SIMULTANEOUS CONFIDENCE INTERVAL ESTIMATION!

By S. N. Roy anp R. C. Bose
Unaversity of North Carolina

Summary. The work of Neyman on confidence limits and of Fisher on fiducial
limits is well known. However, in most applications the interval or limits for
only a single parameter or a single function of the parameters has been con-
sidered. Recently Scheffé [2] and Tukey [3] have considered special cases of
what may be called problems of simultaneous estimation, in which one is in-
terested in giving confidence intervals for a finite or infinite set of parametric
functions such that the probability of the parametric functions of the set being
simultaneously covered by the corresponding intervals is a preassigned num-
berl — a(0 < a < 1).

In this paper we discuss in Section 1, a set of sufficient conditions under
which such simultaneous estimation is possible, and bring out the connection
of this with a method of test construction considered by one of the authors in
a previous paper [1].

In Section 2 some univariate examples (including the ones due to Scheffé and
Tukey) are considered from this point of view. Sections 3 to 6 are concerned
with multivariate applications, giving results which are believed to be new. The
associated tests all turn out to be the same as in [1] except for the example in
Section 4.3 which, in a sense, is a multivariate generalization of Tukey’s exam-
ple (Section 2.2). Section 3 gives the notation and preliminaries for multivariate
applications. Section 4 gives confidence bounds on linear functions of means
for multivariate normal populations. Sections 5 and 6 give respectively confi-
dence bounds on certain functions of the elements of population covariance
matrices and population canonical regressions, from which a chain of simpler
consequences would follow by the application of a set of matrix theorems. This
has been partly indicated in the present paper and will be more fully discussed
in a later paper.

1. Introductory remarks on simultaneous estimation.
1.1. Lety = (1, ¥2, - -+, ¥») be an observed set of random variables, whose
joint distribution depends on the set of unknown parameters,

0= (6,0, 0.
Let
(1.1.1) o, = fi(6)
be a set of functions of the parameters, where the index % belongs to a finite or
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infinite set Q. We shall consider the problem of making simultaneous confidence
statements

(1.1.2) dn(y) = i = dia(y)

with confidence coefficient 1 — «, which gives the probability that the state-
ments (1.1.2) are simultaneously true for all k& € Q.

This problem can in particular be solved under the following circumstances.
Suppose it is possible to find a set of functions

(113) ‘/’k(yy Hk)) keQ
such that
(1.1.4) di £ Y £ do, keQ

implies (1.1.2) and conversely, where d: and d» are constants independent of k.
For a given 6, let

(1.1.5) Wio = {yidi = e < ds | 6},

be the set of those points y in the sample space E, for which (1.1.4) is satisfied.
Let

(116) PVo = nkW'k,o

be the intersection of the sets (1.1.5). If Wy is a Borel set for each admissible 6,
and

(1.1.7) PriyeWy|0} =1— q 0<a<l

is independent of the parameters, then 1 — « is also the chance that the state-
ments (1.1.2) are simultaneously true for all k ¢ Q.

Proor. If the sample point y belongs to W, then (1.1.4) is true for all £ ¢ ,
and the same holds for (1.1.2). Conversely if (1.1.2) is true for all £ & @, then
the same holds for (1.1.4). Consequently the sample point y belongs to W, .
Thus the statements (1.1.2) are simultaneously true when and only when y ¢ Wy,
and the chance for this is by hypothesis 1 — «.

ReMArk. We note that W, is the set of points y which satisfy both the in-
equalities,

(1.1.8) d: £ inf, Yi(y, ;) and  supe ¥i(y, ) =< de,

and if supremum and infimum over k cah be simply expressed, Wy is simply
defined. The choice of ¥x(y, II;) in (1.1.3) can be made in very many ways and
there is of course a set of simultaneous confidence intervals corresponding to
each choice. In all the examples considered in this paper we have used a uni-
form principle of choice discussed in [1], which, in the present context, can be
indicated as follows. In trying to construct a set of confidence bounds (with a
joint confidence coefficient, say 1 — a) for an (infinite) set of parametric func-
tions, consider, to begin with, each such parametric function, separately, and
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with it associate the customary confidence interval with a confidence coefficient,
say 1 — B(>1 — ). In all the examples considered, these customary confidence
intervals (for the separate parametric functions) are well known to have more
or less strong optimum properties, which have also been indicated in [1]. The
next step in any problem is to consider the intersection of this (infinite) set of
confidence intervals associated with the corresponding (infinite) set of separate
or individual parametric functions, and to use this intersection for simultaneous
confidence interval estimation with a joint confidence coefficient, say 1 — «
(naturally <1 — B). Given «, we can determine 8, and vice versa. When we
start with “good’ or “optimum’ intervals for the individual parametric func-
tions, it is of course important to be able to decide how “good” the resulting
joint confidence bounds are, either in general or in the particular problems con-
sidered, especially the multivariate ones, and whether these are in any sense the
“best.” In this connection all we have done in the present paper is to indicate
certain operating characteristics of the resultant joint confidence bounds actu-
ally considered, which we hope to follow up by some further discussion along
the same lines in a later paper.

1.2. Let H, be a hypothesis regarding the parameters, which fixes the value
of I, = fi(6) for all k £ Q. Thus let II; = Il for k £ @ if Hy is true. Conversely
let T, = I for all k £ @ imply the truth of H,. Then a test of the hypothes’
H, is obtained by rejecting Hy, when and only when, at least one of the sta
ments

(1.2.1) o(y) = o = dra(y) ke

is false. It is evident that the size of the test is @, since 1 — « is the chance
for the statements (1.2.1) to be simultaneously true. The region Wj, remains
the same for all sets of parameters 8y = (601, 602, - - - , om) for which H, is satis-
fied. To calculate Wy, we can therefore take any set of values for the parameters
consistent with H, . The critical region for rejecting H, is then Wy, , the com-
plement of Wy, . The power of the test against an alternative H for which the
parameter is 6 is

(1.2.2) 1 — Pr{yeWs,]|6}.

2. Applications to univariate simultaneous estimation problems.
2.1. Let y1, ¥2, - -+, y» be independent normal variates with common vari-
ance ¢ (unknown), and let

E(yi)=azlel+ai2é2+"'+aim0m, t=1,2 .- n

where 6, 6, - -+, 0, are unknown parameters, and ny = rank (a;;) £ m < n.
A linear function II of the parameters 6;, 6., ---, 0, is said to be linearly
estimable, if there exists a linear function Y of the variates such that E(Y) = II.

In this case Y is said to be an unbiased linear estimate of II. The unbiased
linear estimate with the minimum variance is called the best linear estimate
of II.
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Consider the problem of simultaneous estimation for a set of linear functions

(2.1.1) Oy = Uaby + bebe + <+ - + Limbn

such that the coefficient vectors (1, b2, *++ , lkm) form a vector space Vi of
rank n; < ng. Let

(2.1.2) Yi = cays + craye + -+ + Cn¥yn

be the best linear estimate of II; . Then the coefficient vectors (i1, Cizy * * * 5 Cin)
form a vector space V of rank n;, and it is possible to choose n; mutually or-
thogonal vectors

(gir, Giry 5 Gim), i=1,2-,m
of unit length lying in V. In the remainder of Section 2.1, we shall suppose the
subscript 7 to range over the values 1, 2, - -+, n; . Let

U: = gays + oy + -+ + Ginn E(U;) = ;.
Then there exist constants by, bk, - -+ , bea, such that

Yk = bk1U1 + bk2U2 'I' o + bknlUn1 )
I = bu®: + bie®e + -+ 4 ben Pa, «

Conversely each set of constants by , bea, * + - , ben, determines a unique II; and
Y, belonging to (2.1.1) and (2.1.2) respectively, so that the index k is in (1,1)
correspondence with the set (b1, bra, * -+, bany)-

Also Uy, U,, - -+, Us,, are independently distributed normal variates with
variance ¢ and

V(Yi) = (biy + bia + -+ + biny)o™

Let s* be an independent estimate of o* based on n; degrees of freedom. Then’
an estimate of V(Y}) is given by

V(Yi) = (bix + bis + -+ =+ biny)s™

Let us set
Ve = bu(Us — &) + bia(Us — &) + +++ + bany(Uny — @)/
(2.1.3) ‘ s Vbix + bia + -+ + biny
= (Vi — L)/V(Y4);
then
(2.1.4) —d<y<d
implies

Y, — dVT (¥ £ L, £ ¥ + dVT (V)
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since %
supe¥r = + {Z} U; — q)i)2/32}
and

n1 3
inf;,n[/k = — {Zl (U, b (I’i)2/82}.

It follows from the remark at the end of Section 1.1, that W, , the intersection
of the regions (2.1.4), is given by

(2.1.5) Wy = {2 (U: — @)°/s" < d*}.

Now D> (U; — &;)°/ms” is distributed as F with degrees of freedom n;, ns .
Hence if we put d = \/n.F, where F, = Fo(ny, ns) is the upper a-point of the
F-distribution with n; , n, degrees of freedom, then the chance for y1,y2, -+ , ¥n
to lie in Wyis 1 — o. Hence we get the simultaneous confidence intervals

(2.1.6) Y, — \/MFJA/(Y/:) S, =Y, + \/anaV(Yk)

with confidence coefficient 1 — «, for the set of parametric functions (2.1.1).
This is essentially Scheffé’s [2] result when expressed in the general linear form.
It should be noted that the confidence intervals (2.1.6) are independent of the
linear functions Us; .

Again suppose we wish to test the hypothesis H,, that any n; independent
linear functions belonging to the set (2.1.1) vanish. This is equivalent to the

vanishing of ®;, 7 = 1, 2, ---, n;. It follows from Section 1.2, that a test of
the hypothesis H, is obtained by using the region of rejection
(2.1.7) 2 Ui/ms’ > Fa.
Thus we get the usual F-test of the hypothesis Hj .

2.2. Let 41, %2, - -+ , Y» be normal variates for which
(2.2.1) E(y) = 6;, var (y:) = o 1=12---n
(2.2.2) cov (yi, y;) = po ,i=1,2-n, i%]

. . . 2
where p is known, m; and o are unknown, but an independent estimate s* of ¢

based on n’ degrees of freedom is available. It is  uired to obtain a simul-
taneous estimate of the mean differences

(2.2.3) 8; — 8- Gj=1,2-,n, ;.

In contradistinction to the example considered in Section 2.1, we have now
a finite set of parametric functions. Let z; + x0 = y; + x7 where
g= @+t -+ y)nd=(6+ 06+ -+ 6,)/nand the disposable
constant x is so adjusted that the z:’s are uncorrelated. Then

(2.2.4) E(z:) = 8, var (z:) = ¢°(1 — p) i=1,2--,n
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Let
i —0:) — (5 —60;) . . ..
(2.2.5) i = — BT = 1,2, i g
J S‘\/l — .] J
Then
(2.2.6) [¢ij| = d
implies

(2.2.7) yi—yj—sdx/l—pé0;—0,-§y,~—y,~+sd\/1—p.

Let W, be the intersection of the regions (2.2.6). Then clearly the necessary
and sufficient condition for the sample point to lie in W, is that

(2.2.8) - <4

- q—S\/l—-p=

where

(22.9) w = supi; | (z: — 0:;) — (25 — 6;) |, =12 --,n; t#].

Thus if we set d = ga(n, n'), where go.(n, n') is the upper a-point of the dis-
tribution of the studentized range with n, n’ degrees of freedom, that is the ratio
of the range of n independent normal variates with zero mean to the square root
of an independent estimate of their common variance based on n’ degrees of
freedom, then the required simultaneous confidence intervals for the parametric
functions (2.2.3) are

(22.10) i — y; — 8¢a(n, W)V = p < 8; — 8; < yi — y; + 8ga(n,n)V1 — p.

This result is due to Tukey [3]. In particular y1, g2, - -+, Y» may be the
means of n random samples of equal size drawn from normal populations with
a common (unknown) variance, or may be the estimated treatment effects in a
randomized block or a balanced incomplete block experiment.

We can test the hypothesis H, that

(2.2.11) 0 =0=" - =20,
by using as the region of rejection
(2.2.12) R ga(n, n')
8\/ 1—0p
where R = sup;,; | y: — y; | is the range of the random variates y1, %2, +** , ¥n .

Thus we arrive at a test different from the classical analysis of variance test.

2.3. In factorial experiments we are usually interested in estimating linear
functions of treatment effects, whose estimates are independently and normally
distributed w’* a ¢>mmon variance, which can be independently estimated by
an appropr: - muitiple of the error mean square in the analysis of variance.
The distrib. ;ion needed for simultaneous estimation in this case, is slightly dif-
ferent from that occurring in Section 2.2.
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Suppose, for example, that we have observations for a 2 X 2 X 2 X 2 fac-
torial experiment with factors 4, B, C, D, and that we are interested in simul-
taneously estimating the main effects and two factor interactions only. We shall
suppose that the experiment is so laid out that none of these is confounded in
any replication. Let ty, s, t:3 , tu denote the true main effects and t , t3, tu,
tos , s, L the true two factor interactions. The order of the subscripts in #;;
is immaterial, that is, t;; = ¢;; . We can then write in the usual notation

(23.1) tu =3g(a — DO+ D+ D@+ 1)
(2.3.2) te = Yg(a — 1)(b — D(c + D@ + 1)

with similar expressions for other main effects and interactions. Let y.; be the
estimate of ¢;; . Then reasoning as before we get the following simultaneous con-
fidence intervals for ¢;; :

(2.3.3) Yi; — STa(n, ') = ti; S yi; + sza(n, n')

where s* is an estimate of V(y;;), based on n’ degrees of freedom available for
the estimate of error, and where n, which is 10 in this particular example, is the
number of linear functions to be estimated.

The meaning of z.(n, n’) is as follows. Let 1, 22, - -+, Z.» be independent
normal variates with zero mean and variance o’. Let | z | be the maximum of
|z |, |22], -+, | 2o | and let s* be an independent estimate of ¢ based on n’
degrees of freedom. Then xz.(n, n') is the upper a-point of the distribution
of [z |/s.

A test of the hypothesis H, that all the linear functions ¢;; to be estimated
are simultaneously zero, is obtained by using as the region of rejection

(2.3.4) supi,; | ¥ij | = sxa(n, n').

In a factorial experiment in which each factor is at more than two levels, the
above result will still apply if the n linear functions to be simultaneously esti-
mated (or tested for vanishing) are so chosen that their estimates are inde-
pendently distributed with a common variance.

The use of z.(n, n') to solve an equivalent problem was introduced inde-
pendently by J. W. Tukey at the same session of the meeting of the Institute
of Mathematical Statistics (Chicago, 1952) at which the authors first presented
their own results.

3. Notation and preliminaries for multivariate applications. As far as possible
Greek letters will stand for population parameters and Iialic letters over the
first half of the alphabet for given (nonstochastic) quantities and over the latter
part from, say, s to the end for sample quantities, capital letters for matrices,
small letters for scalars, small letters underscored for column vectors and for
row vectors if they are primed. Some exceptions to this, which are unavoidable,
will be clearly indicated at the proper places. As usual the transpose of a matrix
or a column vector will be denoted by priming such quantities. The absolute
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value of the determinant of a square matrix M will be denoted by | M | and the
absolute value of a scalar m by | m | . To indicate the structure, a p X ¢ matrix,
say M, or a p X 1 column vector, say m, will sometimes be written respectively
as M(p X ¢) or m(p X 1). The terms “positive definite’”” and “positive semi-
definite’” will be abbreviated p.d. and p.s.d. respectively. ‘“Almost everywhere,”
that is “except for a set of (probability) measure zero” will be referred to as a.e.
A matrix B whose typical element is b;; will sometimes be denoted by (b:;). 4
diagonal matrix whose diagonal elements are, say, a;, az, - -+, a, will be de-
noted by D, .

A normal variate z with mean ¢ and variance ¢° will be called N (¢, o°). A
column vector z(p .X 1) whose components have a p-variate normal distribu-
tion about a mean vector £(p X 1) and with a covariance matrix Z(p X p) will
be called N(¢, Z). The matrix = is a symmetric and always at least a p.s.d.
matrix. In the problems we shall be discussing in this paper this £ will be as-
sumed to be p.d. A random sample X(p X (n + 1)) of (n + 1) individuals from
an N (¢, Z), will have the probability density

@m) 7R 2 T exp [~ tr 2T(X — (X - )]

where £(p X (n + 1)) stands for a p X (n 4+ 1) matrix each column of which
is the p X 1 vector £ already defined. Notice that in the matrix X any element
in the 7th row and jth column is to be called z;; where ¢ = 1, 2, ---, p and
j=1,2,---,n+ 1and where 7 stands for a variate and j for an individual.
A matrix X having the above probability law will be called an X:N (£, =). Also
let #; be the mean over j of x;; and let &’ = (&, --- , &p). It is well known that
by an orthogonal transformation we can change over from X (pz(n + 1)) to
(Y: '\/71« +1 3;); where

YY" = nS(p X p) = XX’ — (n + 1)z,
S being the sample covariance matrix, and where
Y(p X n) and z(p X 1)
are independent and have the respective probability densities
Const. exp [— % tr Z7'YY"]
and
Const. exp [— 3 tr 27'(n + 1)(z — H(@@’ — £)].

Any Y(p X n) having the above distribution can be called Y:N(Q, Z). For
problems on covariance matrices or canonical correlations or regressions we
shall start not from X(p X (n + 1)):N(%, Z), but directly from Y(p X n):
N(0, 2). As is well known there is a lot of arbitrariness in Y, but this does not
matter in the results we are ordinarily interested in, because all such results
ultimately come out in terms of z and Y'Y”, that is, S. In Sections 3, 4 and 5 of
this paper which, in a sense, constitute a follow-up of a previous paper [1], re-
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peated use is made of the fact that if z(p X 1) is N(§, Z), then, for a fixed, that
is, nonstochastic a¢(p X 1), the scalar ¢’z is N(a'¢, a’Za), and thus multivariate
problems are thrown back on univariate and bivariate problems exactly in the
same manner as in the previous paper. We also make repeated use of the result
that tr A(p X q) B(g X p) = tr BA.

4. Multivariate estimation and testing problems on means. In three subsec-
tions under this section we shall consider three estimation problems each coupled
with a corresponding problem in testing hypotheses. It will be evident from the
titles to the subsections that the first problem is, in a sense, a special case of the
second and the second of the third. But for expository purposes and from con-
siderations of practical usefulness there is an advantage in discussing the three
cases separately and in order of increasing generality and difficulty. It may
be also noted that so far as testing of hypotheses is concerned, out of the three
major problems considered in Subsection 4.1, 4.2 and 4.5 of this section the
last two have been already discussed in a previous paper [1] and the associated
tests offered there are precisely the same as are obtained here by inverting the
confidence estimation procedures. In the discussion of the estimation problems
we shall be concerned with the probabilities of covering both the true and false
values of the parameters being estimated. We shall refer to these as the probabili-
ties under the null hypothesis and an alternative respectively, and shall employ
the same terminology for the associated distributions of the statistics that
define the boundaries of the confidence sets.

4.1. Estimation and testing problem on ¥ from an N(§ Z). Given an X(p X
(n 4+ 1)):N(% Z), suppose we try to obtain simultaneous confidence bounds on
arbitrary linear compounds of the population mean vector £ Consider the
statement that

n+ 1 d@— 8| /@8Se)} <,
or

(4.1.1) (n + Dd'(z — §)@ — ¢)a/d/Se < ¢,

where z is the sample mean vector and S is the sample covariance matrix, already
defined in Section 3, and a(p X 1) is an arbitrary nonnull nonstochastic column
vector and ¢ is a given positive constant. The statement (4.1.1) stems from the
customary Student’s i-test and the associated confidence interval (both having
well known optimum properties) relating to the parameter a’¢. Now, for a given
(positive) ¢ and given z, £ S and of course n, the set of all statements (4.1.1)
for all possible nonnull vectors ¢ is exactly equivalent to the statement that

(4.1.2) supa(n + 1)a’(z — )@’ — ¢)a/a'Sa = .

It is well known that this “sup” comes out as tr(n + 1)S ' (z — £) (2’ — &), or
as tr(n + 1)(z’ — &)S7(z — &) (since tr AB = tr BA), or simply as (n + 1)
(' — £)S'(z — &) (since tr scalar = scalar). It is also well known that under
the null hypothesis, this is distributed as the central Hotelling’s T* with D. F. p
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and n» + 1 — p and that when in this statistic £ is replaced by £*(5 £), the re-
sulting statistic is distributed as the noncentral Hotelling’s T* with the same
D. F. and with the noncentrality parameter 7 = (£ — ¢') Z“(g* — §). Going
back to (4.1.1) it is thus easy to see that if, for all £ and all nonnull g,

413) P [(n+ Da'(z — @ — £)a <= e] —1— g

Y
a'Sa

thenc¢’ = T% is the upper a-point of the central Hotelling’s T’-distribution with
D.F.pandn + 1 — p and can be conveniently written as Te(p,n + 1 — p).
From (4.1.3) we have thus, with a confidence coeflicient 1 — «, the set of simul-
taneous or multiple confidence bounds (for all £ and all nonnull g):

(4.1.4) a'z — [Ta(@Sa)/n + 1! < ¢t < o'z + [T2(a'Sa)/n + DI

It should be noted that (4.1.4) gives the simultaneous confidence bounds on all
arbitrary linear compounds of the p components of the population mean vector £.
The shortness (in the sense of probability) of this set of confidence bounds,
that is, the probability of these bounds covering £* when, in fact, £* # £ is
obviously

1 — Plnoncentral T% = T | 7.

From the well known fact that the power function of Hotelling’s T-test is a
monotonically increasing function of the nonnegative r, it follows, therefore,
that the shortness of the confidence bound (4.1.4) tends to zero as 7 — oo,

From 1.2 the critical region of the associated hypothesis: § = (a particular)
£, that is, of the hypothesis: N.(¢’t = a’&) turns out to be:

(n+ D@ — &)S (@ — &) = Ta,

which implies that, for at least one g, the set of confidence bounds (2.1.4) does
not include @’ ; the region of acceptance based on the opposite inequality will
imply that, for all g, the set of bounds (4.1.4) includes a’% .

4.2. Estimation and testing problem on mean differences from

N(‘Ehyz)(h = 1727"';k)'

Given Xi(p X (ny + 1):N(, 2), (h = 1,2, ---, k) let us try to obtain a
set of simultaneous confidence bounds on all arbitrary double linear compounds
of the p-components of the k population mean vectors measured from the
weighted grand mean vector. Consider now the statement

< [(k — 1)c’a’Salt

|k
(4.2.1) i; bra’ (ns + 1)*(231: —z— &+ 8§
where z; is the mean vector for the Ath sample,

$=Z(m+l):§h/2(nh—l—l), $=Z(nh+l)&/2(n;.+l),
bl h=1 h=1 h=1
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where S is the pooled “within” covariance matrix of the k-samples, given by

k k
<}; m) S = }; (X3 X — (na + Danail,
and ¢ is a given positive constant, a(p X 1) is an arbitrary nonnull nonstochastic
column vector and the by’s are arbitrary coefficients subject to) o bi = 1.

If we now use the result that

k
Z b Yn
h=1

then it directly follows that, given all the other quantities including @, and under
all possible variations of by’s subject to D ss by = 1, the statement (4.2.1) is
precisely equivalent to the statement that

k

2 [0’ + Diaw — 2 — & + O/ (k — Da’Sae < &,

h=1

S +VEe2d g = d,

h=1

or
k
422) L dm+ D@ —z— 6+ @ — ¢ — &+ £)e/(k — Da'Se < ¢
Letting now a vary and putting
k
b —=18* =2 (m+ Do — 2 — b+ D — ¢ — & + 9,

the statement (4.2.2), for all possible values of the nonnull g, is precisely equiva-
lent to:

(4.2.3) supa[a’S*a/a’Sa] £ ¢

As observed in a previous paper [1] S is, a.e., p.d. and S* is a.e., p.s.d. of rank
¢ = min (p, k — 1) (psd.if p > k — 1 and pd. if p < k — 1) and sup.
[a’S*a/a’8q] is just the largest root 6, of the pth degree determinantal equation
in 6: | 8* — 68| = 0. Of this equation all roots are nonnegative, p — g of them
always zero and q are, a.e., positive. Thus (4.2.3) and hence (4.2.2) and (4.2.1)
under all permissible variations of ¢ and the b)’s, turns out to be equivalent to:

(4.2.4) 8, <.¢c.

The distribution of 8, on the null hypothesis is known and relatively easy and
involves as parameters p, k& — 1, D _s-1 k.. Computation of the 5 per cent
and 1 per cent points is in progress. Thus if

(4.2.5) P[8, = 0, | null hypothesis] = 1 — «q,

we can write 6, = 6.(p, k — 1, D r_1m), and now combining (4.2.1)-(4.2.5),
we have, with a confidence coefficient 1 — «, the following set of multiple



524 S. N. ROY AND R. C. BOSE

cor’tﬁdence statements (for all &’s, all nonnull ¢’s and all by’s subject to
2
h=10n = 1)2

é‘: bad (mn + D¥an — 2) — [(k — 1)8.a'Sal?

k . k
(42.6) = hZ_; brd' (i + D} — ) < g bua’ (s + 1D}z — 2)

+ [(k — 1)6.a'Sal?,

where 0, = 04(p, k — 1, D fs ny,). This gives simultaneous confidence bounds
on all arbitrary double lingar compounds of the p components of the difference
between the k population mean vectors &’s and the weighted grand mean of
these which is £.

To discuss the shortness of (4.2.6) consider the noncentral distribution of
0, of (4.2.6), that is, the distribution of the statistic y, obtained by replacing,
in 6, £ by £* (# £). This distribution is extremely difficult but is well known to
involve as parameters, besides the D. F.’s, the positive roots ©;, 0;, --- , ©,
(s = min (p, k — 1)) of the determinantal equation in O: | Z*¥ — 02| = 0. Here
2 is the common covariance matrix of the k¥ populations and =* = (k — 1)’
e (i + 1E — 8 — b+ DEY — £ — & + £). This 2* is necessarily
at least p.s.d. of rank < min (p, ¥ — 1), = s(say), so that, out of the p roots of
the equation in ©, p — s are zero and s positive. If now we write formally, when
the probability is computed under an alternative

—

k k
(427) P':/’q§0a<f);k— 172”")] =‘P(%Pyk"I:Znh;91:92:"‘:ea>y
h=1 h=1

then we note that while ¢ is difficult to obtain, a good upper bound to it [1] is
given by

(428) ¢ < [P(central F < 6,)]"* || Plnoncentral F < 6, [61,-+,06,),
=1

where all F’s are on D. F. (k — 1) and D _t_; ns . Furthermore, as stated and
proved elsewhere [1], this y is also a monotonically decreasing function of the
deviation parameters and tends to zero as these tend to infinity.

With two populations (and samples), we have ¢ = min (p, 1) = 1, and thus
only one positive sample root, say 6, and at the most one positive population
root, say ©. It is easy to check that in this case

— (ny + 1)(n. + 1)

wss) 0 PO tr,S-l(il?l -z — & + Ez)(@{ — 23; —- g{ + Eé),
0 = (n;%-{-_*-l)yf:lz_:‘zl) tr E—I(E;k _ E;k — b+ E?)(ﬁkl _ E;u _ g{ n E;)

and it is well known that, on the null hypothesis, 8 is distributed as central
Hotelling T° with D. F. pand n; + no + 1 — p, and on the alternatives as non-
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central Hotelling T° with the same D. F. and with a deviation parameter ©. It
is also easy to check that in this case the confidence statement (4.2.6) reduces to

’ n 4+ ng + 2 2 } /
a'(z — 22) — l:(nl FOmF 1) Ta@SQ] S dE - &)

’ n + ne + 2 2 7 4
o= o + | bR s
where T% = T%(p, m1 + na + 1 — p) is the upper a-point of Hotelling’s 77 The
shortness of (4.2.10) which is now a degenerate form of (4.2.7) is exactly known
and of course tends to zero as © — .

From Section 1.2, the critical region of the associated hypothesis & = & =
«++ = &, that is, of the hypothesis Nu(a’t; = ¢/£)(¢ = 1,2, - -+, k), turns out
to be the same as given in a previous paper, namely:

(4.2.10)

IIA

k
(4.2.11) ¢q = 0, <p, E—1,2, ni>
=1

with a power function 1 — ¥(e, p, k — 1, D ey ns , $1, -+, P,) where ¢, is the
largest characteristic root of (k — 1)™ 8™ > %5, (n: + 1)(z: — z)(z’ — 2’) and
where the ®’s are the roots of the equation in &:

k
=17 25 (m + Do — D& — £) — 2| = 0.
The properties of this power function, such as indicated under (4.2.8), have
been already discussed in [1].

4.3. An tmportant subset of the set of bounds (4.2.6). Suppose now that, instead
of all contrasts of the type: D s, baa’ (s + 1)}t — £) (with the given restric-
tions on ¢ and the b’s), we are interested in contrasts of the type: a'(& — &),
for all nonnull ¢’ and all h =% 1 = 1,2, --. , k. It is easy to offer a multiple set
of confidence bounds for contrasts of this type, which can be regarded as one
kind of multivariate (under unequal sample sizes) analogue of a somewhat
similar set given by Tukey for the corresponding univariate situations, and dis-
cussed in Section 2 of this paper. The proposed set is built up as follows. With
the same notation as before, and with ny = (ny + 1) (n; + 1)/(ns + 1y + 2)
note that

Thi = nur(2h — 21 — & + )8 Nan — 21 — & + £)
= g’ (zn — 71 — & + &) (@n — 21 — & + £1)a/d'Sa.

Thus, for a given pair (%, I), the statement that Th; < T% is exactly equivalent
to the statement that, for all nonnull a’s,

a'(zn — 1) — [Tetd’Sa/m! < o6 — &) < /' (@n — )
+ [Tha’'Sa/mu).

We observe that when the true population means are &’s, Th; is distributed as
Hotelling’s T° with D. F. p and X sy, + 1 — p.
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Now, considering all pairs (h, I) out of k samples (and k& populations), it is
easy to see that the statement: all Th/s = T%, is precisely equivalent to the
statement that the largest Th; out of all pairs is < T, which again is equivalent
to the statement that, for all nonnull ¢’s and all pairs (k, 1) out of k,

(4.3.1) o — z) — [T2'Sa/mul < o’ (& — &)
< (o — z1) + [Tha'Sa/mu).

If the confidence coefficient of (4.3.1) is to be 1 — @, then T, =
To(p, mang, - -+, ny) will be given by

43.2) P [Largest Ti: out of <120> pairs = T% | null hypothesis:] = a.

It will be obvious that the distribution of the largest T'; involves as parameters

just p and ny, m2, - -+, m . It is easy to see that the distribution is manageable
only when the number of parameters is small. In particular, the case that n, =
ny = --- = my and p = 1, is identical with the one considered in Section 2.2.

It may also be noted that when k = 2, the largest T4#; will of course be Hotelling’s
T? distributed with D. F. p and ny + n2 4+ 1 — p. Also the shortness of the con-
fidence bounds (4.3.1) can be formally written as

P I:Largest Th: out of (S) pairs < Ta(p, ma,na, ~ -+, ) | alternative]

It is important to observe that while each T'; is individually distributed (on
the null hypothesis) as a central Hotelling’s 7 with D. F. p and =i ns +

1 — p, the (;) Thw’s are not independent, nor do we know what the distribution

of the largest central T}, is, to say nothing of the noncentral case, so that the
confidence statement (4.3.1) has not been reduced to concrete terms as was done
for the other cases discussed in this paper. The distribution problem arising in
this situation is now under investigation.

For the associated problem of testing Hy:f, = --- = £, we set up as before,
the rule that if, for all nonnull ¢ and all pairs (4, [), the bounds (4.3.1) include
zero, we accept Hy and reject it otherwise. The properties (including power) of
this test is tied up in an obvious manner with those of the multiple confidence
interval statement (4.3.1).

Notice that so far, in testing of hypotheses by inversion of confidence state-
ments, we have consider :d two-decision problems. Suppose, at this point, for
purposes of illust»" . we offer a multi-decision procedure, namely that, for
a given pair (h, ), we accept or reject H(¢, = £;) according as all those bounds
(4.3.1) which involve z, and z; only include or exclude zero. It is obvious that
in all the other situations considered so far we could set up similar multi-decision
procedures.

4.4. Further observations. In many situations it might be of greater physical
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interest to be able to make, instead of (4.2.6) or even of (4.3.1), a set of just

P X(g) confidence interval statements, each relating to just one variate and

difference between one of (’26) pairs. In other words, if & = (&, &, -+, &)

(h =1,2,---, k) denote the p means for the hth population, then we would
like to make a statement of the form

(44.1) fiw(X1,Xe, -+, Xp) St — En S Fe(Xy, Xa, -+, Xa)

(with obvious applications to subsections 2.1 and 2.2), forallh = &' = 1,2, - - - ,
kand allj= 1,2, ---, p, where fju and Fju are supposed to be two different
functions of the whole set of p X Z;’f.l (ns + 1) raw observations. It is clear
that (4.4.1) is a subset of (4.3.1) which again is a subset of (4.2.6). Whether it
is possible to make a statement like (4.4.1) in an elegant and useful way (i.e.,
with manageable functions fyu and Fju) and with a given joint confidence
coefficient 1 — «, that is, free of the nuisance parameters Z, is still an open
question. It may well be that a range (not too wide) for the confidence coefficient
itself is called for. Furthermore, whatever set of confidence intervals like 4.4.1
we propose, be it under a fixed confidence coefficient or under a confidence co-
efficient lying in a short range, the “goodness” of such a set would pose further
questions. The authors believe that in this situation a more promising approach
_ may be one involving a suitable two-stage procedure.

4.5. General linear hypothesis and linear estimation. In place of the setup of
subsection 4.2, let us consider the following more general one. Suppose we have
a matrix X(p X n), consisting of n independently distributed p-dimensional
column vectors z; , - - - , Z, , each being a multinormal with the same covariance
matrix 2. Suppose, further, that E(X) = £(p X m)B(m X n), (m < n), where
B is a given (nonstochastic) matrix of rank ny < m and £(p X m) is a set of un-
known parameters. Suppose now that under this model we are interested in
the problem of multiple or simultaneous estimation of a set of estizmable linear
vector parameters £(p X m)l(m X 1), for all Lin a vector space of rank r < ne <
m < n. Also let z5; = X(p X n)e(n X 1), be the best linear estimate of £l
(notice that ¢ can be obtained in terms of B and [ and that the estimate of the
covariance matrix of zz: to be called Sz;, is also available in terms of B and
l and the p X n matrix of observations X). Thus, given B of rank no < m < n,
we have, for all nonnull p-column-vectors ¢ and all estimable linear functions
£l (for the I’s under consideration), by using the techniques of the previous
sections, the set of simultaneous confidence interval statements (with confidence
coefficient 1 — a):

.
(4.5.1) @'zs; — [r0.a’'Spaa]! < o'l < ¢'zs. + [r8.0'Ss 0]},

where 0, = 0,(p, r, n — my) is defined in terms of the relevant parameters ex-
actly the same way as in subsection 4.2. The tie-up of (4.5.1) with the univariate
confidence bounds given in (2.1.6) of Section 2.1. will be obvious.
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The inverse problem of testing of hypothesis would go through exactly the
same way as in subsection 4.2 and need not be separately considered here.

b. Multivariate estimation and testing problems on covariance matrices.

5.1. Problem on Z from an N (£, Z). As suggested in Section 3, let us start from
a Y(p X n):N(0, Z), where =(p X p) is supposed to be p.d. (so that its character-
istic roots are all positive). For simplicity we also assume that p < =, so that,
a.e., Y'Y’ that is, nS is p.d., and hence all its characteristic roots are positive.
We now recall the well known result that there exists an orthogonal T'(p X p)
such that Z(p X p) = T'(p X p) De(p X p)T'(p X p) where the 6’s are the
characteristic roots of Z. If the roots are distinct then by a convention, say by
taking all the elements of the first row of T' to be positive, the transformation
could be made one-to-one. However, we do not need this for our present purpose.
Note that the number of independent elements on both sides is the same. We
shall discuss the estimation and testing problems not in terms of = but in terms
the equivalent set T' and 6. Except for the factor (—2) the argument under the
ex;;onentia.l in the probability density of ¥ can now be written, if we put A =
07 as

tr (TDeI")7'YY’ = tr TDADAT'YY’ = tr (DaI'Y)(DsI'Y)".
If we put Z = DAI'Y, it is easy to check that the probability density of Z is
(5.1.1) [2r]?" exp — & tr ZZ'.

Let us now try to obtain a set of simultaneous confidence bounds on a class of
arbitrary p.d. quadratic functions of the elements of the population matrix
DT (to be brought out in 5.1.5). For all nonnull nonstochastic a¢(p X 1) con-
sider now the simultaneous statement that

(5.1.2) i £ dZ7a/da £ csorci < o' (DaI'YY'TDy)a/a’a < cs .

This statement, for a given Z and ¢; and ¢ is precisely equivalent to the state-
ment that

’ (4 ! !
¢ < inf,,gZ,Zg < supggZ,Zg < o,
" da aa
or that
(5.1.3) A<6=6,<c,

where 6; and 0, are the smallest and largest characteristic roots of the matrix
ZZ', both, a.e., positive. The relevant distributions on the null hypothesis, that
is, when the true population matrix is =, being known, let us determine ¢i and
¢z from the relations

Pi=6<6,<c¢|2)=1—a and
P =6,|2) =P, =d|2).

(5.1.4)

We can write ¢i and c; as 614(p, n) and 6sa(p, n). If we now tie up (5.1.2), (5.1.3)
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and (5.1.4) we have, with a confidence coefficient 1 — a, the set of multiple or
simultaneous confidence interval statements for all nonnull ¢ and all permissible
values of the unknown parameters T' and ©:

(6.1.5) a'abi(p, n) £ o/(DaI'YY'TDa)e < @'abeu(p, n)
or, remembering that nS = YY",
a'ab1a(p, n) < ¢/(DaT'nSTDa)a = a'abea(p, n).

The confidence statement is on the parametric matrix DI which, as will be
presently seen, plays the same part as ¢ in univariate problems. Furthermore,
we note that (5.1.5) gives a set of simultaneous confidence bounds on a class of
arbitrary p.d. quadratic functions of the elements of the population matrix
DAT” such that the elements of the observed sample covariance matrix S also
enter into the coefficients of the quadratic functions. Note that when p = 1,
that is, in the univariate case, I' = I = 1 (with the convention we are using),
= =’ Dy = 0,a’ = a = ascalar, so that (5.1.5) will reduce to

(5.1.6) Xia £ 1 5Y/0" S Xba Or 15/X1a Z 0 Z 1 /Xia

where x:. and xs« are just the lower and upper a/2-points of x* with n D. F.
It is easy to see by inversion of (5.1.5) that for the associated hypothesis
HyZ =3 = I‘ngoI‘é (say), we have the critical region:

(5.1.7) ¢» = 02(p, n) and/or ¢1 £ O1a(p, n),

where ¢, and ¢; are the largest and smallest characteristic roots of the matrix
DATyYY'TyDs . The shortness of the confidence bounds (5.1.5) is tied up with
the power of (5.1.7) and the general nature and properties of this have been
already indicated in a previous paper [1].

5.2. Problem of comparison between Z; and Z, from N (£, Z1) and N(&, 2.).
Let us start from Y:(p X n:):N(Q, Z;) (¢ = 1, 2), where we assume that p =<
71, N2, and that 2, and 2, are both p.d. so that the characteristic roots of b re
are all positive and those of Y1Y1(Y2Y5)™, that is, of (n1/ns)S81Sz" are, a.e., all
positive. We recall that there exists a nonsingular u(p X p) such that 2; = uDeu’
and Z; = uu/, where the O’s are the characteristic roots of =277, If these roots
are distinct, then by a convention, say taking all the elements of the first row
of u to be positive, the transformation could be made one-to-one. Noting that
the number of independent elements on both sides is the same we shall work in
terms of u and the 8’s, instead of =; and =, : (As in Section 5.1 we put A = o7%)
Except for the factor (—1/2) the argument under the exponential in the prob-
ability density of Y, and Y, can be written as

tr [(uDew’) YY1 + (un')'Y2Y5)
= tr [(DA,U_IYl)(DA#_lyl)' + (#_1Y2)(#'_1Y2)’]-

If we now put Z; = Dau™ Yy and Z, = u7'Y,, it is easy to check that the prob-
ability density of Z; and Z, is

(21r)—-(p(n1+n2)/2)exp [_%tr (ZIZ{ + Z2Z;)]-

(5.2.1)
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We shall now obtain (see (5.2.4)) a set of simultaneous confidence bounds on a
class of arbitrary p.d. quadratic functions of the elements of the population

matrix uDyu”". For all nonnull nonstochastic a(p X 1) consider the set of state-
ments

¢t £ dZZia/dZ:Zra £ 6 or
(522) G450 VIDap™ V'e/d WY)W Y)a s G or

n — — — — n:
fcf < ¢/ (Dap”'S1p' " Da)a/a W San e £ e
1 1

For given Z; , Z,, ci and ¢; this statement is precisely equivalent to the state-
ment that

’ ! ’ !
2 .. a'Z1Zra aZ1Z1a 2
G Sinfe= 20 S supa == S 6
a'ZsZsa a'ZyZsa
or
2
(5.2.3) AS6=6,=<c

where 6; and 6, are the smallest and largest characteristic roots of the matrix
(Z,Z1)(Z2Z3)7", both, a.e., positive. The relevant distributions on the null hy-
pothesis (i.e., when the true population matrices are Z; and Z.) being known,
let us determine ¢; and ¢; from the relations formally similar to (5.1.4) and
write ¢} and c; as O14(p, 11, n2) and 6:a(p, n1, ns), remembering that these 61,
and 6. will be different in form from those given in (5.1.4). If we now tie up
(5.2.2) and (5.2.3) and put a’u"" = b’, we have (with a confidence coefficient
1 — a), the set of simultaneous confidence interval statements for all nonnull
b and all permissible values of the unknown parameters u and ©:

(624) 2 01(p, m, n)t'Sib < ¥ uDaw” Siw " Dasl S 22 02alp, ma, n)Y'S:b.
1 1

The confidence statement relates to the parametric matrix uDau™" which, as
will be noticed presently, plays the same part as ¢2/0; in univariate problems.
It may be observed that (5.2.4) gives a set of confidence bounds on a class of
arbitrary p.d. quadratic functions of the elements of the population matrix
wDap™" such that the elements of the observed sample matrix S; also enter into
the coefficients of the quadratic functions. As in the previous case, note that
when p = 1, b = b’ = a scalar, Z; ="01, Zs = o3 (both scalars), Da = 02/01
and uDap™ = o2/01, so that (5.2.4) reduces to

(5.2.5) Frl.si/sy = o1/os = Fra-si/s:

where Fy, and Fs, are the lower and upper a/2-points of the F-distribution with
D. F. ny and Ne .

It is easy to see by inversion of (5.2.4) that, for the associated hypothesis
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Hy:Z, = Z; which turns up if and only if Dy = I(p), we have the critical region
obtained in the previous paper [1], namely,

(5.2.6) ¢p 2 O2a(p, M1, m2) and/or ¢1 = 014(p, M1, Ma),
where ¢, and ¢; are the largest and smallest characteristic roots of the matrix
(WYY ™YY ™) Y, and hence of uTH(Y Y1)(YaYe) Ty,

or of (Y1¥1)(Y.Y3) ™" or finally, of (ny/ns)S:87". ‘

The shortness of the confidence bounds (5.2.4) is tied up with the power of
(5.2.6) which already has been discussed in [1].

5.3. Some consequences of (5.1.5) and (5.2.4). From the confidence statements
(5.1.2) and (5.2.4) a whole chain of results follows from the following set of
theorems (the proof of which is obvious): if z’Az and 2’ Bz are two p.d. quadratic
forms such that 2’Az = 2'Bg for all z, then (a) the rootsin § of: |4 — 6B | = 0
are all real and =1, (b) yB™'y = y’A 'y forally, (c) |A| = | B]|, (d) any
principal minor of 4 is greater than or equal to the corresponding principal minor
of B and (e) any principal minor of B~ is greater than or equal to the correspond-
ing principal minor of A™'. When these are applied to (5.1.5) or (5.2.4) one
obtains

(5.3.1) )" |08 2 | 2] 2 (82a)" | 0S|,

and

_ _plnlsII |21| —p!nlsll
3. 01 = 2= (b2

(5.3.2) (01a) 8] = [ 2 | (024) [725: |

Further consequences will be given in a later paper.

6. Multivariate estimation and testing problems on ‘‘association” parameters

6.1. Problem on the regression coefficient in a bivariate normal population. Let
two variates z; and z, be distributed as a bivariate normal with variances o;
and o3 and correlation coefficient p, and let the sample variances (on a sample
of size n + 1) be denoted by st and s3 , and the sample correlation coefficient
by r. Also let by = sir/sx and 81 = o1p/0e . It is easy to check that then the
variates (z1 — PBir2) and x» are uncorrelated, so that when the population pa-
rameters are o1, o2 and p, Vn — 17*//1 — r*2 has the ¢-distribution with
(n — 1) D. F. Here r* stands for the sample correlation between (r; — Bixs)
and z. , that is,

™* = (180 — Pusz)/(si — 2Bwsisar + Bish) s,
(6.1.1) = (81 — Bis2)/[(sr — Bise)’ + (1 — 7'2)3%]*
= (b — B)/l(br — B + ( — )si/sil},
and, therefore,
S2 by — B

(6.1.2) /N1 —r* = s =
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Now consider the statement

(6.1.3) —tan — 1) £ Vo — 17/V/1T = 72 £ tu(n — 1),

where f.(n — 1) gives the upper a/2-point of the t-distribution with (n — 1)
D.F. This is easily seen to reduce to the following confidence statement on
(with a confidence coefficient 1 — «):

ta(n"']-) 2v3 S1 fa(n_]') 2v4 S1
(6.1.4) _b‘_——\/n-— A=) osphsbh+ == 1-r).

1

By inversion of (6.1.4) the test that we obtain for the associated hypothesis
Hy:8: = 0, that is, p = 0, is easily checked to be the customary test based on
“r” and hence just the ¢-test. Similar procedures would go through for “partial
regressions” or “multiple regressions.” The interesting point here is that it would
be far more difficult to give corresponding confidence bounds to p, because this
would have to he done by inverting the distribution of the noncentral r,
which is quite complicated.

6.2. Problem on the regression-like parameters in a (p + q)-variate normal popu-
lation. Let us start from an Y((p + ¢) X n):N(0, =), wherep < ¢, p + ¢ =n
and where Z is p.d. and of the form, say,

<211 Em)p

2
S Zn q

» g
so that 2y and Z; themselves are also p.d. In this case, all the p population
canonical correlations, that is, all characteristic roots 0’s of Zii Z12Z% =1, are
nonnegative and less than 1. If Z;; is of rank s(Zp = ¢), then s of these roots
are positive and the remaining p — s are zero. We use now the theorem that
there exist nonsingular ui(p X p) and w(g X ¢) such that
o= mm 5 Sw = uaks
and
Zu(p X ¢) = m(p X p)(Dyve Ouslg X ¢)

where D/ is p X p. If 212 is of rank p and the 0;’s (now all positive) are distinct,
then this transformation could be made one-to-one by taking

p ¢9—Dp

por f2\Q¢ — P
plg X @) =
23 M2u/D

and adopting the convention, say, that the elements of the first row of u; and
the diagonal elements of i are all to be positive. If =2 is of rank s(<p) and
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the s positive 0,’s are distinct, then this transformation could be made unique
by taking

s p— s
2 0 s -8
. 0 p
Do=s|y o | | m(po)=C" ”‘2>p_s;
"| 23 Mos/ S8
0 !0
s ¢g—s

Mo fi2\Q — 8
ualg X q) = )
M23  Mog/ S
where ~ over a square matrix indicates that all elements ahove the diagonal
are zero, and by adopting the convention, say, that the first row of uy; and the
diagonals of 2 and s are all positive. We shall not need this uniqueness, but
we note that with proper forms for u; and g, the number of independent elements

is the same on both sides and we shall work in terms of u; , sz and the 6’s and

not the Z’s. We now put
\
n

Yi\p , V. V1i 1LY, 1 S
Y = R so that YY' = , ] =nl .
Y2 q Yz Y] Yz Y2 Sm S22
We next observe that, a.e., YY" is p.d. (which means that Sy and S are p.d.)

and Sy, is of rank p, so that, a.e., all the p characteristic roots of Sii' Sz Sz Stz
are > 0 and < 1. We next note that

M1 Il{ wm(Dys O)M;

3z = <D\/5> , ,
Mo M1 Mo p2

0
I(p) 0
p 0 '
0 ue
0 0 I(g — p)
1(p) (D15 0)

Dys 0 (l’o
0 <\/1—e ) Oy;’
0

I(g — p)
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so that
I(p) —(Dyv/e7i=s 0)

o <”{_1 0 Dyiics 0
o w/\ o <‘/”1_9 )

0 I(q — p)
I(p) 0

<Dvm (D\/vTeO 0
- 0 > 0 I(g — :v)>
it 0
' <0 #2_1>.

Except for the factor (—%), the argument under the exponential in the prob-
ability density of ¥; and Y, can be now written as tr CC’ where

Ml_l Yl
C = D./55i=% Dy 0 .
_ < Vé/1-e WY 4 Viji—e i Y
0 0 I
If we put
D76 Dyiizs O
Zy = 'Yy and Z, = _< \/:))/1—e> YL+ < \/(;/1—9 I> W'Y,

= —81ui" Vi + dous' Vo say,

(6.2.1)

it is easy to check that the probability density of Z; and Z, is
@2m)~ P exp [— 1 tr (Z1Z1 + ZaZ3)).

Here we shall be interested in a set of simultaneous confidence bounds on a
certain class of arbitrary p.d. quadratic functions (see (6.2.9)) of the elements
of the population matrix y{_l(D\/g, 0)us . For all pairs of nonnull and nonsto-
chastic a:(p X 1) and g:(q¢ X 1), consider the set of statements

(6.2.2) (0121250:)"/ (01 Z1Z101) (@37 Za2) < .

For a given Z, , Z; and ¢’ this is precisely equivalent to the statement
SUPar.ay (U1Z1740)" (G2 T) @iZaZha) < &

or that

(6.2.3) 6, < ¢,

where 0, is the largest (and of course positive) characteristic root of

| (G2 BT 2T (2.
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The relevant distribution on the null hypothesis, that is, when the true popu-
lation matrix is =, being known, let us determine ¢* from the relation: P(6, < ¢’ |
true population matrix = Z) = 1 — «, and then write ¢’ as 6, or 84(p, ¢, n)
Next note that, with

<Dvm P <Dx/f/1_—e 0\p )
(624) 51 = 0 q— p a,nd 52 = 0 I q—p = 62,

p P ¢—p
we have from (6.2.1)

Z1 = nui S Z:Z: = mui [~ Suu 01 + Suoms
7
2

’—1
1

(6.2.5)

82)
’1—1 /-1

oZy = nfyur Supr 81 — dypur Spops 0 — Bopz - Staur 01 4 oz " Saopz” '85].

If we now put

Dyijize O
gu =t and g =g V" wi' = bl
0 I
and tie up all relations from (6.2.2) to (6.2.5), we have for all nonnull @, and qa,
and all permissible u;, u2 and ©’s the following set of simultaneous confidence

interval statements (with a confidence coefficient 1 — a):

[b1(—Supi 6162 s + Sio)ba)®

(6.2.6) denominator

= aa(p: g, n),

where the denominator is
(bisllbl)[bé(#zéz dwur 1Sul»tl 151,52‘1#‘2 - #25;151#1_1312 - (#25;15WT1812)/ + Szz)bz]-
Note that

, Dyizs O
(6.2.7) 8187 = (Dyeie 0)< 01 I> = (Dys 0)

so that putting
(6.2.8) Blp X q) = wi ‘(D O)us

we have, for this 38, the set of confidence statements

(b1 (—=SuB + Su)b)’
(b1 Sub)[b2(8'SuB — B8z — S128 + Sa2)bs] —

(6.2.9) gives a set of simultaneous confidence bounds on a class of arbitrary
p.d. quadratic functions of the elements of the population matrix 8 such that
the elements of the observed sample matrices Su, Sz and Sy also enter into
the coeflicients of the class of arbitrary functions. It is interesting to observe
that when p = ¢ = 1, we may take y; = Ui = o2 ,pe = ms = oy and D5 = p,

(6.2.9) < 0.(p, ¢, ).
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80 that 8 = o1p/oe and check that (6.2.9) reduces to (6.1.4) for the regression
coefficient. Indeed the 8 given by (6.2.8) can really be regarded as the regression
of the set of p variates on the set of ¢ variates or in other words, an appropriate
generalization of bivariate regression coefficient.

It is easy to check by inversion of (6.2.9) that for the associated hypothesis
Hy:8 = 0, that is, D\/g = 0, that is, =;; = 0, we have the critical region obtained
in [1], namely

(6.2.10) ép = 0.(p, ¢, n),

when ¢, is the largest characteristic root of the matrix
(1Y) T (Y1Y3)(YaY3) 7 (Y, Y1),
that is, of the matrix Si7S128% Stz .

The shortness of the confidence bounds (6.2.9) is tied up with the power of
(6.2.10) which has already been discussed in [1]. By using a set of theorems
closely analogous to that stated in Section 5.3, it is possible to draw out a chain
of useful and interesting results from (6.2.9) much in the same way as (5.3.1)
and (5.3.2) were drawn out of (5.1.5) and (5.2.4). This we reserve for a later

paper.
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