A STATISTICAL PROBLEM CONNECTED WITH THE COUNTING OF
RADIOACTIVE PARTICLES

By STEN MALMQUIST
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1. Introduction. Our problem refers to random events forming a sequence
in time or in space, e.g. particles emitted by a radioactive matter. By omitting
certain elements of the given sequence, say f, we form another sequence, say g.
The rule of omission involves an arbitrarily prescribed constant u. The rule
to be followed in forming g is:

Case I: Let a be an element in f and g. The next element to be included
in g is then the first element in f which follows a after a distance greater than w.

Case II: Let a be an element in f and g. The next element to be-included in
g is then the first element in f which follows a at a distance greater than « from
the preceding element in f, whether this belongs to ¢ or not.

When the events are represented by impulses emitted by a radioactive matter
and feeding a recorder with a constant resolving time u, the new sequence con-
sists of the counted impulses. The two cases correspond to the reaction of
different types of recorders. The distinction between the two transformations
has caused some confusion. It has, however, been clearly pointed out by
Ruark and Brammer [5].

v. Bortkiewicz [2] seems to be the first who has considered problems related
to the transformed sequence. Starting from investigations by Rutherford,
Geiger, and others, concerning the number of recorded a-particles during a
certain interval of time, say T, he observed that the distribution of this number
was similar to that of Poisson but with a slightly smaller dispersion. This fact
he supposed to be caused by a constant resolving time u of the recorder. By
means of certain assumptions he tried to calculate the effect on the mean and
the dispersion by the transformation in Case I, supposing the cumulative dis-
tribution function F(f) for the distance between two consecutive elements in
the sequence f is given by

Fi) =1 — %,

where here and in what follows, ¢ denotes a non-negative variable.

Considering Case II with F(t) as above, Levert and Scheen [4] have recently
worked out an expression for the distribution of the number of elements during
T in the sequence g¢.

Gnedenko [3] has considered the distribution of the number of lost elements
in Case I with particular regard to the initial state of rest.

Alaoglu and Smith [1] considered problems referring to successive trans-
formations of a sequence. When, for example, a sequence of particles enters
a tube-counter and amplifier, together acting with a resolving time u;, and
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the impulses then are feeding a recorder with resolving time us > wu; , the se-
quence of recorded impulses will be the result of two successive transformations.
If we have a scaling circuit between the counter and the recorder, we have to
make a transformation of another type between the two transformations in
Case I and Case II.

The present paper deals with the transformed sequence in Case I. The
distribution function F(f) is supposed to be arbitrary. An advantage of this
generalization is that the formulas derived could be used in treating problems
referring to successive transformations.

The author wishes to express his sincere gratitude to Professor Herman Wold
for stimulating discussions and valuable advice.

2. Derivation of distributions for case I. Suppose that the sequence f
has F(¢) for distribution function for the distance between two consecutive
elements. F(f) is supposed to be independent of absolute time (space), and of
the preceding distance between two elements. When not stated otherwise,
we further suppose F(0) = 0.

Now let G(f) be the distribution function for the distance between two con-
secutive elements in the transformed sequence g. Evidently G(¢) also is inde-
pendent of absolute time and of the preceding distance between two elements.

We shall consider certain distribution functions connected with F(f). These
functions will then be used in solving problems concerning the sequence g.

Let F,(f) be the distribution function for the distance between the first and
the last of n 4+ 1 consecutive elements in the sequence f. Then F,(f) is given
by the recursive system

o Fasald) = [ Falt = ) dFo@); (m,n 2 1)
Fi(t) = F(@).

As is easily seen, we have

Fui(®) < Fu(®)-Fa(t);

and, for t = u,

F.(w) — 0, asn — o;

> Fa(u) < o, provided that F1(0) <1.
n=1
Alternatively, F,(¢) could be deduced by the use of characteristic functions.
Still considering the sequence f, let ®(f) be the distribution function for the
distance d between an arbitrarily chosen point and the following element.
Suppose that the arbitrary point is chosen so that the distance between the pre-
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ceding and the following element is . Under this condition we have, in usual
symbols, ’
r—1

ot

Pd>1t) =

Hence,

o) =1— ff‘” - b aH ()

where H(t) is the distribution function for the distance z.
To deduce H(t) we suppose that the distribution F(f) has a finite mean,

= | tdF(¢).
m = [ tare
By the definition of H(¢), we then have
1 x
H@ = - [ uro.
Thus
@ () = -1[ [ “dF@) +t / ) dF(x)]
mi.Jo t I
The corresponding frequency function ¢(t) is given by
_1-F(
o) = =2,
Consider n + 2 consecutive elements in f, say @y, @1, -+, @ay1, Where ap

is an element in the transformed sequence g. The probability P, that the
next element in g following a, will be a,., is given by

P, = Fn(u) - Fn-}-l(u)} (n = 1) 2; "');
Py =1 — F(u).

Now let P,(¢) be the probability that the distance between ay and a,4, is
smaller than or equal to ¢, when @y an @, are two consecutive elements in the

sequence g. Then

.1 v
Pal) = 5o = Fom(@) fo [F(t —x) — Flu — x)] dF(z),

F(t) — F(u)

n=12-.), Py(2) =*-1‘:W-

Let G*(¢) be defined by
© ¢
G*(t) = n{:o P, - P.(t) = F(t) — F(u)

+3 fo“[F(t —2) — Fu — D) dFa@);  t> u

n=1
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When G*(¢) is a distribution function, then G*(t) equals G(¢).
For t; < t, we obviously have G*(t)) < G*(&).
Fort = =«

G*¥*(o) =1 — F(u) + HZ: fou[l — F(u — 2)] dF.(x)

Il

1 — Fu) + iFn(u) - Y;‘,F,,H(u) = 1.

Hence we take

©) G@) = G*(1); t > u
G@) = 0; t < u.

When the corresponding frequency functions g(¢) and f(¢) exist, we get
® 00 = 10 + X [ 16 - 21,6 ax; (> u.

Dealing with a sequence of elements we are often concerned with the number
of occurrences during a certain time 7.
Let the mean number of occurrences during 7' be M(T). Supposing that

the mean m = £ ¢t dF(¢) is finite and that F(0) < 1, we have

(6) M(T) = T/m.
We define
® for ¢t >

Ki(t €
1 0 fort < ¢
F(@) fort > e

K@) =
F(e) fort < e

and denote the corresponding means by M;(T) and M»(T). As is easily seen,
My(e) < M(e) < Ma(e).

Using (2),
eF(e el — Fe €
M= FOFAFOT_
f z dK(z) f 2 dK(z)
0 0
Ma©) = —= [L-dl = FQF + -+ + nedl = FQPF@™ + -]
jo.dez(x)

€

j:) z dKz(x) .



COUNTING RADIOACTIVE PARTICLES 259

Making N = T/e and summing, we obtain

M]_(T) = ) T = P T ;
[ cdKi(x) m — f z dF(z) + eF(e)
0 0

i) = T T

[Ddez(x) - m — ‘/:xdF(x).

By choosing € arbitrarily small, we get
M(T) — T/m.

Let P(n, T) be the probability that we get n elements in f during a time 7.
Suppose that the first of these elements, a,, comes at Ty + z, and the last,
an7atT0+x+y.

We then have

@ P, T) = [ (o) dz [ T = F(T = 2 — )] dFas(y).

In (4) and (7) we have equations for the transformation in Case I. Because
of the general form of F(t), the formulas also can be used when we are concerned
with successive transformations. It can further be remarked that the trans-
formation of a sequence of impulses by passing a scaling circuit is expressed by
the system (1).

3. Results for a particular form for F (f). The preceding formulas will
now be used for a special distribution function F(f). Suppose that the fre-
quency function f(f) = dF(¢)/dt is equal to the frequency function of the dis-
tance between an arbitrary point and the following element.

From (3) we get

’ — 1 - F(t)

F'(t) = —m
or, when F(0) = 0,
8) F(t) =1 — ¢
9) f(® = ae™*, where 1/a = m = f (o) dt.

o
By means of the theory of characteristic functions we have

— 1 e n _—itz . —_ .
(10) 10 = o [ @ ds; 1) = 50);
where

_ ® —at itz — a

(11) n(x)—ale e dt PR
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Thus
(12) fa(t) = L f +°° ——‘i—— e " dr
2r e (a — 12)”
Forn =1, we get
1 (™ @

e—zt: dx

(13) fit) = ae™ =

T 2rle a— iz
By differentiating (13) n — 1 times with respect to ¢ we obtain

—itx
e

(_t)n—le——at = 2% (_l)n—l(n _ 1)! ‘[:w

Hence, from (12),

(@ — i)

aﬂ

_ n—1 —at
From (5) we obtain the frequency function for the transformed sequence g
t) = ae——al + f ae—at _a___ tn——l de = aeau e—-al; t 2 %
15) o( ..g o (n — 1!

Git) =0; t < u.

The mean m, is given by
m, = af te™ e ™ dt = 2 + u.

Remark: Suppose the constant u is allowed to vary independently of ¢ and
that the frequency function of u is y(u), we obtain

my, = ;‘4 tdtfo glu, t)y(u) du = l }E'Y(u) du + -/; wy(uw) du
(16)
-1 + m(w).
a

Now let the sequence of elements, g, by means of (5) be transformed into a
new sequence, h. When we are concerned with the counting of particles,
emitted from a radioactive matter, let the sequence g consist of impulses from
a counter-amplifier with resolving time u, feeding a recorder with resolving
time w; . Then the elements in & are the counted impulses, it being supposed
that the tube-counter and the recorder reacts according to the assumptions.

We suppose u; > u. When w; < u, the sequences g and h are identical.

Let g,(7) denote the frequency function of the distance between the first and
the last of n + 1 consecutive elements in g. We find, in the same way as
used in obtaining (14),

17 ga(t) = —2 Mt — nu)* e t > nu.
(n — 1!
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Let h(f) be the frequency function for the distance between two consecutive
elements in the sequence h. Let further N be the greatest integer smaller
than or equal to u;/u.

Using (4) and (5) we obtain

hi(t) = ae™ e Z (ul — nu)" e t > w + u;

(18)  hu(t) = ae™e™ Z [t — -+ Dul*e™, (N+Du<t<u+ u;
N—1 n
ha(t) = ae™ e Z =+ Due™, w <t < (N 4+ Du

The mean m;, is found to be

(19) mp = [(ll + u][l + NZ “Z (ﬂ___n_'ﬁ‘_)"_‘f e—a(ul—nu)]'

We also have

f th(t) dt < ma < f thi(t) dt

uytu
or

1 ud " n —a(uyj—nu
[a+ul+u][;% (uy — nu)" e ™™ )]
1 ~a” —a(uy—n)
<mh<[5+ul]e‘"‘[z (uy — nuw)"e ““‘“"“].
0

We now consider the number of occurrences during a time interval 7. Using
(6), (16), and (19) we immediately get the mean numbers of occurrences during 7.
By (3), we get for the sequence g

a

¢ . <
. au + 1° tsu
(20) oolt) =
PP t>u
au + 1 ’ =
Inserting (20), (15) and (14) in (7) and evaluating the integrals, we finally get
an—l_zan+an+l; nSg—-l
s =20+ 4+ — L o T _y<u<T
au + 1 u u
(21)  Py(n, T) = \ o7
an~1—2|:’n— +1:|+(+)———+—1;
T T
Len<d
L " T u + L
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where
_ 1 —a (T—nu) = (T - nu)v av _ —
(22) 227 a—‘—u + 1 4 vg; ‘_“v'—‘ (n 7)), (n - 07 17 ))

a_1=0.

When v = 0, we obtain

n W v
- a
a,,=e“TZO”Iv' (n — ).
V= .

For the sequence f we then get the Poisson distribution

23) Py(n, 1) = I o

The corresponding expression for the sequence % is much more complicated-

4. A statistical experiment. The following statistical experiment will serve
as an illustration of the scheme dealt with in this paper—the transformation of
a sequence and the resulting formulas, especially (21).

Groups of five figures, the last rounded up if necessary, have been extracted
from tables of random sampling numbers (6). Iet each group denote the first
five digits for a decimal z, arbitrarily chosen between 0 and 1. The variable
z is supposed to have the distribution function ¢ for 0 < ¢ < 1. We now define

a new variable, y, given by
(24) y= —klog(1 — a), ory = —klogux].
The variable y has the distribution function given by (8), viz.

F) =1 — e, wherei = m = kloge.

Transforming each group, or number z, according to (24), we get a sample of
consecutive distances between elements in the sequence f considered in the
previous sections. Choosing a constant w, we can construct the corresponding
sequence g. Beginning with a point, arbitrarily chosen on the first distance,
we can finally count the number of elements in successive intervals of the same

length.
Takek = 1,u = 0.2and 7' = 1.5. We then have for the sequences f and g:

my = é = log ¢ = 0.4343; my = }l + u = 0.6343;
1 1
or = . = 0.4343; gy = - = (.4343;
MAT) = "—% — 3.454 M,(T) = % ~ 2.365.
g
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The experiment yielded the following results:
For the sequence f: For the sequence g:
Number of elements 801. Number of elements 555.
my; = 0.450. m, = 0.648.

In neither case is the deviation between the observed and theoretical means

statistically significant. In fact we have:
(n; = m)V/800 . (Mg = m)V/E5L ¢
ar ag

which gives P = 0.3 and P = 0.4, respectively.

TABLE 1
Nos. of wnlervals with n elements
Sequence f Sequence ¢
n Expected Expected Expected
Observed according Observed according according
to (23) to (21) to (23)
0 6 7.6 5 8.2 23.7
1 33 26.1 53 42.5 54.8
2 48 45.1 82 81.8 63.3
3 55 51.9 69 72.2 48.8
4 36 44 .8 23 29.2 28.1
5 32 31.0 6 4.8 13.0
6 17 17.8 1 0.2 5.0
7— 12 14.7 2.4
b 239 239 239 238.9 239
Mean 3.331 3.454 2.310 2.36 2.31
x? 4.825 4.524 36.7
P 0.68 0.34 <0.001

The functions a, in (22) can be calculated by means of Pearson’s tables of
the incomplete y-function (7). In the notation of these tables we obtain

AN N _
e v=rv!—I(\/T——~_1,r—2 = I(p, q).
Hence
n AN n —\
n = - - 1 -1 ) )
a au—l—l6 n!+au+1[ (v, 9))
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where

A
A= a(T — nu); p=\/—n:*1; qg=n—2.

In the present case, however, we only need the numbersuptoa; . Accordingly,
the a, have been calculated directly.

The resulting theoretical and observed distributions for the number of ele-
ments during T for the sequences f and ¢ will be found in Table I. For com-
parison, a Poisson distribution, with the same mean as observed for the sequence
g1is given. The result of a x” test is also shown in Table I. Judged by the x*
test the distributions (23) and (21) agree fairly well with the observed distri-
butions. As was to be expected, the Poisson distribution cannot be used for
the sequence g¢.
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