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1. Summary. The stochastic processes which occur in the theory of queues
are in general not Markovian and special methods are required for their analysis.
In many cases the problem can be greatly simplified by restricting attention to
an imbedded Markov chain. In this paper some recent work on single-server
queues is first reviewed from this standpoint, and the method is then applied
to the analysis of the following many-server queuing-system:

Input: the inter-arrival times are independently and identically distributed

in an arbitrary manner.

Queue-discipline: “first come, first served.”

Service-mechanism: a general number, s, of servers; negative-exponential serv-

ice-times.

If @ is the number of people waiting at an instant just preceding the
arrival of a new customer, and if w is the waiting time of an arbitrary customer,
then it will be shown that the equilibrium distribution of @ is a geometric series
mixed with a concentration at @ = 0 and that the equilibrium distribution of
w is a negative-exponential distribution mixed with a concentration at w = 0.
(In the particular case of a single server this property of the waiting-time dis-
tribution was first discovered by W. L. Smith.)

The paper concludes with detailed formulae and numerical results for the
following particular cases:

Numbers of servers: s = 1,2 and 3.

Types of input: (i) Poissonian and (ii) regular.

2. Introduction. This paper follows an earlier one [8] in which the reader will
find a détailed account of the history of the subject, the technological applica-
tions and the conventions of notation and terminology, but a thorough famili-
arity with the contents of [8] will not be assumed. A queuing-system of the type
to be considered is specified when we know (i) the input, (ii) the queue-discipline
and (iii) the service-mechanism. It will here be supposed that if the successive
“customers” demand service at the epochs -« , t,, {41, -+ + , and if u, denotes
the inter-arrival time #,,4 — #, , then the random variables -+« , %, , Up41, « * - are
statistically independent and enjoy the same (arbitrary) distribution dA (u)
(0 £ u < »). (Note that in some important applications this supposition of
independence will not be admissible; for example, it cannot be made when the
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“customers’ (which may be ships, or aircraft) are scheduled to arrive at specified
times and are late or early by independent random time-errors.) When no further
assumptions than these are made about the input I shall describe it as a general
independent input and in the label+denoting the system this state of affairs will
be indicated by the letters GI. (Here I follow Lindley (3]; in (8] I called such an
input “regenerative,” but in the present paper I shall make no explicit use of
the concept of a set of regeneration points (for this, see [8] and the subsequent
discussion).) There are two important special types of input:

W D (deterministic, or regular):
Au) = 0(u < a); Aw) = 1(u 2 a),
M (“random,” or Poissonian):
Afw) =1 — ¢,
With a D-input the customers arrive at regular intervals of time (the inter-ar-
rival time being fixed and equal to a) while with an M-input the customers arrive
“at random” (i.e., in a Poisson process). We may also mention an intermediate
type of input:

@

k

3) E: (Erlangian): d4(u) = U;{Zi eH e du,

which coincides with M when £ = 1 and which approaches D as k tends to in-
finity. The idea of bridging the gap between D and M in this way is derived from
a similar device employed by Erlang (see [5]) in connection with the service-time
distribution. (For a more detailed account of the method in relation to a problem
in population mathematics see [7] and [9]. An extension due to Jensen and Palm
is discussed in [5].) If the original input is Poissonian and if it is filtered in such
a way that only every kth customer is admitted to the system then the net input
will be of type E; (the mean inter-arrival time being increased to ka); this remark
is of interest in connection with a certain cyclic rule of queue-discipline different
from the one to be considered here. In all three special cases it will be noted that
E(u) = a; I shall give a this meaning in the general case also and I shall suppose
throughout that 0 < a < «.

So much for the input. Under the heading of queue-discipline it will be sup-
posed that the customers form up into a single queue in the usual way and that
the customer at the head of the queue is served as soon as a server is free to at-
tend to him. In general there will be s servers and s will not necessarily be equal

to unity.
The service-mechanism will be defined by the assertions that the service-times
-, ¥, Ury1, - - Of the successive customers are statistically independent of

one another and of the input (thus the presence of a long queue is here supposed
to have no effect on the speed of service), and that for all customers (irrespective
of the identity of the server) the service-time has the (arbitrary) distribution
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dB(®)(0 < v < ). The distributions dA4 (u) and dB(v) will be classified in exactly
the same way, with the aid of the symbols G, D, M and E; , and it will be sup-
posed throughout that 0 < E(») = b < . The symbol G denotes that no special
assumption is made about dB(v). With a D-distribution for the service-time each
customer is served for exactly the same length of time b. With an M-distribution
the service-times follow the negative-exponential law found to hold for unre-
stricted telephone conversations. Once again the E distribution is of an inter-
mediate form.

With these conventions a particular type of queuing-system can be identified
by giving it a label such as D/G/3 (regular arrivals; no special assumption about
the service-time distribution; three servers). Table 1 summarizes the principal
contributions to the subject and shows where accounts of the various types of
queuing-system are to be found.

TABLE 1
Analysts of the literature on the theory of gqueues?
Author (date) ) ‘Systems discussed References
Erlang (1908-29)...... M/M/s, M /D/s, M/E;/1 [5] (see also [11] and
(13])
Pollaczek (1930). . . ... E.,/G/1 [14]
Khintchine (1932)..... M/G/1 [10]
Pollaczek (1934)...... M/G/s [15]
Volberg (1939)........ E,/G/1 [20]
Kendall (1951)........ M/G/1 [8]
Lindley (1952)........ GI/G/1 [12]
Pollaczek (1952)......| GI/G/1 [18]
Smith (1952)......... GI/G/1 [19]
Kendall (1952)........ GI/M/s This paper.

Except in the case M /M /s the stochastic processes associated with the fluctua-
tions in queue-size are non-Markovian and special methods are required for their
analysis. In [8] I examined the system M/G/1 by considering the behavior of a
certain imbedded Markov chain and in this way obtained the distribution of
queue-size in statistical equilibrium (a result originally found by Pollaczek [14]
and Khintchine [10], each using quite different methods), and I discussed the
ergodic properties of the system in relation to the value of the relative traffic
intensity p = b/a. (“Relative,” because by a generally accepted convention it is
measured in relation to the capacity of the system. When calculated in this way
p is said to be expressed in erlangs, the erlang being the international unit of

~ telephone traffic.)
2 See also footnote 3.
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Recently Lindley [12] has farmulated and in several important cases solved an
integral equation of the Wiener-Hopf type for the waiting-time distribution in
statistical equilibrium when the queuing-system is of the more general type
GI/G/1 (special attention being paid to the systems D/E;/1 which Bailey and
Welch [1], [2] have shown to be of importance in the design of appointment sys-
tems in hospital outpatient departments). (Lindley has given detailed solutions
for the systems M/G/1, E,/G/1 and D/E,/1. For an independent treatment of
the systems GI/G/1 see Pollaczek [18].) In continuation of Lindley’s work W. L.
Smith [19] has considered several other single-server systems, including those of
the type GI/M /1, in similar detail.

T shall show here that the work of Lindley and Smith can also be regarded as
an application of the method of the imbedded Markov chain, and I shall then
apply the “imbedding” method to analyze the properties of the many-server
system GI/M/s. It was observed by Smith in his study of GI/M/1 that the as-
sumption of a negative-exponential service-time distribution leads to solutions of
a very simple form, whatever the (general independent) input; it will be seen
here that the same is true even when we allow a general number of servers.

In [8] I examined the ergodic behavior of the Markov chain imbedded in
M/G/1 with the aid of Feller’s theory of recurrent events; there are three quite
different types of behavior when p < 1, when p.= 1 and when p > 1. For the
many-server system it has been observed by Pollaczek that the appropriate.
definition of the relative traffic-intensity is p = b/(sa). I shall assume here that
Pollaczek’s p is less than unity; with this assumption it will be shown that a
stable equilibrium exists and the associated equilibrium distributions will be
determined. (Dr. F. G. Foster has considered the dependence of the gualitative
behavior of the system on the parameter p; his results are given elsewhere in this
issue, (F. G. Foster, “On the stochastic matrices associated with certain queuing
processes,” Ann. Math. Stat., Vol. 24 (1953)).)

3. The imbedded Markov chain. Let the state of a stochastic system at time ¢
be denoted by X (£), so that (in any actual realization) the history of the system
can be represented as a function X(-) of the time with domain (— s, «). (In
the applications which follow it will be an integer-valued step-function defined
to be continuous-to-the-right at its points of discontinuity.) Let Q. denote the
set whose elements are the functions having as domain the time-interval (— «, ¢}
and having the same range as X(-). For each ¢ in (— =, «) let O, be a specified
subset of ., and corresponding to any actual realization of the process let II be
the set of those values of ¢ in (— «, =) for which 8, contains as an element the
contraction of X(-) to the reduced domain (— «, #]. Let

Y(i) = fi{X(r): 7 £ t} for ¢t ¢ I,

where f, is some specified functional with domain 6, . Now suppose that {6;, f: :
~ o <t < o} have been chosen in such a way that
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(i) IT almost certainly has no finite point of accumulation. (We then write its
members in increasing order as -+ -, tu_1, tn, togy, 00 L)

(ii) If Y denotes Y (¢,) for each ¢, ¢ II, then distribution {Y,41| Y, Yoo,
-+ } = distribution {Y,.1| Y.} for all n.

Thg variables + -+, Yoy, Y., Yy, -+ - will then be said to constitute an im-
bedded Markov chain.

Such an imbedded chain can always be constructed, at least in a trivial way.
Thus we could choose 8; = Q, for each infeger ¢, and require O, to be void for all
other values of ¢. Il would then be the set of integers, and by taking f; = 1 we
would obtain an imbedded Markov chain. In practice, however, three conditions
must be satisfied if the procedure is to be’of any value. First, the system must be
simple enough to permit a mathematical formulation of the present heuristics.
(The abstract formulation employed in this and the preceding paragraph must
not mislead the reader into thinking that it would be‘a simple matter to imple-
ment the program envisaged here in complete generdlity. Grave difficulties of
definition would be encountered at the outset. The remarks in the present section
of the paper are offered only as a guide to intuitive thinking.) Secondly, for ¥ to
be useful as a reduced state-description, the functional f; must be sufficiently
and suitably sensitive to variations in its argument. Thirdly, the stochastic
mechanism governing the transition from one instant in II to the next must be
simple enough to permit the calculation of the transition-probabilities associa-
ted with distribution {Y,.1| Ya}.

The stochastic processes with which we shall be concerned all have a Markovian
origin and they are deprived of their Markovian character only because we are
unwilling to work with a sufficiently comprehensive description of the present
state. One way of remedying this difficulty would be to augment the description
of the present state so as to imbed the given process in a more complicated one
having the Markov property. To illustrate this procedure we might consider
taking the state Z(¢) of the augmented process to be the whole past history of
the given process:

Z(t) = the contraction of X(-) to the reduced domain (— «, .

However, certain difficulties are to be expected in defining the .Z-process satis-
factorily, and it is fortunate that such a drastic procedure is not necessary in
queuing theory, where in the worst case (GI/G/s) it would be enough to replace
the single initial state-variable (queue-size) by a vector variable of s + 2 com-
ponents (thé. extra components specifying the expended service-times of the
people being served and the expended inter-arrival time). This particular form
of the “augmentation’” technique can be carried through in some simple cases
but only at the expense of very complicated calculations, and the method of
contraction to an imbedded Markov chain is usually preferable even although
by its very nature it must leave some of our questions unanswered.

I shall illustrate the “contraction” method by referring briefly ‘to my earlier

&
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treatment of M/G/1 and to Lindley’s treatment of GI/G/1. I shall then apply
it to obtain the equilibrium behavior of GI/M /s (a queuing process which seems
never to have been treated before except in some special cases).

4. The system M/G/1. Let ¢ be the number of people waiting or heing served
at time ¢; then X(f) = ¢ does not constitute a Markov process (except in the
special case M /M /1). The augmentation technique would not here be too diffi-
cult; it would suffice to take Z(t) = (g, vo) where v is the expended service-time
of the person being served (v, being left undefined when ¢ = 0). The contraction
technique proceeds as follows (full details will be found in [8]; I quote here a few
illustrative results only). We define X(-) to be continuous-to-the-right at its
points of discontinuity, and we take the test for membership of the set 6, to be
X(t) = X(t — 0) — 1, (“the value of ¢ has just decreased by unity”’); thus the
set II consists of the epochs of departure. When ¢ ¢ I, let Y () = X(t) = g, so
that Y is the number of persons left behind by a departing customer (including the
person, if any, whose service is just starting). The fact that the input is of the
Poisson type (i.e., the M in M/G/1) ensures that the Y-chain is Markovian.

Let ¢’ and ¢” be the numbers of persons left behind by two consecutively de-
parting customers and let

pii =pr{¢’ =j|¢ =i}

Then P = || p;; || is the transition-matrix for the imbedded Markov chain, and
we can proceed with its analysis by the methods described in Feller’s book [6].
It is found that the matrix P is

70 1 2 3

0 k() ,\71 ’\”12 k3
1 ko IC1 k2 k‘i
2 0 IC() kl k2
3 0 ke k

where

i, 1 (° e (VY 4 .
@ m=l[ (Yo G=o12-,
Jid a

3 On my communicating a MS. copy of the present paper to M. Pollaczek, he informed
me that he has recently considered the system GI/M/s from a different point of view, a
number of his results being qualitatively equivalent with some of mine. His paper has
since appeared [Pollaczek, 1953] and contains an attack on the problem of the more general
system GI/G/s. It seems that manageable solutions may be expected whenever the Laplace
transform of the v-distribution is rational.
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and the chain is in all cases irreducible and aperiodic. It is ergodic when p < 1,
recurrent-but-null when p = 1 and transient when p > 1, and in the ergodic
case the limiting ¢-distribution is that generated by the function

_ (1 —2) K@),
(5) H(z) —(I—P)-—K‘W;
where K(2) = Y. ok,z’. From this the Pollaczek formula for the Laplace trans-
form of the waiting-time distribution follows easily on noting that ¢ is the number
of arrivals during the sum of the departing customer’s waiting-time and his
service-time. In particular the probability of not having to wait is found to be
1 — p, and the ratio of the mean waiting-time to the mean service-time is
given by

(6) %”)) = 5= {1 +var (11;)}

a formula of great practical importance.

6. The system GI/G/1. Let ¢ and X(¢) be defined as in Section 4 but now
let the test for membership of the set O, be the requirement that either

Xt—0)=0 and X@ =1

Xt—0)22 and X(@ =X(¢-0)—1

(““the service of a customer has just commenced”); thus the set II will consist of
the epochs of commencement of service. If t £ II then we take Y (¢) to be the waiting-
teme w of the customer whose service has just commenced (that is, the time since his
arrival); of course Y () may be zero. The value of Y(¢) can be found by examining
the graph of ¢ against ¢, starting at some epoch when ¢ was equal to zero; thus
Y (¢) is a rather complicated functional of the contraction of X(-) to the domain
(=, t], and it is this functional which is f; . A little intuitive consideration will
show that the Y-chain is Markovian, although (in contrast to the previous ex-
ample) it has a continuum of states. (If w, is given, then the prediction of w,, is
equivalent to the prediction of », — u, (formula (7) below). Now information
about w,_;, w,—2, - - - would be of no assistance in making this prediction.) It
should be emphasized that the Y-chain would not be Markovian if the input

- were not of the special type indicated by the symbol GI. The determination of
distr {Yn41| Y.} here depends on the fact that

) Wy = max {w, + v, — u,, 0},

where w, is the waiting-time of the customer whose service-time is v, , and u, is
the time which elapses between the arrival of this and of the next customer.
The simple matrix relations of Section 4 are here replaced by an integral equation
“of the Wiener-Hopf type due to D. V. Lindley [12], (see also Smith [19]).
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6. The many-server system GI/M/s. Here ¢ is the number of persons waiting
in the queue or being served at one of the s service-points at the time ¢, and
X(¢) = q. The system is Markovian only in the special case M /M /s treated by
Erlang [5], Molina [13] and Kolmogprov [11]. Let the test for membership of the
set O, be X(t) = X(¢ — 0) + 1, (“a customer has just arrived”’); then the set II
will consist of the epochs of arrival. If t e I let Y (¢) = X (¢ — 0), so that Y is the
number of persons found to be ahead of him (waiting, or being served) by the newly
arrived customer. As before, a little consideration will show that (because of the
negative-exponential service-times) the Y-chain is Markovian. It will be con-
venient to use ¢ for the value of Y but it should be borne in mind that it is not
g but @ = max (¢ — s, 0) which is the length of the queue in-the ordinary sense
of the word; if 0 < ¢ < s then ¢ of the service-points w111 be occupied and s — ¢
will be free and no one will be waiting,.

We commence with an examination of the general form of the matrix P whose
(¢, j)th element is p;; = pr{q¢” = j|q¢ = 7}, where ¢’ and ¢” refer to two con-
secutive epochs of arrival. The best way to describe the matrix P is first to par-
tition it as follows:

®) P= [g c].

Here A is a square matrix of s rows and s columns; in describing the elements
of A, B and C they will always be given the labels which they bear in virtue of
position in P; thus the top left-hand element of C will be called ¢, and not ¢y, .

Consider the (7, j)th element of the matrix A. We must have s < s — 1, and
so the newly arriving customer will find s — 1 or fewer customers ahead of him,
all of whom are being served. There will therefore be at least one server free and
so the service-time of the new customer can commence immediately. We have
to account for the events during the period of time » which elapses between his
own arrival and the arrival of the next customer. Suppose that n customers con-
clude their service during this period, and let us write [n | m; u] for the conditional
probability associated with the stated value of n when m(= ¢ 4+ 1) customers
are being served at the commencement of the period. We can think of these m
customers as the members of a colony which is subject to a randomly-operating
death-rate of amount 1/b per head per unit of time. The theory of the simple
death-process (see, for example, [6]) then gives

(9) [n I m; u] —_ (:Ln>(l —ulb)n —(m—-n)ulb’
(a result which can also be obtained directly without much difficulty). If we put
(10) n|m] = fo [n | m; u) dA(u)

then we shall have
=f+1—-5j|¢+1 when j=i+4+1
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and
pi; = 0 elsewhere,

provided that (7, j) € A. Here is the form of A when s = 4:
a1 wf1] o 0
2121 1121 [Of2] O
(3[3] [2]3] [1]3] [0]3]
(414] [3]4] [2]4] [1]4]

It is important to notice that the elements of A are positive when j < ¢ + 1.

The elements of B are less simple in form. Here i = s, and so immediately
after the commencement of the inter-arrival time « there willbe m = ¢ — s + 1
persons waiting in addition to the s persons who are being served. Also j < s,
and so at the end of the interval no one can be waiting and n = s — j servers
must be free. We require the conditional probability {n |s; m; u} associated
with the stated value of n when m and u are given. Suppose that the last of the
m waiting customers is received at a service-point after the lapse of a time U.
The distribution of U can be written down at once because sU/b = % xin , and so

.« me =__1___ -_Smnu—w/b m—1 o
(11)  {n]s;m; u} (m—l)!(b) jo e ""U" [n]s;u — UldU.

If now we put

N

(12) {n]s; m} 5] {n]s;m;u} dA(u)
0
then we shall have
pii={s—7J|s;i—s+ 1} when (z, 7) e B;

it is to be noted that all these probabilities will be positive.

Finally we require the elements of C, and here j = s. Obviously we shall have
pii = 0if £> 7 4 1, because no one can enter the system during the inter-arrival
interval. Let us write n = ¢ + 1 — j for the number of customers whose service
is concluded during the inter-arrival time, and then seek the conditional prob-
ability (n |s; u) associated with the stated value of n when u is given. (The
notation implies that this probability is independent of the value of ¢ (which is
also to be supposed given). That this is so will be the principal result of the argu-
ment which follows.) Because J = sfor the elements of C we need only consider
the values of n such that 0 < n < ¢ 4+ 1 — s, and if » has one, of these values
then there will be no service-point unoccupied during or at the end of the inter-arrival
time u. Thus (n | s; %) is equal to the probability that, in time u, n incidents will
be registered in a Poisson process for which the expected incident-rate is s/b per
unit of time. That is,

(13) (nls;u) = g Su/0F

)
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and so if we write

(14) (n]|s) = fom (n]s; u) dA(u)

I3

then we shall have
pii=@EC+1—jls) i 1Z2i+1,
and
pi; = 0 elsewhere,

provided that (¢, j) € C. Here is the form of C when S = 4;

o 0o 0o 0
o o o o0
o o0 0 0
©49 o0 o0 o
(1]4) (0|49 0 0

@4 1]4a) 049 o
3149 @]9 ]9 (0]

It is to be noted that the diagonal and super-diagonal elements of P which lie
in C are respectively equal to (1 | s) and to (0 | s) and that both these quantities
are positive.

7. The many-server system GI/M/s (continued). Now that we know the form
of the matrix P we can apply Feller’s treatment of denumerable Markov chains
to obtain the principal properties of the imbedded Markov chain in the prac-
tically important case when the relative traffic-intensity, p = b/(sa), is less
than unity. Familiarity with chapter 15 of Feller’s book [6] will be assumed.

In the first place, the chain is irreducible. This can either be seen analytically,
or made self-evident by the following intuitive considerations.

(a) The transition 7 — 0 always has a positive probability because it can happen
that all the ¢ 4.1 customers will be served and will leave the system during the
inter-arrival period.

(b) The transition ¢ — 7 4+ 1 always has a positive probability because it can
happen that no customer will leave the system during the inter-arrival period.
Thus it is possible in a suitable (finite) number of steps for the system to move
from any given state to the zero state and thence to any other given state.

_ Accordingly, every state is of the same “type.” That they are all aperiodic
" follows from Feller’s theory and the fact that the diagonal elements of P are
positive. We shall now show that with the given restriction on the relative traffic-
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intensity (p < 1), the states are ergodic. This will imply that the probability p;;
(that the system will be in state j after n steps) converges in the ordinary sense
(as n tends to infinity) towards the jth element, ;, of a limiting distribution
which is independent of the initial state, <.

From Feller’s theorems 1 and 2 we know that either (i) every state is transient
(or every state is recurrent-but-null) and p7; — 0 as n — oo for all 7 and J; or
(ii) every state is ergodic and pj; — w; as n — o for all 5 and j, where the =’s
are positive and sum to unity. Suppose that the matrix P could be shown to
possess a nonnull invariant row-vector x, the components of which form the
terms in an absolutely convergent series. Then x = xP = xP", and so in case (i)
we should have

L
= 2 Tapa;—0 asn — =,
a=0
and in case (ii) we should have
0
Ty = E TaPaj = (Exa)rj asn — o,
a=0

and because x is supposed not to be null it would then follow that the system
must be ergodic, that 3z, = 0 and that the vector x could be normalized to
give the limiting distribution, =. Thus, in order to establish ergodicity and de-
termine the limiting distribution it will be sufficient to construct a vector x having
the stated properties. (It is important to note that we do not need to worry
about the signs of the components of x.) -

In order to implement this program, let us write

(15) 'xE[f‘oyﬂl,"'7,‘"—2;17)‘7>‘2y)‘3a"°]

(the u-terms being absent when s = 1). I shall show that A and the u’s can be
chosen so as to give this vector the required properties (it will be enough if it is
invariant.and if | A | < 1). The invariance of x requires that

25 = 2 TaDas 0=j< =)

and when j = s each of these equations will be found to be equivalent to the
following equation for A :

(16) : FQ\) = A 0<Ar<1)
where
(17) FO) = | TN g,

There is a momentary advantage in writing the M-equation in the form, Y 3,
(n| 8)A™ = X, and then noting that the coefficients (n | s) are all positive and are
the terms in a probability distribution whose mean is equal to 1/p (and so is
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greater than unity). It is now an immediate consequence of the fundamental
lemma of branching-process theory (see, e.g., [6]) that the A-equation has a
unique root in the interval 0 < A < 1. In what follows the symbol A will always
denote this root.

The equations £; = ) _TapPaj (1 £ j < s — 1) can now be used for the successive
determination of the u’s (this depends on the fact that [0 | 1],[0]2], --- ,[0|s —
1] are all positive). Thus we have only to verify that the vector x so constructed
satisfies the last of the invariance conditions, z, = D TaPao - But this is an im-
mediate consequence of the fact that the row-sums of the matrix P are all equal
to unity (the intuitive meaning of the row-sum condition is obvious; its analytical
verification is tedious but elementary). The following statement summarizes
the results so far obtained:

1: when the relative traffic-intensity is less than unity, the Markov chain ¢{mbedded
in GI/M /s is irreducible and ergodic. The limiting distribution is a geomelric series
save for modifications to its first (s — 1) terms, the common ratio being the unique
root of the equation

F(\) =\ 0 <A<

Now 4, the number of persons waiting or being served in the system, is not in
practice so interesting as the “true’” queue-size encountered by the newly-ar-
riving customer:

(18) Q = max (z — s, 0).

A random variable of equal importance is the waiting-time of the new customer,
w. If ¥ = max (¢ — s + 1, 0) then w will be the sum of k mdependent variables
each distributed like bx3/s, and so the Q- and w-distributions are quite easy to
find once the ¢-distribution is known. Thus, in the statistical equilibrium which is
ultimately attained when the relative traffic-intensity p is less than unity, we
shall have:

11: the probability that Q s zero is

+ 142
(19) DY

2u+ /1 =N’
and the probability that w is zero is

DY = B
@ S Xe+1/a =N’

II1: the mean value of Q is given by
(21) EQ) =
and the mean value of w s given by

Ew)_ 1-8 .
E@w) s@ -2’

(22)
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IV: when Q s known to be posttive, its conditional distribution is

(23) (1 - )‘))‘Q—l (Q = 1: 2: 3: ttt )7
and when w s known to be positive, its conditional distribution is
(24) ¢ dw/c O <w< ),
where

_ b
(25) CcC = m .

The second part of Theorem IV is a generalization of a remarkable result
recently discovered by W. L. Smith [19]. He observed that for a single server and
with certain restrictions on the form of the distribution dA4 (u) defining the general
independent input, a negative-exponential distribution of service-times produces
a negative-exponential distribution of waiting-time (apart from a probability-
concentration at the origin). We now see that the restrictions on the form of the
distribution dA (u) are unnecessary and that the result is true whatever the num-
ber of servers. Moreover, this simple property of the waiting-time distribution
is agsociated with an equally simple property of the queue-size distribution,
which we have shown to be of the geometric-series form apart from a probability-
concentration at @ = 0.

8. Detailed results for GI/M/s when s < 3. Suppose first that the inter-
arrival time u has a distribution dA(u) = dA,(u/a), where dA:(u) is a fixed
distribution with a mean equal to unity, so that the average inter-arrival time,
a, enters dA (u) only as a scale-parameter. Then the (A, p)-relation can be written

(26) A = f Ol G4 (7) ©<x<1),
0
and so it is independent of @ and of the number of servers, s. Two special cases
are of interest.
Poissonian input (system M/M/s). Here dA;(u) = e “du, and the (\, p)-
equation is
@7 N = (1 + o+ p.=0.
The root in the interval (0, 1) is A\ = p. (The results for the system M/M /s are
well known and are to be found in references [5], (13], [11] and [6].)
Regular input (system D/M/s). (This system has only been studied before in

the case s = 1.) Here the (\, p)-equation can most conveniently be put in the
form

(28) 1 —¢* = pX, where X=(0-2X\)/p and 0<A<LI1

A few corresponding values of A and p are given in Table 2.
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In order to complete the study of any particular case when s = 2 we need
the values of the u’s. When s = 2 or 3 the procedure is as follows; it will be obvi-
ous how this is to be extended when s = 4.

‘TABLE 2
The (\, p)-relation for the system D/M/s
P g A P A

0.0 i 0 0.6 0.3242
0.1 | 0.0000 4542 0.7 0.4670
0.2 : 0.0069 77 0.8 0.6286
0.3 ' 0.0408 8 0.9 0.8069
0.4 | 0.1073 6 1.0 1
0.5 | 0.2032 j

Determination of us when s = 2. To simplify the formulae, I shall suppose that
a = 1; this will not result in any loss of generality. The uo-equation is

(29) 1=1[0]1 + [1]2] + 2 {1]2; a2,
and after a few transformations this becomes
2 ® e 1

(30) (2:\ =1 “") { oA = 5
Thus we have:
31) System M /M /2: w = 1/(2p).

9 — gl
(32) System D/M/2: o = ——5-)—\—_‘—1 .

Determination of po and p, when s = 3. The equations determining the u’s are

(3) L= 0]2h + 18]+ 3 (1132137
and |
GO = 01T+ (120 + 23+ 3 12]32,

and after some transformations these become

b 3 _ ® —2u/3p — 1
(35) (3-—“ - yl> { T AA) =
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and
6 © tte 4
60 (g o= m) [ A =t .
It is now quite a simple matter to find uo and y; when dA (u) is given. For example:
) 2 2
37 System M | M | 3: = — =
(37) ystem M | M | M= and py PR
System D| M |3:  if z is the positive root of z* = e,
then
_ 3 -4

S = .
and

3 -2
(38) o = 2 (95\“:”;) — (2 - D

The above formulae have been used in the construction of Table 3, which shows
the effect of varying the quality and intensity of the input and the number of
servers when the service-time has a negative-exponential distribution. For a
specified rélative traffic-intensity, p, Table 3 gives

(a) the probability of not having to watt, and

(b) the ratio of the mean wasiting-time to the mean service-time. “Random” ar-
rivals and “Regular” arrivals refer to the systems M /M /s and D/M /s, respectively.

TABLE 3
The many-server queuing-system with a negative-exponential service-time
One server Two servers Three servers
lt?h%i:‘:e Random arrivals]Regular arrivals | Random arrivals| Regular arrivals (Random arrivals | Regular arrivals
ty p

(a) ®) (a) ® (a) ®) (a) ®) (a) ®) (a) %)
0.0 1.000.00|1.00{0.00|1.00|0.00|1.00]0.00|1.00 | 0.001.00 | 0.00
0.1 0.90 | 0.11 | 1.00 | 0.00 | 0.98 | 0.01 | 1.00 | 0.00 | 1.00 | 0.00 | 1.00 | 0.00
0.2 0.80 | 0.25 | 0.99 | 0.01 | 0.93 | 0.04 | 1.00 | 0.00 | 0.98 | 0.01 | 1.00 | 0.00
0.3 0.70 | 0.43 | 0.96 | 0.04 | 0.86 | 0.10 | 0.99 | 0.00 | 0.93 | 0.03 | 1.00 | 0.00
0.4 0.60 | 0.67 ; 0.89 { 0.12 | 0.77 | 0.19 { 0.96 | 0.02 | 0.86 | 0.08 | 0.98 | 0.01
0.5 0.50 11,00 0.80 | 0.26 | 0.67 | 0.33 | 0.90 | 0.06 | 0.76 | 0.16 | 0.94 | 0.02
0.6 0.40 {1.50 | 0.68 | 0.48 | 0.55 | 0.56 | 0.79 | 0.15 | 0.65 | 0.30 | 0.86 | 0.07
0.7 0.30 12.3310.53,0.880.42:0.960.65)0.33 1 0.51 0.55 0.73 | 0.17
0.8 ! 0.20 | 4.00 1 0.37 11.69'0.29 /11.7810.47,10.71 1 0.35| 1.08 | 0.54 | 0.41
0.9 10.10 9.00]0.19 :4.18 10.15 i 4,26 |1 0.251.93 | 0.18 | 2.72 | 0.30 | 1.21

1.0 1000 « [000] » [0.00 = {000/ © [0.00] = |0.00] w
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