A SOLUTION TO THE PROBLEM OF OPTIMUM CLASSIFICATION

By P. G. HoeL anp R. P. PETERSON
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1. Summary. By means of a general theorem, the space of the variables of
classification is separated into population regions such that the probability
of a correct classification is maximized. The theorem holds for any number of
populations and variables but requires a knowledge of population parameters
and probabilities. A second theorem yields a large sample criterion for deter-
mining an optimum set of estimates for the unknown parameters. The two
theorems combine to yield a large sample solution to the problem of how best to
discriminate between two or more populations.

2. Introduction. There are essentially two basic problems in discriminant
analysis. The first problem is to test whether the populations differ, since it
would be futile to attempt a classification if the populations did not differ. The
second problem is to find an efficient method for classifying individuals into their
proper populations. In this paper, an optimum asymptotic solution of the
second problem will be presented.

3. Parameters known. Let f; = fi(x1, -+-, &), (¢ = 1, ---, r) denote the
probability density function of population ¢ in the region under consideration.
Let p; > 0, (¢ = 1, ---, r), denote the probability that population 7 will be
sampled if a single individual is selected at random from that region, and let R
denote the & dimensional Euclidean variable space. Then the desired theorem
is the following:

THEOREM 1. If M; denotes the region in R where pifi > pifi, G =1, -+, 1),
and where pif; > 0, then the set of regions M;, (¢ = 1, ---, r), in which any
overlap is assigned to the M ; with the smallest index, will maximize the probability
of a correct classification.

For the purpose of proving this theorem, consider any other set of non-
overlapping regions, M . Since the addition to any of the regions M; of a part
of R throughout which all the functions f; vanish will not affect the probability
of a correct classification, there is no loss of generality in assuming that the set of
regions M contains the same portion of R as the set of regions M; does. The rela-
tionship between the two sets may be expressed by means of the formulas

(1 M= ,‘i‘: M,

and

@ M= 3 My,

where M ; denotes that part of M; which is contained in M} .
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Since a sample point that falls in the region M; will be judged to have come
from population 7, the probability of the correct classification of a single random
sample by means of the set M is given by

3) Q=n [ sk + -+ [ faB,

where dE = dxidz, - - - dz, . If Q' denotes the probability of the correct classifica-
tion by means of the set M,

Q = p fMifIdE+ o+ fM;frdE-

In the notation of (1) and (2), these probabilities become

Q=n ]M”fldEJr R prfmfif,dE'

and

C=pn[ fdB+ - tp[ fdB
—;Ms'l

%M ir
Now consider the difference @ — @’. It can be expressed in the form

Q—-¢Q = i i [p‘- fM“f.- dE — pjfxwfj dE]

=1 j=1

=22 / [pifi — pifil dE.
=1 j=1JM¢;

Since M ; is contained in M; and p.f: > pifi, (j = 1, -- -, r), holds throughout

M, it follows that each of these integrals is non-negative; consequently @ > @',

which proves the theorem.

This theorem yields a solution to the classification problem only when the f;
are completely specified and the p; are known.

It will be observed that this theorem is similar to a generalization of a funda-
mental lemma in the Neyman-Pearson theory of testing hypotheses [1], and to a
result by Welch [2].

If the basic weight function in Wald’s [3] formulation of the multiple decision
problem assumes only the values 0 and 1, corresponding to whether or not a
correct classification is made, it will be found that the set of regions M; will
minimize the expected value of the loss in that formulation.

4. Parameters unknown. Since the p;, as well as the parameters in the f;,
are assumed to be unknown, @ will be a function of such parameters. Let 6, - - -,
6, denote all such parameters, including the p; . Now let a random sample of size n
be taken from the region under consideration and let 8; , - - - , 6, denote a set of
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estimates of the parameters based on this sample. Since the total sample will
constitute a sample of size n; from f1, n, from f, , etc., wheren = ny 4 -+ + n, ,
the 0’s for f; will be estimated by means of a sample of size n; rather than of size n.
In the following arguments, it will not be necessary to distinguish between 6’s
which are estimated by different size samples because the arguments will be
based on the order of terms with respect to the size sample and n; ~ np; with
probablhty one. Or, more simply, choose all n; equal.

Let M, correspond to M; when the parameters are replaced by their sample
estimates and let Q denote the probability of a correct classification when using
the regions M; in place of the regions M; . Then, from (3),

0-a-Lolf, sar- [ sias)
i=1 Mg My
Let H = Q@ — Q. Since the estimates, 8;, are random variables, H will be a
random variable which is a function of the estimation functions, 4;, as well as
of the parameters, 6; . The desired criterion for determining optimum estimates
is then given by the following theorem:

Tueorem 2. If E(8; — 6,)* = O(n™), g > 0, and if in some netghborhood of the
pointf; = 0;, ( = 1, - - - | s) the function H is continuous and possesses continuous
derivatives of the first, second, and third order with respect to the 8; , then

MM-—ZZHM@—M@—@+MWM

z-=1 =1

where H ;; denotes the partial derivative of H with respect to 8; and 8; at the point
(017 ot ,03)-

The proof is similar to the type of proof used by Cramer [4] to obtain an
expression for the variance of a function of central moments.

By means of Tchebycheft’s inequality [4], page 182, it follows that

b 4
PlO -0 > & < ZOZ 0
From the theorem assumptions, there exists a constant A such that
An

Pl — 0,)* >

This is equivalent to

An?

€t

Pll6; — 0:;] > ¢ <

If E, denotes the set of points in sample space where | 8; — 8;| <, (i =1, « - ,8),
and E; denotes the complementary set, this inequality implies that

SAn™?
4

4) PE)] <
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The expected value of H may be written in the form

(5) E(H) = f HdP+ [ HaP.

Ey Eqo
Consider the order of the second integral. From (4) and the fact that H is the
difference of two probabilities, it follows that

sAn?
P

H dP

Eg

< dP = P[E,)] <
Ey
Consequently (5) becomes
(6) EH) = H dP + O(n™®).
E;
Now consider the first integral. From the theorem assumptions, if ¢ is chosen

sufficiently small, it follows that for any point in the set B, the function H
can be expanded in the form

s _ 1 8 8 _ _
H=HE) + 2 0: = 0HO) + 520 20 (0: — 000; — 0)Hy(0) + E,
where 6 denotes the point (61, - - - , 6,), where
1 3 s 8 _ _ _
=% ; Z]: ; (8: — 0:)(8; — 6;) (B — ) Hin(6"),
and where ¢’ is some point in E; . Since @ reduces to Q when 8 = 6, H(6) = 0.
Furthermore, since @ denotes the maximum probability of a correct classification,
H > 0 for all 6; hence H;(6) = 0 and H;;(6) > 0 for all 5. Thus, for any point
in the set E; ,
1 8 8 _ _

H = 3 2:, }:_Z 6: — 6:)(8; — 0,)H.;(0) + R.

If this expression is substituted in (6), E(H) will become
1< - - _
M B =332 Hy® [ @ =000 —0)aP+ [ RaP +0().
1 1

Consider, first, the order of the remainder term. From the continuity assump-
tion on H;j , it follows that H,; is bounded in E, , say | H;4(6") | < B; hence

8: — 0.)(6; — 0,)(6x — 6x)H ;s (6") dP

<B[ 16~ 0)@—0)@ 00 |aP.
1
By Schwarz’s inequality,
[ 16— 096, — 696 — 6 | aP
1

< [ [ (0 00°6; — 0 dP [ @-oy dP]*.
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Similarly,
3
[ =06 —orar<|[ G-artar [ G-oyar],
Ey Ey B

3 3
[o-oraps<[[ G- ] <[[ @-orar]
E; E; E; Ey
Since

(8: — 0" dP < (0: — 09" dP = O(n™9),

E; Ey+Eg

the preceding inequalities combine to give

®)

E;

R dP' = 0(n~*").
Now consider the first integral in (7). It may be written in the form
© [ 6= 0)@—0)aP =BG~ 0)6;—0) — [ G:—0)6; - 0)aP
By Schwarz’s inequality,
[ 6:—0aG-syap|<[[ G—orar [ G-orar]

Similarly,

[ @—oydps[ <a,~—o;>4dP-P[E2]]’.

If these inequalities are combined and inequality (4) is employed, (9) will
reduce to

(10) 0: — 6)(8; — 6;) dP = E(8; — 6.)(6; — 6;) + O(n™").

Finally, if (8) and (10) are employed in (7), it will reduce to the result stated
in the theorem.

The order of the leading term in E(H) depends upon the nature of the esti-
mating functions, 8;. In order to insure that this term will be the dominating
term, and thus rule out pathological s1tuat10ns only that class of estimating
functions (estimators) will be considered for which this term will be of lower
order than that of the remainder term. If the estimators are means or central
moments, for example, then g = 2. For such estimators the order of the remainder
term is O(n™?), whereas the order of the leading term is not higher than O(n™).

A set of estimators will be called an optimum set if it maximizes the expected
value of the probability of a correct classification, or, what is equivalent, if it
minimizes E(H). Since only large samples are being considered here, it is neces-
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sary to define optimum in an asymptotic sense. Consider sets of estimators for
which E(H) is of order O(n™9). For this class of estimators, a set will be called
asymptotically optimum if it minimizes

lim nE(H).
Among asymptotically optimum sets of various orders, the set corresponding
to the highest order would naturally be considered as the best asymptotic set.
Now from Theorem 2, it readily follows that a set of estimators which minimizes

1) ; 21: H;E@®: — 0)6; — 06,
will be an asymptotically optimum set.

5. Maximum likelihood estimates. If the estimates 8; are unbiased and uncor-
related, (11) will reduce to

(12) 2 Hio'
)

where o7 = E(@; — 6,)° is a function of n as well as of the parameters. Since, from
the discussion preceding (7), H;; > 0, it follows that (12) will be 2 minimum when
the o} assume their minimum values. Now it is known [4], page 504, that under
mild restrictions maximum likelihood estimates possess minimum asymptotic
variances; hence for estimators of the type being considered which also satisfy the
conditions in [4], the maximum likelihood estimates of the 6; will yield an
asymptotically optimum set of estimates for the classification problem.
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