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To find such a k we consider

Xo—ipiYi
I(9) =f ---fQ(Yx,---,Yn) ¥ L)-e dyy --- dY..

g
‘,_.‘_.:1 piYs=t
As t tends to — o, I(t) tends to L(1), where L was defined by (4.3). Since the
e-quantile in II was less than X it follows that I(— ) = L(1) > 0. Since
I(t) < O for large ¢, there exists ¢ such that I(t;) = 0, and clearly,

¢<X———°— to) —e>0.
g
Setting in (4.5) k = ((Xo — t)/o) — €]}, one obtains a ¢, such that

L(g) = I(t) = 0.

The selection ¢, is the linear truncation to the set Z?_l piYi 2 .

By a similar and somewhat simpler argument one proves the following the-
orem.

TareorREM 2. A selection such that

1° in II* the mean of X has a value greater than or equal to a pre-assigned num-

ber m > 0,

2° the fraction retained is maximum,
is a linear truncation to a set 011 p:¥: > to .

An immediate consequence of Theorems 1 and 2 is that a linear truncation,
using a properly determined weighted score > n p:Y;: and cutting score £ , is
more economical than any truncation to aset ¥; > ¢;,¢ = 1,2, --- , n, that is
than any truncation performed on each admission score separately.
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THE DISTRIBUTION OF DISTANCE IN A HYPERSPHERE
By J. M. HAMMERSLEY

University of Oxford

1. Summary. Deltheil ([1], pp. 114-120) has considered the distribution of
distance in an n-dimensional hypersphere. In this paper I put his results (17)
in a more compact form (16); and I investigate in greater detail the asymptotic
form of the distribution for large n, for which the rather surprising result emerges
that this distance is almost always nearly equal to the distance between the
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448 J. M. HAMMERSLEY

extremities of two orthogonal radii. I came to study this distribution by the
need to compute a doubly-threefold integral, which measures the damage caused
to plants by the presence of radioactive tracers in their fertilizers; for the dis-
tribution affords a method of evaluating numerically certain multiple integrals.
I hope to describe elsewhere this application of the theory.

2. Derivation of the frequency function. Let 7', and T'» be vector spaces of n
and 2n dimensions respectively. Let P and @ be any pair of points in 7 . Denote
by (PQ) the point in T., whose first n coordinates are the coordinates of P
in T, and whose last n coordinates are the coordinates of @ in T, . Let {P} and
{Q} be point sets in T , and let { PQ} be the point set in T, such that (PQ) ¢ { PQ}
if and only if both P ¢ {P} and @ ¢ {Q}. Let M;{P} denote the n-dimensional
measure of the point set {P} in T, , and let M.{PQ} denote the 2n-dimensional
measure of the point set {PQ} in T, . Then

) M>(PQ) = ftP}Ml{Q} dM.(P}.

Let R be a fixed point in T} ; and let S.(a) be the n-dimensional hypersphere
in Ty with centre R and radius a. Let A and B be any two points chosen at
random in S,(a), the distributions of A and B being independent and uniform
over the interior of S.(a). Denote the distance AB by r; and let A = r/2a,
so that A may take any value in the interval 0 < A < 1. We require the fre-
quency function of A, which we shall denote by f.().

The volume content of S,(a) is
@) Vala) = 7"%a"/TGn + 1);
and the content of the segment of the surface of S,(a) bounded by a right hyper-
spherical cone, whose vertex is at 'R and whose line generators make a fixed
semi-vertical angle 6 with a fixed radius of S.(a), is
21r(n~1)/2 n—1 A6
IGn —3%) %
As a particular case of (2), the whole surface of S.(a) has content
) Un(a, ) = 2n""a""/T(4n).

Let {AB} be the point set in T, such that (AB) ¢ {AB} if and only if the cor-
responding points A and B satisfy all the inequalities

(5) 0< RA Laq, 0<RB<a, r<AB < r 4 dr.

Then, by the definition of fa(\),
M:{AB} < f.(r/2a) dr;

(3) Ua(a, 6) = sin" % ¢ de.

but since
2a

2a
M,{AB} dr = V2, A fulr/2a) dr/2a = 1,
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we have

(6) M:{AB} = V2%f.(r/2a) dr/2a = p,(r, a) dr, say.

Consider also the point set {CD} in T such that (CD) ¢ {C'D} if and only if
the corresponding points C' and D satisfy all the inequalities

(7 0L RC L a-++da, a X RD L a + da, r< CD <L r+dr

For each fixed D of {D}, C is constrained to lie on the segment of the hyper-
spherical shell of thickness dr, radius r, and centre D, bounded by the inter-
section of this shell with S.(a 4 da). The hyperspherical cone, with vertex D,
whose line generators all pass through this intersection, has a semi-vertical
angle 6 given by

(8) cos 6 = r/2a = );

and so, from (3), the M, of all C which satisfy (7) for each fixed D is U,(r, arc-
cos A) dr. On the other hand the M; of all D which satisfy (7) is the content of
the hyperspherical shell of thickness da, radius a, and centre R, and is thus
U.(a, ) da by virtue of (4). Consequently, from (1)

(9) M.{CD} = U,(r, arccos \)U,(a, ) da dr.

On the other hand, by symmetry, M,{CD} = 3iM,{EF}, where (EF) ¢ {EF|
if and only if the corresponding points E and F satisfy either all the inequalities

0 < RE < a + da, a < RF < a+ da, r < EF < r + dr,
or all the inequalities
0 < RF < a+ da, a < RE < a + da, r < EF <7+ dr.

We can express this in another way by saying that (EF) ¢ {EF} if and only if
the corresponding points E and F satisfy all the inequalities

0 < RE L a+ da, 0 < RF < a + da, r < EF <r+ dr,
but do not satisfy all the inequalities
0 < RE L, 0 < RF < q, r < EF < r+ dr.

From this second point of view we see that
9
Mo{EF} = pu(r, a + da) dr — pa(r, a) dr = a Pa(r, a) dr da;
and so

ad
(10) M,{CD} = %% pa(r, @) dr da.

Then from (2), (3), (4), (6), (9), and (10).

16{ = o™ f<r>.1}
28a \[T(3n + DI'"\2a/ 2a

(1 1) _ {27r(n—l)l2 rn—l arccos A qinn—2¢ d¢} {Zﬂ_nkzan—l}
rGGn — %) % ) (Gm) |
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By performing the partial differentiation on the left-hand side, then substituting
z = cos ¢ and r = 2a), and using the relations
TGn 4+ 1) = nlGn), 7T+ 1) = 2°TGn + HTEn + 1),
B(in + %, 3n + 3) = {TGn + $)}/T@ + 1),

we reduce (11) to the form

(12) @n — 1) () — MaQ) = : (Z(’:- = ll)nxrl) f; (1 — Ao g,

We multiply (12) by —\">" and use the reduction formula
1 1
(13) n — 1) f 1 =" 4z =n f (1 — DD gy 4 N1 = N2,
Y by
Each side of the resulting equation is a perfect differential coefficient, and upon
integration we obtain
2nmA"!
B(n + %, 3n + %)
where C is the constant of integration. We obtain the cumulative distribution
function by integrating (14) over 0 to A,

(15) Fu) = @N"Lie(Gn + 3, %) + heGn + 3, 3n + 3) + ON"/2n,

where I,(p, ¢) is the incomplete beta-function ratio

1
‘/; (1 _ zZ)m-—l)/Z dz + c>\2n—l,

L, = [ #7(1 = 9™ dz/B(p, 0
tabulated by Pearson [2]. Putting A = 1 in (15) we get
1=F.1) =1+ C/2n;
so C = 0, and we have the final result
(16) Fad) = 2"mN"e(in + 3, 3).

This compact form may be compared with Deltheil’s expression [1] for the fre-
quency function of », namely

n2rn—l [a et <7’>
(17) gn(r) = T r/2,p hn ; dp,
where
r—0 ir
ha(2 sin §) = f sin"2¢ do / f sin" % ¢ de,
o )

expressions which he evaluates only for the particular cases n = 3, 5, 7, 9.
Interesting particular cases of (16) are



DISTRIBUTION OF DISTANCE 451

R 500 = D\ fareeos A — (1 — N,

00 = 1221 — N2 + N),

which give the appropriate frequency functions for a line, a circle, and a sphere
respectively.

3. Recurrence relations and moments of the distribution. From (13) and (14)
we have a recurrence relation for penadjacent values of n,

fn()\) _ 2fn—2()\) 2P(n) n 2\ (n—1)/2
T NS T T P T

In connection with (18) this shows that
(20) fonti() = PentaQ),  feaA) = Pana(N) arccos X + Pencs(N) (1 — A2

where Py(\) denotes an unspecified polynomial in A of degree N or less.
From (16) the 7th moment of f,(\) about A = 0 is

;o {nr(n + 1)}{ Gn 4+ r 4+ 3 )

(19)

1) b S T £ D\ LD T F r + D)

I have not been able to obtain the characteristic function of f.(\) explicitly

from (21) it appears to be of a higher type than the hypergeometric function.
4. The asymptotic form of the distribution for large n. The distribution funec-

tion is, by (15),

(22) Fa(\) = @N"Lioe(Gn + 3, 3) + DeGGn + 4, 30 + 3).

We show firstly that as n — o the first term of this expression tends to zero.

This term is clearly zero if A = 0. If A > 0

1-A2

122
f 2"V — )Ty < NP ZVE gy = (1 — >\2)("+1)/2/%(n N
¢ )
Hence
@N"rGn+ 1) 1 — AZ) (D12
mATGn+ ) G N

2r(GGn + 1) 0 a2 bz o 2TGn + 1)

@N"Lae(Gn + 3, 3) <

as n — . Secondly, as n — «
Le(Gn + 3, 3n + 3) ~ Na(3, 1/4(n + 1)) ~ Naz(3, 1/4n),

(see Cramér [3] p. 252 with p = ¢ = %), where N,(u, ¢°) is the normal cumula-
tive distribution function of # for mean u and variance ¢°. Hence X is asymptoti-
cally distributed as N\(1/4/2, 1/8n); and the asymptotic distribution of r is
N.(a\/2, ¢8/2n). This establishes the result stated in the summary.
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It can also be proved, by considering the limiting form of the recurrence rela-
tion (19), that the frequency function f, is asymptotically normal. The main
difficulty of proving this fact lies in showing that the frequency function actually
possesses a limiting form; and the proof is rather too long to be given here.
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A NOTE ON THE ASYMPTOTIC SIMULTANEOUS DISTRIBUTION OF
THE SAMPLE MEDIAN AND THE MEAN DEVIATION FROM
THE SAMPLE MEDIAN

By R. K. ZriGLER
Bradley University

Consider a random sample of 2k + 1 values from a one-dimensional distribu-
tion of the continuous type with cumulative distribution function (cdf) F(x)
and probability density function (pdf) f(z) = F’(z). Let the mean, standard
deviation and median of the distribution be denoted by m, ¢ and 8 respectively
(¢ assumed to be unique). We shall suppose that in some neighborhood of
z = 6, f(z) has a continuous derivative f’(z).

If we arrange the sample values in ascending order of magnitude:

T < Xy < -0 <x2k+1,

there is a unique sample median x;,; which we shall denote by ¢ The mean
deviation from the sample median is then defined by
2k+1

1

In the material that follows we shall assume that the sample items have been
ordered only to the extent that & of them are less than £ and % of them are greater
than &.

We then have the following

TueoreEM. Let f(x) be a pdf with finite second moment, continuous at x = 6 with
F(0) £ 0. Then the simultaneous distribution of £ and M is asymptotically normal.
The means of the limiting distribution are 6, the population median, and u’', the
mean deviation from the population median, while the asymptotic variances are
1/41%(0)2k and ((m — 6)* + & — w*)/2k. The asymptotic expression for the
correlation coefficient is (m — 6)/A/(m — 6)2 + o — w2 -

Proor: Let w = (M — w/)\/2k andv = (¢ — 6)\/2k, wherew' = E |z — 0 |.
Then the simultaneous characteristic function of the two random variables u




