ON THE COMPUTATION OF THE SAMPLING CHARACTERISTICS OF
A GENERAL CLASS OF SEQUENTIAL DECISION PROBLEMS

By G. E. ALBERT

Unaversity of Tennessee

Summary. The connection between the theory of random walks and Wald’s
theory [10], [11] of sequential probability ratio tests of hypotheses has been re-
marked by several authors. In particular, Kemperman [5] has exploited that con-
nection to obtain integral equations for the determination of the decision prob-
abilities and the expected sample size of a Wald sequential test. It is the purpose
of the present paper (1) to generalize Kemperman’s integral equations to apply
to a fairly extensive class of sequential multiple decision problems, and (2) to
indicate methods of obtaining practical results from such integral equations.

Part I of the paper is purely theoretical. It presents the integral equations al-
ready mentioned and generalizes a method of obtaining upper and lower bounds
for their solutions that seems to have been first published by Kemperman [5]
and Snyder [7] simultaneously:

In Part II the possibilities for application of the general theory are illustrated
by a discussion of Wald’s sequential tests for simple alternatives on the parameter
of a distribution, under the hypothesis that a sufficient statistic for that parameter
exists. In particular, it is shown that the Kemperman-Snyder method for ob-
taining bounds for the solutions of the integral equations may be used to obtain
substantial improvements over the bounds given by Wald for the operating char-
acteristics of the test for simple alternatives on the mean of a normal distribution.
Methods of numerical analysis are indicated that might be useful in a well-
equipped computing laboratory for further improvement of the bounds. '

It is clear from the results obtained here that the methods used, coupled with
extensive numerical work, should yield definitive improvements over Wald’s
approximate methods for setting the decision boundaries and estimating the
sample size moments for sequential tests. It is hoped that the decision rule
adopted in Part I is sufficiently general that the theory will provide a useful tool
in the design and study of multiple decision problems.

Part I. THEORY

1. Random walks and decision problems. Let R be an abstract space of points
z. For each fixed z in R let P(4 | z) denote a conditional probability measure
defined on a Borel field & of subsets A of R. It will be assumed that, for each set
A of the field §, P(4 | z) is a Borel measurable function of z.

Letd;,i = 1,2, ---,r, denote a set of r distinct decisions, one of which is to
be made about the probability function P(4 | z) as a result of a sequentially-
performed experiment as described below. The symbol dy will denote the deci-
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sion to continue experimentation at any step of the sequence instead of making
one of the terminal decisions. Wald [12] gives a more detailed description of this
type of decision problem. Define r nonnegative measurable functions mi(x),
i=1,2,+-+,r on R with the property Y i m:(xr) < 1 for each zin R and let
m(@) =1 — D5 mil(t). ‘

The experiment takes the form of a random walk described as follows. Let x,
be an arbitrary point in B. Make one and only one of the decisions d; with
respective probabilities 7i(x), ¢ = 0, 1, 2, -+, . If the decision made is d;,
7 = 1, the experiment is terminated; if it is do , a point #; is drawn from R using
the distribution specified by P(4 | 2,). Again make one and only one of the de-
cisions d;, 2 = 0,1, 2, - - - , r, with respective probabilities =;(z;). If the decision
made is d;, ¢ = 1, the experiment is terminated; if it is dy , a point 2, is drawn
from R using the distribution specified by P(4 | ;) and so on until one of the
desired decisions d;, 2 = 1,2, -, r, is made at a point z, ,n = 0, 1,2, --- .
In order to guarantee that the duration #n of the experiment be finite with prob-
ability one, the following assumption will be made.

AssumpTION 1. There is a constant p, 0 < p < 1, and an integer M such
that for all #, in R and all m = M the inequality

w [ [ﬁ 1ro<xf>]P(dem|xm_l> P(dens | #nes) -+~ P(des | 20) S p

is satisfied.

The notation in (1) is similar in most respects to that used by Doob [1]. The
integral is to be interpreted as an iterated Lebesgue-Stieltjes integral whenever
such exists. Doob’s paper gives further discussion. A subscript on the symbol de
denotes the variable of integration.

Let pa(zo), 2 = 1,2, --+ , 7,k = 0,1,2, -- -, denote the probability that the
terminal decision d; is made at the stage n = k if «, is the arbitrary starting point
of the experiment. Evidently, for each ¢ = 1,2, --- , 1,

Pio(xo) = Wi(xo),
k
Di k+1($o) = /; T fn l:}_](; Wo(xj):l Ti(xk+l) P(des1 | Tr)
-P(dey, | xx—1) - -+ P(der | x0)

® J]

v

| = m [ pato) Plde, |2 k= 0.
The probability that the experiment be terminated at the stage n = k, re-
gardless of which one of the terminal decisions is made, is given by

r

&) pk(xo) = E pﬂe(xo)~

ia
It is obvious that po(e) = 1 — mo(x) and that the rest of the functions (3)
satisfy the same recurrence relations (2) relative to & as do the functions pu (o).
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That the duration » of the experiment is a random variable on the range n =
0,1,2, --. will follow from

€Y lim P(n > k) = lim > p;(w) = O.
k—0 . koo j=kt1
To establish (4), note that by (2), for any 7 = 1,
=1
p}(x()) = f e / [H Wo(xs)] [1 - Wo(xj)] P(dej l .’Ej_.]) e P(de]_ I xO)-
R R

§=0

Thus, for any integer £,

® Tow=1-[ [ [g mxg)]P(deuxk_l) ... P(des | 2.

Let N be any integer and suppose that k& = NM, where M is as specified in As-
sumption 1. Clearly the integral on the right in (5) is dominated by the quantity
mo(2o)p" and the limit (4) follows.

2. Some integral equations. Let g.(z), ¥ = 0, 1, 2, --- be any sequence of
functions defined and Borel-measurable on R which satisfy, on R, the conditions

1‘Qk+1($) = () fR qk(y) P(de, | ), k

The termination probabilities ps and p. defined in the preceding section are

_admissible gy .
TrEOREM 1. If the sequence qx(x), k = 0, 1,2, - - - satisfies (6) and \ is any com-
plex number for which

(6)

Y

0.

) oMM <L,
where p and M are the constants specified in Assumption 1, then the series
® 2 Ng(a)

J=

converges uniformly and absolutely for x in R to the bounded solution u(z; \) of the
inlegral equation

9) Culz; V) = go@) + Mro(x) fku(y; \) P(de, | z).

Proor. The convergence properties of the series (8) are easily established.
Using (6) repeatedly, for any 2, in R one has

Qj+1($o) = /1; te [R I:g ro(xi):l QO(CBHI) P(dej+1 | xj) T P(d€1 | 96‘0)'

By Assumption 1, if j = NM, one has
| | M¥gsa(0) | < Ko™ [ 1]
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so that the series D 5em | N g 41(20) | is termwise dominated by the series of
constants

o (N+1) M—1 M >
KXo 2 INT=KXIN 26N
N=1 li=NM j=1 N=1

which converges by (7). That the series (8) satisfies the integral equation (9)
is an immediate consequence of the uniformity of convergence and the relation
(6); for,

90(220) + g quj(xo) = 90(500) + Nmro(z0) j; g )\j—lqj‘-l(y) P (de,, l o).

Uniqueness of the solution u(z; X) of (9) follows almost exactly as in the proof
given by Wasow [14], pp. 201-202.

There are several important applications of Theorem 1. First, if the termina-
tion probabilities are chosen as the ¢i(x), the series (8) becomes the generating
function of that sequence. Setting A\ = exp(z), one obtains the moment generat-
ing function of the distribution of the duration n.

COROLLARY 1. The moment generating function of the distribution of the duration
n exists for all values of its argument z such that p| exp(z) | < 1 and, when con-
sidered as a function of the starting point x, of the experiment, satisfies the integral
equation (9) with A = exp(?), gp(x) = 1 — m(z), and x = 2o .

As a consequence of (4), the probability is unity that one of the decisions
di,i=1,2,---,r, will be made. If the arbitrary starting point of the experi-
ment is %o , the probability P(x,) of making the 7th decision is given by P;(x,) =
> o Pir(0), ¢ = 1,2, - - - , r. Since the functions (2) are admissible g in Theo-
rem1,and A = 1is allowed by (7), one has a second application of the theorem.

COROLLARY 2. The probability P;(xo) of making the decision d; , 7 = 1, 2,

r, at some finite stage of the experiment satisfies the integral equatwn

(10) Pi(xo) = wilzo) + molxo) fRPi(y) P(de, | o).

It follows from Corollary 1 and the assumption p < 1 that the moment-
generating function of the duration n exists for positive real values of its argu-
ment z. It follows that all of the moments of the distribution of the duration
exist. Let My (xy) denote the kth moment. Formal differentiation of the moment
generating function of n leads to the third result.

CoRroLLARY 3. The kth moment M (x,) of the distribution of the duration n of an
experiment that begins at xo satisfies the equation

M) = mta) 3 () [ 300 Pty |0 + e [ M) Pl | .

In particular, the first two moments satisfy the equation (9) of Theorem 1
withA = 1, 2 = 2, and qo(w) = mo(x) for the first moment, and with g(zo) =
2M () — mo(xo) for the second moment.
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Wasow [14] established Theorem 1 and Corollary 3 in a special case using a
similar proof. Kemperman [5] gave Corollaries 2 and 3 for cumulative sums on
the real line. He assumed fixed decision boundaries for each step.

3. Approximate solutions. In many of the important applications of the
integral equations of the last section, the equations are likely to be very difficult
if not impossible to solve by methods that will give useful numerical results. It
may be necessary to resort to approximate solutions. To this end, the following
results are offered.

THEOREM 2. Let Pr(A |x), k = 0, 1, 2, -+ - be a sequence of probability func-
tions of the type defined in Section 1 which satisfy Assumption 1 with constants
p and M that are independent of k. Let go(x) be nonnegative and bounded on R, and
suppose that \ is any complex constant satisfying (7). Denote by ui(xz; N), k = 0, 1,
2, -+« the solutions of the integral equations obtained by replacing P in (9) by Px.

If, for the sequence of functions

@) = Amo(@) { f ua(y; N) Poldey | z) — f uay; N) P,,<de,|x>},

k=01,2¢-

1t 18 true that limy._, of(x) = 0 s satisfied uniformly for x in R, then lim,_, oux(z; N)
= up(x; X) ungformly for x in R.
Proor. The sequence of difference functions wi(x; N\) = wuo(zx; \) — we(z; N),

E=1,2, 3, - satisfies the sequence of integral equations
(11) we(z; N) = fi(x) + Amo(x) fR wi(y; N) Pr(dey | 2).
By iteration

wn(ei ) = fote) + mo@ SN [ o [ [T mte |ise)
-Py(dey | xy—1) -+ Pi(der | 2).

Let ¢ denote the least upper bound of | fi(z) | on R. Splitting the series at N =
M and treating the sum from N = 1 to N = M by an obvious method and the
remaining sum as in the convergence proof in Theorem 1, one obtains

M © (N+1) M—1 3
lwk<x;x)|§ek{1+ A+ 2 X IM’“}-
N=1 N=1 Jj=NM

The series in brackets is convergent and independent of x and k. Since lim;_, o€, =
0, the theorem is proved.

The remaining results of this section extend and exploit a method published
simultaneously by Kemperman [5] and Snyder [7]. For each point z in a space
B let G(A | x) be a measure function defined on a field ' of Borel subsets of
B, and suppose that for each 4 in &', G(A4 | z) is a measurable function of x.
It will be assumed that for some constant p’, 0 < p’ < 1, and integer M’,
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(12) j; cee LG(dﬁ | zo) G(dez | xy) -+« Glden: | Tu'm) S 0 all 2o in B.

Let f(x) be measurable and 0 < f(z) < K’ < « on B, and suppose that w(z)
is the solution of the integral equation

(13) wz) = f@) + [ wly) G(de, | 7).

DerFiNiTION. A nonnegative function h(x) will be called an upper (lower)
function for w(z) if its iterate

(14) ) = f(z) + f h(y) Gde, | 2)

is less than or equal (greater than or equal) to h(z) for all z in B.

Let p4(x) denote the characteristic function of the subset A of B; ¢4(x) has
the value one if z is in A and zero if z is not in A. For sets A of the Borel field
', define the functions Gy(4 | z) = G(4 | z) and

Gl = [ o [ ou@) Ge,|2) -+ G| 2), 5 = 2,3, 4, ;

8—1

also, define the functions f,(z) = f(z) + D f f(y) Gi(dey | ),
k=1 VB
§=1,2,3,---.

By iteration of (13), w(x) also satisfies
(15) w(x) = f.(x) + Lw(y) G, (dey | @), §=2,3,4,---.

Repeated iterations of a function A(x) by the operator on the right in (14) define
the functions

(16) h@ =1 + [ hG) Gdele),  s=123 -,

of which &, is a special case.

TueoreM 3. If h(z) is an upper (lower) function for the solution w(x) of (13),
each of the functions hy(x), s = 1,2, 8, -- -, given by (16) is an upper (lower)
Sunction for w(z).

The proof is evident. The fundamental utility of upper and lower functions is
expressed by

THEOREM 4. An upper (lower) function for the solution w(z) of (13) is an upper
(lower) bound for w(z) on B.

Proor. Consider an upper function for w(x). (The proof is similar for the case
of a lower function.) Let U be the least upper bound of w(z) — h(x) on B and
-assume that h(z) is not an upper function. Then U > 0 and for an arbitrary
positive number e there is a point 2’ in B for which w(z’) — h(z’) > U — e. By
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Theorem 3, h,(z) = h(z), s = 1,0 w(a’) — hu'(z') > U — ¢ where M’ is the
integer used in (12). By subtraction of (16) from (15) with s = M’,’

[ @) = k@) Gurtde, |2) > U — e

By (12) and the definition of U, Up’ > U — ¢; thus U < ¢/(1 — p’). Since
was arbitrary, the assumption U > 0 has been contradicted.

The following results may be useful in connection with Theorem 3 for the
determination of upper and lower functions.

THEOREM 5.

(i) If (12) is satisfied for M’ = 1, the least upper bound and greatest lower bound

of the function f(x)/[1 — f G(dey | z)] over B are, respectively, the smallest con-
5 ?

stant upper function and largest constant lower function for (13).
(ii) Let G*(A | z) and f*(x).be functions of the types G(A | z) and f(z). If the

solution w*(x) of the integral equation w*(z) = f*(x) + f w*(y) G*(dey | x) is
B

nonnegative, 1t is an upper function for (13) if f*(z) = f(x) and G*(4 | z) =
G(A | x) for all x in B and all sets A in §'. It is a lower function for (13) if these
tnequalilies are reversed. 4

(iii) Let h(x) be an upper function for (13) and hy(z) its iterate (14) and suppose
that u(z) vs any measurable function satisfying [h(x)/h(x)] < ulx) £ 1. Choosing
f*(x) = f(zx) and G*(de, | z) = u(y) G(de, | x) in (¢7), w*(x) 2s a lower function for
(13) and the average v(z) = 4[h(x) + w*(x)] s an upper function for (13) having
the property v(x) — w(x) = ih(x) — w(x)].

Proor. The proofs of (i), (ii) and the first part of (iii) are trivial and are
omitted. To see that v(z) defined in (iii) is an upper function for (13), it must be
shown that its iterate v:(z) by the operator in (14) is dominated by v(x) over B.
This will be so if

[ @ + @166 2) 5 [16) +w* @)u) e, | o).
Now w*(y) = h(y) so
[ @t - v 6e, |2) s [he)1 - 1)) 6de, | 2)
s [ @1 — m@)/he)] Ge, |2).

The desired result follows at once from this inequality.
In cases where the integral equation (13) takes the simple form

b
17 w(z) = flz) + fa w(y) Kz, y) dy
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with a continuous kernel K (z, y), another device for improving upper and lower
functions is available. Let R(z, y) be the kernel that is reciprocal to K(z, y).
That is, for each z in (a, b), R(z, y) satisfies the equation

b
R@,y) = K@y + [ K@ 2) B, ) &

Let H(x) denote the difference h(z) — hi(x) between a function h(z) and its
iterate hy(x) by the operator on the right in (17).

TarEoreM 6. If h(z) is an upper [lower] function for the solution w(x) of (17)
and if, for each x in (a, b), the function J(z, y) is a lower [upper] function for
R(zx, y), then the function H.(x) defined by

b
H@) = h@) — H@) - [ HG) J@,0) dy

is an upper [lower] function for w(z) and Hi(x) = h(z) [Hi(x) Z h(z)].
Proor. The proof will be indicated for the first case. The iterate Hy(x) of
Hi(z) by the operator on the right in (17) is easily shown to be given by

Hs(x) = Hl(x)

b b
4 [ 10 {169 ~ B + [ Ko DRG0 = 6 0) dsf .

The function J(z, y) is a lower function for R(z, y) so that the bracketed ex-
pression in the integrand above is nonpositive. Thus Hx(z) £ Hi().

The reader will recognize a similarity between the conditions imposed upon
the measure function G(A | z) and those imposed earlier upon the probability
measure P(4 | ). The definitions and results on upper and lower functions may
be rephrased in such a way as to apply directly to the integral equation (9) and
its special cases, if the condition (7) is replaced by the requirement that X be a
positive real number for which oA *! < 1. This may be useful in some problems.
The applications of upper and lower functions to be made in the remainder of
this paper are of a slightly different character and the discussion has been phrased
in terms that are suitable for those applications.

Part II. SoME ILLUSTRATIVE APPLICATIONS

4. A sequential probability ratio test. Wald’s sequential tests of hypotheses
[10], [11] are based in part upon his theory of cumulative sums of independent,
identically distributed random variables [9]. As Kemperman [5] has shown, an
alternative treatment is available in terms of the integral equations given in
Part T above. The remainder of this paper will be given to a study of the integral
equations for the risk probabilities and the expected sample size of the sequen-
tial probability ratio test for simple alternatives on the parameter of a distribu-
tion. It will be assumed that a sufficient statistic for the parameter exists.

Let g(u; 6) be a probability density function on the real line of the form



348 G. E. ALBERT

g(u; 0) = exp {p(0)k(w) + r(uw) + ¢(6)} in which k(x) and p(6) are monotone
increasing functions of the variable u and the parameter 6 respectively. The
sequential probability ratio test for the hypothesis § = 6; against the alterna-
tive 6 = 6, will be considered at some length. (Girshick [3] treated this prob-
lem by another method.) .

Write ¢ = p(6) and v = k(u). By the monotoneity assumptions on these
functions, they have single-valued inverses § = P(%) and v = K(v). Define
Q) = ¢[P®)] and R(v) = r[K(®)]. The probability density function for the
variable v is

(18) fv; &) = K'(v) exp {& + R() + Q®)}.

The test may be stated in terms of & = p(61) versus & = p(6,), & > & .
The logarithm of the probability ratio is

2 = log [g(u; 62)/g(u; 6)] = 2(v + 7)A
94 = £ — fand 7 = [Q() — Q&)]/2A.

The cumulative distribution of z is
z/2A
F@9=[wfa—n9a

It will be assumed that a positive constant § exists such that at least one of the
inequalities F(—8; &) > 0 or 1 — F(8; £) > 0 is satisfied.

To apply the general theory of sections 2 and 3 above to the Wald test of
& versus & , proceed as follows. There are two terminal decisions, d; : § = &
and d; : £ = & . Choose two positive constants a and b and let the decision prob-
ability functions 7;(z), ¢ = 1, 2, be the characteristic functions of the sets ¢ =
—band 2 = a respectively. The complementary probability m(x) is the charac-
teristic function of the interval —b < z < a.

The random walk begins at an arbitrarily chosen real number z, (Wald’s
specialization to z, = 0 will be made later). The successive points 2y , N = 0, 1,
2, - - of the walk are the cumulative sums zy = 1 2; of a sequence {z;} of
independent values of the probability ratio z. By Corollaries 2 and 3, if £ is the
true value of the parameter, the probability P:(z, ; £) of making the decision
d;,t = 1, 2, and the expected duration M;(z, ; £) for a test that begins at 2z, =
%o satisfy the integral equations:

(1 @ < —b,
—b
Yy — T .
[ (b2 - ) aw
+ [b P1(y;5)f(y 2_Ax° - 1-;5) dy —b <2 <a,

0 T = a;

(19) 2Pi(x0; HA =
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(0 Zo é —b’

fa f(y e f;é) dy

+ [ ptwior (Yo

(20) 2Pa(m; HA =
;)dy -b<z<a,

1 0 = a;

0 2o = —bora = a,
(21) 2Mi(x;9)A =

2A + / Ml(y,E)f - ) —b < < a.

The risk probabilities for Wald’s test of 6; against 6, are as follows. The prob-
ability of rejecting 6, when it is correct is the value P1(0; &) of the solution of
(19). The probability of rejecting 6, when it is correct is the value Py(0; &) of
the solution of (20). Some consideration will be given later to the approximate
evaluation of these risks and the expected sample size M;(0; £).

The dispersion of the sample size could be studied from its variance. By Corol-
lary 3 the second moment of the distribution of the sample size satisfies the equa-
tion obtained by replacing the leading term 2A on the right in (21) by

2A[2M (0 5 £) — 1].

It might be better to study the dispersion of n directly from its distribution.
If z, and £ have the same meanings as above and if k is an arbitrary integer,
P(n 2 k; %0, £) = 2 et Dv(® ; £), where the terms on the right are (3) with
their dependence upon £ put into evidence. Applying the recurrence relations (2),

(22) P(n = k; 0, &) = palao; £)
+(2A)_1f P(n>ky,£)f( —7£)dy b <z < a.

The initial term on the right in (22) is given by the iterated integral

pe(@o; ) = f_ab dxy -+ - fb dxk—l([;b"" [)[gmf(x’ e r;E)]dxk.

Since the normal distribution has the form (18) with the mean as the param-
eter, the results to be obtained are applicable to that case. The binomial and
Poisson probability functions also have the form (18). Thus, with proper care
in interpretation of integrals as sums, the results may also be used for tests of
hypotheses on the proportion p of the binomial distribution or the mean of the
Poisson distribution. In the latter connection see Herbach [4].

5. Monotone character of the risk probabilities. It is important to note condi-
tions under which, for each fixed x, in the interval (—b, a), the probabilities
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Pi(x ; £) and Py(xo ; £) are respectively monotone decreasing and monotone in-
creasing functions of the parameter £. Consider (19). Substituting ¢ = y/2A and
to = o/2A and using the identity

ft—to— 758
=ft —t— 1;8)exp {(§ — &) (t —to — 7) + Q) — Q&)}
to display dependence upon £, iteration of (19) gives the series solution

Pyi(24; §)
—b/2A
= [ k- mE e (G~ B — 6 =) + QW) — Q) &

9 © al24 al2A —b/2A ["N41
@3) + Z [ dt - f dtzv[ [H fl — tia — 75 Ez):l
N=1 J-b/24 L-b/24 © i1

exp {(¢ — &)ty — bo — (N + 1)7]
+ V 4+ DIQRE — QE)]} dtwys.

Differentiating (23) with respect to £ termwise under the integral signs has the
effect of inserting the quantities {ty41 — & + (W + 1) [Q'(¥) — 7]} as factors
in the respective integrands of the terms of (23). Since the ranges of & and ¢y41
make the difference fy41 — f negative, it is clear that the condition

(24) Q"E =0 for all £

is sufficient to make P;(z, ; £) monotone decreasing in £ in the range £ = £, .
Operating similarly with (20), the condition (24) is also sufficient for Py(x, ; £)
to be monotone increasing in £ in the range £ < £ . It is assumed that the formal
manipulations can be justified.

These monotone properties of the exact risk functions are important in the
extension of the validity of the test of the simple alternatives & and & to com-
posite alternatives ¢ < & and & = & .

8. Bounds for the solutions of (19), (20) and (21). Convergent series solutions
such as (23) are available for all of the integral equations associated with the
sequential test described in Section 4. They appear to be useless in general for
computational purposes. The possibilities for applying the upper and lower func-
tion concepts discussed in Section 3 will be illustrated here by a particularly
simple analysis that yields bounds for the solutions of (19), (20) and (21).
Specializations are given in the next section to the test of a simple hypothesis
and alternative on the mean of a normal distribution with known variance. A
comparison with Wald’s bounds [10] and [11] on the risk probabilities and ex-
pected sample size of the test is given there. Kemperman [5] obtained much
weaker results of the same type under weaker hypotheses on F(z; £). His methods
were similar to those to be used here. The potentialities of the theory for further
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work should be evident."To obtain bounds for the risk probabilities and expected
sample size that are substantially better than those given below is clearly pos-
sible, but involves extensive numerical work.

Consider the problem of finding upper and lower functions for the solution of
the integral equation (19) when ¢ = &, . Iteration of a constant by the operator
on the right in (19) is simple. Also, since

e (Y — 2 . \ Py
(25) 4 f( 2'A" 7')52) =e€ f( 2A 77&)7
iteration of the function ¢ is simple. Upper and lower functions for P;(z; &)

will be obtained from linear combinations of the pair (1, ¢~*). It is convenient
to use the form

(26) h(z; 8, v) = (€ = 7)/G — 1), 5—7>0,

where 6 and v are constants. Write G(z ; £) = 1 — F(z; £) where F(z; £) is as
defined in Section 4. For (26) to be an upper function for P;(z; &), the inequality

(@7) OF(=b — ;&) +vG(a — z; 6) < ¢ F(=b — z; &) + € "Gla — x; &)

is sufficient. Reversal of this inequality will make (26) a lower function for
Py(z; &). Evidently (27) will be satisfied by the pair of constants § = §, and
v = 71 defined by

_ € F(=b — x;8) _ i€ G — xb)
@) w=mn o M T I e e

The reverse inequality to (27) will be satisfied by the pair § = 8, and v = v,
defined by

_ e F(=b — x3t) _ e Gla — z;&)
@) k= h T R oL —we)

Thus, the functions h(z; 6;, v:), ¢ = 1, 2, obtained by using (28) and (29) in
(26) will be respectively upper and lower bounds for the solution Pi(x; &) of
(19) when ¢ = &,.

A similar argument using the integral equation (20) with § = £ and the form
g(x; 8',v") = (&€ —v')/(® — +') leads to upper and lower functions for Py(z; &,).
For an upper function use

P . €Gla — z;8) . €EF(—=b — x;8)
30) = e —mE) T PR F(b — )

For a lower function use the pair 8; and v; obtained by using maxima in (30)

instead of minima.
Consider next the integral equation (21) for the first moment M;(x; £) of the

duration of the sequential experiment. Let p = f (v + 7)f(v; &) dv and » =
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[ (v + 7)*f(v; £) dv where f(v; £) is given by (18). For any choice of a constant

k one has

g4k, o [Tyth
A + u = (28) L. 2A f( 2A —T:S)dy:

z + k\ @+ k) _ -1 y+k
(2A Y AR 4y = o [T (1 —r,z)dy

Let A1, A2 and k be any constants and define the function

63V

(32) R(@; & M, N, k) = O\ p 4+ Aov) Mu(x; &) +>\1x+ k+ Az <x2—2k) .

Using the integral equation (21) and the identities (1), it is easily shown that
the function (32) satisfies the integral equation

R(x’ g’ >\1’ >\2’ k) = g(x E) )\ly >‘2) k)
+ (2A)—1f R(y; & M, Mg, k) f(___" - E)

The leading term is defined by
g(x: E) >‘11 >‘2’ k)

#4 —AMaule + ) + 28)7 ( [ ;b + [ w)f(yz;A‘” - f;e)

y+k y+k
[t o () o

Let A; and A, be further constants and define the functions
(35) Si®; & M, e, k) = (D)7 R@; £, M, e, k) — APi(z; 9], i =1,2.

Using (19), (20) and (33), one finds that the functions (35) satisfy the integral
equations

Si(m; £ M, Ny k) = filw; & M, Ne, )

1 r z .
+ﬂ‘[bsi(y,fy7\x,)\2,k)f(—2r“ﬂf)dy 1"'1’2’

(33)

(36)

with leading terms defined in terms of (34) and the constants A4; by
g(x;gakl:k2’k)—AIF(_b—x;E) i=17

37) fi@; &M, Ney k) = { .
A2G(a —'x)E) - g(x; E’ )‘11>‘2’k) 1

If, for some specific choice of A, \; and k, the constants A; and A, are chosen
50 that the functions (87) are nonnegative on the interval —b < z =< q, the solu-
tions (35) of the integral equations (36) will be nonnegative on that interval.

I
»
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It follows that, for such choices of the A; with distinet values ki, 7 = 1, 2, of
the constant k, one has bounds for the quantity (\ix + Aev) Mi(z; £) given by

2
A, Pi(z;8) — M p ;-Akl —"M <$_’2|‘Af1) < (ap + Nev) Miy(z; §)

9 +k kz\*
= A2P2(x; E) - )\127 oA - A2 <§2i—A2> .

If u is not close to zero, the choices \; = 1 and A\; = 0 are useful and the
bounds (38) are of the type given by Wald in [10]. If u is close to zero, a better
choice is \; = 0 and A\, = 1; in this case the bounds (38) are of the type given
by Wald [13], using z = 0.

7. Examples. Suppose that the distribution (18) is.

f0;8) = o0 — &) = @0 exp (b0 — 3’ — ).

The sequential test under consideration provides a test on one value & of the
mean against a larger value £ . It is clear that all of the hypotheses that have

been placed upon (18) are satisfied.
In this case the functions to be minimized or maximized in (28), (29) and (30)
are monotone. For example, consider, in (28) and (29), the functions

xi(x) = € °F(—b — z; &)/F(—b — =; &)
and
x2(z) = € °G(a — z; £1)/G(a — ; &).

One finds that + + & = —A and = + & = A. On setting ¢ = (b + z)/2Ain
xi(z) and ¢’ = (a — x)/2A in x»(z), these functions take the forms

xi(x) = &G — A)/G( + A)
and
(@)™ = G — A)/GE + A).

Wald ([10], pp. 140-141,) has shown that the function of ¢ or of ¢’ involved here
is a monotone decreasing function of its argument. It follows that x1(z) and
x2(x) are monotone decreasing functions of x.

Using Gi(u) = (2 ) ) exp (—32") de and A = (a + b)/24A, the definitions
(28) and (29) give )
eG4 — A)/G(A + 8), m = € Gi(A)/Gi(—1),
EGi(—A)/Gi(d), y2 = €Gi(4 + A)/Gi(4 — A).
Using (39) in (26) and evaluating at = 0, one has the bounds
(40) 1 =72/ = 1) S Pa0; &) S (1 — 1)/ — 1)

o1

(39) {

2
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for the probability of accepting & when & is correct in Wald’s test. Replacement
of 5; by ¢’ and v, by ¢ in (40) gives the bounds obtained by Wald. It will be
shown that & > ¢’ and v» < ¢°, from which it will follow that (40) gives better
bounds than those quoted. Actually, the improvement is only very slight.
Further improvements will be indicated in the next section.

From the asymptotic series Gy(u) = o(W)u™ — u™ + 3u° — --.], valid
for large positive u, one obtains

=4 -7 = A=A+ A+ AT = A+ AT+
o= (A + AT — @A+ AT+ A=A =l =)+

where A has the same meaning as in (39). Obviously 8, > ¢’ and v, < ¢ The
bounds for Py(z; &) may be treated in a similar way. _

Wald [10] gave an explicit calculation of bounds for the expected duration
of the experiment for the case in which u is not close to zero. His results are
derivable from (38). To see this, choose Ay = 1, A2 = 0,k = —aand ky = b
For the functions (37) to be nonnegative on —b < z = a, it is sufficient that

Ay = g(x; £, 1,0, —a)/F(=b —z; §),
Az ; g(x; £7 1’ 07 b)/G(a —Z; E)

be satisfied on that range. These inequalities are satisfied by

I

4; = min [—A +x3<9-i-’4+5+7)],
(—b,a) 24
(41)
= men 4P -6 0) ]

where A has the same meaning as in (39) and
) =t = [ 20() da/G:00.

The function ¢(x) is the standardized normal probability density. By Wald
[10, p. 144], x3(f) is a monotone increasing function of ¢. It follows from (41) that

A= —A + £+ 71— (o + 1)/ (G + 7))

and
As = A+ &+ 74 (ot + 7))/ (Fi§ + 7).

Evaluation of (38) at + = 0 using the various constants chosen above gives re-
sults that are in agreement with (4.13), (4.14), (4.20) and (4.24) of Wald [10].

As remarked in Section 4, the binomial and Poisson probability functions
have the form (18). With proper care in the interpretation of integrals as sums,
the results of Section 6 may be adapted for tests of simple hypotheses and alter-
natives on the parameters of these distributions. Again the results are com-
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TABLE 1
Bounds on P(0, &) fora = b = 2 and A = 0.25
Lower Upper
ByWald............................ PR 0.07941 0.12459
By (39), (40). ..\ 0.08008 0.11717
Optimal................................. 0.08089 0.10997

parable with those obtained by Wald [10] and Herbach [4]. Since the normal
example given above furnishes an adequate comparison of this type, explicit
calculations will be omitted here.

8. Possible further improvements and applications. The upper and lower
bounds derived in Section 6 for the risk probabilities and expected sample size
tend toward the exact solutions of their respective integral equations as A ap-
proaches zero. For small values of A these bounds may be sufficiently close to the
exact solutions to be regarded as solutions by the designer of practical experi-
ments. For values of A greater than .01, say, more accurate solutions are needed.

For specific problems such as the test considered in detail in Section 7, it
should be possible to choose the constants involved in the form (26) in such a
manner as to minimize the upper function and maximize the lower-function.
Explicitly, find the largest values of § and v such that 6 — v > 0 and (27) is
satisfied and the smallest values for which the reverse inequality to (27)is
satisfied. The procedure is numerical and involves trial and error. In the normal
example of Section 7, it is found that the values of v, and é. given in (28) and
(29) are the best possible values, but that &, and v, may be improved. In the
special case of that example defined by ¢ = b = 2 and A = 0.25, the equations
(39) give 6, = 7.8514, v1 = 0.09071, 3, = 11.024 and v, = 0.12736. The optimal
values are v, = 0.11785 and & = 8.3593. For this case the bounds on P;(0, &)
given by Wald [10], by (39) and (40), and by the above optimal choices of con-
stants are shown in Table 1. This example shows that further improved bounds
are needed.

It is interesting to note that the approximate value P,(0, &) = (1 — ¢ %)/
(¢ — ¢™*) obtained from equation (3.35) of Wald [10] gives the value 0.11920
for the numerical example tabulated above. Since this value lies outside the
range allowed by the optimal bounds, a need is indicated for a better approxi-
mate formula for P,(0, &).

Various devices are known for the numerical approximation of solutions of
integral equations. One or more such devices might be used in combination with
the upper and lower function concepts with considerable success in a well
equipped computing laboratory. In particular, careful attention should be given
to the possible utility of Theorem 6.

The versatility of the theory presented in Part I should make it a useful tool
‘in the definition and study of (1) more general termination rules than that used
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in Part II, (2) multidimensional problems, and (3) decision problems that in-
volve more than two terminal decisions. The writer hopes to investigate such
applications at a later date and hopes that this paper will serve to interest others
in joining the search.
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