games. Now
the Petershburg game can also be played in a “fair” way:

(IT) Let the player in the Petersburg game (5) at the k-th trial pay the amount’
log: k. The accumulated entrance fees up to the n-th trial are P, ~ n logs n,
and the game is “fair” in the sense that the law of large numbers (6) holds. This
requirement delermines the entrance fees essentially uniquely (that is to say up to
terms of smaller order of magnitude which, by definition, remain undetermined).

3. Proofs. Theorems (1) and (IT) follow easily from the following
LemMA: Let a, — « be a sequence of positive numbers; in order that there exist
a sequence {b,} such that

@) Pr {|S, — b,] < ean} — 1

it 18 necessary and sufficient that for every & > 0 stmultaneously
(8) n f dV(z) — 0, a’n f 2 dV(z) — 0:
|z] >dan |zl <en

in this case (8) will hold with

9) b, = k}; f| pen® dvV(z)

(and, of course, for any other sequence {b%} if and only if [bn — ba| = O(a.)).
This lemma is a simple consequence of the necessary and sufficient conditions
for the generalized law of large numbers®.

To prove theorem (II) we have to determine a sequence {a,} such that (7)
will hold for the distribution function defined in (5) and with b, ~ a,,. A simple
computation shows that (8) will hold for any sequence {a.} which increases
faster than n. Moreover, the sequence {b,} defined by (9) will be of the same
order of magnitude as {a,} if, and only if, a. ~ n logz n. This proves (II).

Now let n > 0 be arbitrary, and define the distribution function ¥ (z) to have
a density
(10) V'(z) =

n
=TT fo €;
2’ logH"x re>e

at x = 0 the function V(z) shall have a jump of magnitude

©  qpdr
(11) 1—£m<1,

while V(x) is constant in the intervals * < 0 and 0 < 2 < e. For this distribu-
tion function we have obviously M = 1.

3 Log; stands for the logarithm to the basis 2.
4 Cf. FELLER, Acta Univ. Szeged, Vol. 8 (1937), pp. 191-201.
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Next, let forn > e
(12) a, = n log™" n.
Then (8) holds and from (9) and (10) we obtain easily for large »

(13) by =2 {1 — log7’ar} <n — (1 — €a,.
k=1

Substituting into (7) one sees that, again for sufficiently large n,

(14) Pr{S. —n+ (1 — ¢&a, < ea,} — 1,

or, since M = 1,

(15) Pr {S, — nM < —(1 — 2¢a,} — 1.

This proves (I).

A NOTE ON RANK, MULTICOLLINEARITY AND MULTIPLE
REGRESSION'

By GerHARD TINTNER

Towa State College

Let X;,(¢ = 1,2 --- M) be set of M random variables, each being observed at
t=1,2---N. Xi = M;+ y::. (Thisis essentially the situation envisaged
by Frisch [1]). The systematic part of our variables M;, = EX;,. They;, are
normally distributed with means zero. Their variances and covariances are
independent of ¢. The M;, and y;, are independent of each other. Define
X. = 2. X..,/N the arithmetic mean of X;, and z;, = X;; — X; the deviation from
the mean. Then a;; = Za;2;/(N — 1) gives the variances and covariances
of the observations. We want to determine the rank of the matrix of the
variances and covariances of M, .

Now assume that ||V;,|| is an estimate of the variance-covariance matrix of the
error terms or ‘“‘disturbances” y;,. The elements of this matrix are distributed
according to the Wishart distribution and are independent of the M;,. They
can be estimated as deviations from polynomial trends, as deviations from
Fourier series, by the Variate Difference Method, etc. The estimates could also
he based upon a priori knowledge if for instance the y;, are interpreted as errors
of measurement. Assume that the estimate is based upon N’ observations.

! The author is much obliged to Professors W. Gi. Cochran (Towa State College), H.
Hotelling (Columbia University), T. Koopmans (University of Chicago) and A. Wald
(Columbia University) for advice and criticism with this paper. He has also profited by
reading the unpublished paper: “On the Validity of an Estimate from a Multiple Regression
Equation” by F. V. Waugh and R. C. Been which deals in part with a problem related to
the one presented here.
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