SADDLEPOINT APPROXIMATIONS IN STATISTICS!
By H. E. DaNIELS
University of Cambridge and University of Chicago

1. Introduction and summary. It is often required to approximate to the
distribution of some statistic whose exact distribution cannot be conveniently
obtained. When the first few moments are known, a common procedure is to
fit a law of the Pearson or Edgeworth type having the same moments as far as
they are given. Both these methods are often satisfactory in practice, but have
the drawback that errors in the “tail”’ regions of the distribution are sometimes
comparable with the frequencies themselves. The Edgeworth approximation in
particular notoriously can assume negative values in such regions.

The characteristic function of the statistic may be known, and the difficulty
is then the analytical one of inverting a Fourier transform explicitly. In this
paper we show that for a statistic such as the mean of a sample of size n, or the
ratio of two such means, a satisfactory approximation to its probability density,
when it exists, can be obtained nearly always by the method of steepest descents.
This gives an asymptotic expansion in powers of n~' whose dominant term,
called the saddlepoint approximation, has a number of desirable features. The
error incurred by its use is O(n™") as against the more usual O(n ™"
with the normal approximation. Moreover it is shown that in an important class
of cases the relative error of the approximation is uniformly O(n™') over the
whole admissible range of the variable.

The method of steepest descents was first used systematically by Debye for
Bessel functions of large order (Watson [17]) and was introduced by Darwin
and Fowler (Fowler [9]) into statistical mechanics, where it has remained an
indispensable tool. Apart from the work of Jeffreys [12] and occasional isolated
applications by other writers (e.g. Cox [2]), the technique has been largely ig-
nored by writers on statistical theory.

In the present paper, distributions having probability densities are discussed
first, the saddlepoint approximation and its associated asymptotic expansion
being obtained for the probability density of the mean Z of a sample of n. It is
shown how the steepest descents technique is related to an alternative method
used by Khinchin [14] and, in a slightly different context, by Cramér [5]. General
conditions are established under which the relative error of the saddlepoint
approximation is O(n™") uniformly for all admissible #, with a corresponding
result for the asymptotic expansion. The case of discrete variables is briefly dis-
cussed, and finally the method is used for approximating to the distribution of
ratios.

2. Mean of n independent identically distributed random variables. Let x
be a continuously distributed random variable with distribution function F(x).

Received 1/16/53, revised 3/31/54.
1 Research carried out partly under sponsorship of the Office of Naval Research.

631

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. IIK®JRS ®

) associated .

WWWw.jstor.org



632 H. E. DANIELS

Assume that a density function f(z) = F'(x) exists and suppose the moment-
generating function ’

M(T) = &P = f_w ™ f(z) dzx

veonverges for real T in some nonvanishing interval containing the origin. Let
" —=¢ < T < ¢ be the largest such interval, where0 £ ¢; £ ©and0 = ¢ £ »
but ¢; + ¢; > 0. Thus either ¢; or ¢; may be zero, though not both, and the
moments need not all exist.
Consider the mean Z of n independent z’s. Its density function f,(£) = F.'(Z)
is given by the usual Fourier inversion formula

@.1) 5@ = 2 [: MGt dt

© t

(More generally [ may be replaced by lim; ., [ , but the argument is unaf-
© t

fected.) It is convenient here to employ the equivalent inversion formula

7’41700
(2.2) £@) = = f QM TA g
27t Jr—in
where —c; < ®&(T) < c; on the path of integration, and K(T) is the cumulant-
generating function.

When = is large, an approximation to f,(£) is found by choosing the path of
integration to pass through a saddlepoint of the integrand in such a way that
the integrand is negligible outside its immediate neighbourhood. The saddle-
points are situated where the exponent has zero derivative, that is where

(2.3), K(T) = «.

We shall prove in Section 5 that under general conditions (2.3) has a single
real root Ty in (—¢; , ¢z) for every value of Z such that 0 < F.(Z) < 1, and that
K"'(Ty) > 0. Let us choose the path of integration to be a straight line through
T parallel to the imaginary axis. Since K(T)) — T has a minimum at 7' for real
T, the modulus of the integrand must have a maximum at T on the chosen
path. Now we can show by a familiar argument (cf. Wintner [18], p. 14) that
on any admissible straight line parallel to the imaginary axis the integrand attains
its maximum modulus only where the line crosses the real axis. For on the line

T =17+ 1y,
f TV 4R (z)

o0

| M(T)é™ | = ¢

< ¢ M(7).

g Equality cannot hold for some y 5 0, otherwise [ TV GF(z) = M(r)e™

0
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so that [ e[l — cos (yxr — a)] dF(z) = 0, which contradicts the existence of a

density function. Moreover, since M(r + dy) = 0(| y |™") for large | y | by the
Riemann Lebesgue lemma, the integrand cannot approach arbitrarily near its
maximum modulus as | ¥ | becomes large. Consequently, for the particular path
chosen, only the nieghbourhood of T need be considered when = is large.

The argument then proceeds formally as follows. On the contour near T’ ,

K(T) — Tz = K(T,) — T — 3K"(To)y’
— LK (To)iy* + Y54 K" (To)y* + -+ - .
Setting y = v/[nK"(To)]"* and expanding the integrand we get

f (ﬁ) ~ _1._ __n___ 1/2 G"IK(TO)"'TO‘H
n 21[' K"(To)

0

.3
[ —sonmy 2 4+ Loganmos - yianicaai+ - oo

(2.4)

(2.5)

where M;(T) = KP(T)/[K"(T))’”* for j =z 3. The odd powers of v vanish on
integration and we obtain an expansion in powers of n’,

20 5@~ 0@ {1+ Lpoum) - sgoia + - |

where ¢.(Z) = [n/2xK" (To)]"* eMETO=TE W call g,(%) the saddlepoint ap-
proximation to fn(Z).

3. The method of steepest descents. It is not apparent from the above formal
development that (2.6) is a proper asymptotic expansion in which the remainder
is of the same order as the last term neglected. The asymptotic nature of an
expansion of this type is usually established by the method of steepest descents
with the aid of a lemma due to Watson [17], the path of integration being the
curve of steepest descent through T, upon which the modulus of the integrand
decreases most rapidly. An account of the method is given by Jeffreys and
Jeffreys[13]. The analysis is simplified by using a “truncated” version of Watson’s
lemma introduced by Jeffreys and Jeffreys for this purpose.? The special form
appropriate to the present discussion is as follows.

Lemma. If ¢(2) is analytic in a neighbourhood of z = 0 and bounded for real
2 = winan interval —4A = w < BwithA > 0and B > 0, then

1/2 B
n —nw2/2
(27> L e ™ "Y(w) dw ~ ¢(0)

(3.1) L ™)

@n)r !

+ o VO + o+ + oo
n

. . . . -1
s an asymptotic expansion in powers of .

2 The proof given in [13] contains an error which will be corrected in the forthcoming
new edition.
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To apply the lemma, deform the contour so that for | T — Ty | < & the line
T = T, + 1wy is replaced by the curve of steepest descent which is that branch
of {K(T) — Tz} = 0 touching T = T, + <y at Ty, when § is chosen small
enough to exclude possible saddlepoints other than 7, . The contour is thereafter
continued along the orthogonal curves of constant, R{ K(T') — T%}. These can
easily be shown to meet the original path in points Ty — ¢a and T + i3 where
a > 0and 8 > 0, if § is small enough, since T is a simple root of (2.3). The rest
of the contour remains as before.

On the steepest descent curve, K(T) — TZ% is real and decreases steadily on
each side of T, . Make the substitution

—tw’ = K(T) — T% — K(To) + Tk
(3.2) = 3K"(To)(T — To)" + K" (To)(T — To)* + - -
= 3 + WM(T0)e* + Ya-M(To)2" + -+ -,
where z = (T — To)[K”(To)]"?, and w is chosen to ha‘ve the same sign as §(z)
on the contour. Inversion of the series yields an expansion

2= iw 4+ YM(Tow' + (M4-M(To) — $aM5(To)}aw’ + -

convergent in some neighbourhood of w = 0. The contribution to (2.2) from
this part of the contour is then

n[K(’I‘o)—Tga':]

—nw?/2
[K”(To)]m _[A € d_’L-D dw,

n
2w

to which Watson’s lemma can be applied. Contributions to the integral from the
rest of the contour are negligible since for T = Ty + ¢y with y outside (—au , o)
we have

| M(T)e™ | < p | M(To)e™™ |

for some p < 1, so that the extra terms contain the factor p” and may be neg-
lected. We thus obtain the asymptotic expansion

_ n 1z n[K(To)——To:E{ (251 Q2 . }
(3.3) fn(x) ~ [m] € a + o + 7774‘ .

From the Lagrange expansion of dz/dw we find

1 g 2
(34) : O = o @{iw(Z)}

The coefficients of this series can be shown to be identical with those obtained
by the method of Section 2 (see Appendix).

2==0

4. A generalisation of the Edgeworth expansion. We now show how the work
of Cramér [3], [4] on the Edgeworth series can also be employed to establish the

W
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asymptotic nature of (2.6), using a technique similar to that adopted by Cramér
[5] and Khinchin [14].

It has been proved that on any admissible path of the form 7' = r 4 <y the
integrand attains its maximum modulus only at 7 = 7. Consequently (2.6) is
only one of a family of series for f,(€) which can be derived in a similar way by
integrating along T = 7 + 4y, 7 taking any value in (—c¢;, c). In particular,
r = 0 gives the Edgeworth series, whose asymptotic character was demonstrated
by Cramér (3).

We have

0

(4.1) JW“=[JW%wm=feww+@m

On the path T = 7 4 7y we can put
eK(T)-—-Ti = eK(t)—T$¢(y),
where
f e f(u + %) du

(4.2) oly) =
[ e flu + ) du

is the characteristic function for a random variable  having the density function
h(u) « €™ f(u + Z). The inversion formula (2.2) then becomes

7u8) = KO (njom) [ 4 dy

— en[K(r)—ra‘:]hn(O)
where h,(%) is the density function for the mean % of n independent u’s. Using
the fact that
- ) j
log ¢ = IK'() — aliy + 3, K6) -
iz :

we may replace h,(0) by its Edgeworth series and obtain the family of asymp- .
totic expansions
fa(E) ~ exp n{K(r) — & — [K'(r) — 2I'/2K"(r)}
*5) n/2eK" (DY (1 + Ay/n” + Ao/n + - -+
where 7
A1 = (1/3)(r) Hy([K'(7) — &lin/K" (1)]'"),
Az = (1/4D(r) Hy([K'(r) — &ln/K"(1)]")
+ (10/60)3(r) He(IK'(7) — Z]In/K"(1)]'"),

» ete., the H’s being Hermite polynomials.
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When 7 = 0 this reduces to the Edgeworth series for f,(Z). (Since ¢; or ¢; can
be zero it may not be possible to take the expansion beyond a certain number of
terms in this case). On the other hand when » = T, so that K'(Ty) = &, all
the odd powers of n~'* vanish and we get (2.6), which is an expansion in powers
of n™". In particular the dominant term g,(Z) has the same accuracy as the first
two terms of the Edgeworth series. Unlike the latter, however, g.(Z) can never
be negative, and is shown in Section 7 to have a further important advantage
over the other approximations.

6. Examples. The method is applied to three examples.
ExampLE 5.1.

e—(:t—m)2/2o'2

1
f(x) = 0"\/57—(' ) ‘ - ®
K(T) =mT + 3T, K(T) =m+ &To = 3,
Ty = (& —m)/d’, K"(To) =,

_ 1/ n\"? e
gn(x) = '0_" (é;) e .

A
8
A
8

In this case ¢.(Z) = f.(£) for every value of n.
ExAMPLE 5.2. flx) = (¢*/T(a))z" " e, oLz
K(T) = —alog (1 — T/c), K'(Ty) = a/(c — Ty) = &,
K"(To) = a/(c = To)* = &'/a,

gn(“_;) — (na/zﬂ_)I/Zena(c/a)na a-;na—l e—nci'

IA
8

The exact result is
Fa@ = [(ne)™/T(na)]g"* e ™"*

which differs from g,(Z) only in that I'(nea) is replaced by Stirling’s approxima-
tion in the normalising factor. As this can always be readjusted ultimately to
- make the total probability unity, we can regard g.(%) as being in this sense
“exact’” for all n.

ExAMPLE 5.3. flx) = %, —-l1=sz=1.

The density function for the mean of n independent rectangular variables in
(—1, 1) is known to be

W@ = g S 0 (M) (-2 -2, sl s

8=0

yhere (z) = zforz 2 0 and =0 for z < 0. (Seal [16] gives a historical note on
thls result.) We have
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sinh T’ , _ _ 1
T ), K(To) = coth To -T—-o =z,

K(T) = log(

K'(Ty) = —1-1,—2 — cosech® Ty,
0

~ n 1/2 1 . —1/2 Sinh T0>1l _rpe
ga(T) = <§1—r) o~ cosech” T ( T e

When T\ is large and positive, £ ~ 1 — 1/T, and
K(To) ~ IOg (eT°/2To), K”(To) ~ I/Toz.

So for small 1 — Z,
ga(E) ~ (n/27)*(3e)"(1 — D)7

which agrees with f,(Z) = [n"/2"(n — 1)!](1 — )" when £ > 1 — 2/n except
for the normalising constant, and there is similar agreement for £ near —1.
Actually log.g.(Z) is remarkably close to log.f.(Z) for quite moderate values of
n over the whole range of z. Table 1 shows the agreement for n = 6, which could
be improved by adjusting the normalising constant. With n as low as 6, g,(Z)
never differs from f,(Z) by as much as 4 per cent. This example leads one to

TABLE 1
i 1 2 3 ’ 4 5 ' 6 l 7 8 J 9
log. fo(3). ... 0.419 | 0.172 | —0.249 | —0.860 | —1.687 | —2.778 | —4.216 | —6.243 |—9.709
log. gs(@). . ... 0.445 | 0.199 | —0.221| —0.829 | —1.653 | —2.742 | —4.188 | —6.228|—9.695
Difference ...| 0.026 | 0.027 0.028 0.031 0.034 0.036 0.028I 0.015| 0.014

enquire under what conditions f.(Z)/g.(€) — 1 uniformly for all & as n — o, s0
that the relative accuracy of the approximation is maintained up to the ends of
the range of £. In Section 7 we show that the result is true for a wide class of
density functions.

6. The real roots of K'(T) = &. In this section we discuss the existence and
properties of the real roots of the equation K'(T) = ¢, upon which the approxi-
mation ¢,(£) depends. The conditions are here relaxed so that the distribution
need not have a density function. The moment generating function is still
assumed to satisfy the conditions of Section 2, namely that

M(T) = &P = [ ¢’ dF (z)
-]
converges forreal Tin —¢; < T < ¢c;where0) £ ¢; £ © and 0 £ ¢, £ «© but
¢1 + ¢z > 0. Throughout this section T is supposed to take real values only.
. The distribution may extend from — to «, or it may be limited at either or
both ends. We shall write
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F(z) = 0, z <a,

0<F(z) <1, a <z <b,

F(ix) =1, b <z,

where if desired @ = — orb = o, or both. Note that b < « implies ¢, =

so that o < oo implies b = o, and similarly for ¢ and ¢, . The converse is not
true since b and ¢, (or @ and ¢;) can both be infinite.

We now establish the conditions under which K’(T) = £ has no real root
when £ lies outside the interval (a, b), and has a unique simple root 7 for every
£ in (a, b). It is convenient to consider first the case where both a and b are
finite.

THEOREM 6.1. F(z) = 0 for x < a, and F(z) = 1 for x > b if and only if K(T)
exists for all real T and K'(T) = & has no real root whenever ¢ < a or £ > b.
Proor. Write

MT, = @™ = [0 4p().
If dF(z) = 0 outside (a, b) then M(T, &) exists for all real T and
b
w9 = [ @ - 9 ar)

exists and has constant sign for all T when ¢ < a or £ > b, and K'(T) = ¢ has
then no real root.

Conversely, suppose K(T) exists for all T and K’(T) = ¢ has no real root
when ¢ < a or £ > b. Then M'(T, £) has constant sign in the domains £ < a,
—o <T < wand¢é>b —o <T < » sothat M(T, £ is monotonic in
T for these values of &.

Moreover M(T, £) must increase with 7' for all £ < a, and decrease with T
for all £ > b. For if M(T, £) increases with T, then dF(z) = 0 for every z < &,
otherwise M(— e, £) = « and if this were true for all £ > b we should have
dF(x) = O for all z. Similarly M (T, £) cannot decrease with T for ¢ < a.

Hence when ¢ < a, dF(z) = 0 forall z < ¢, that is F(z) = 0 forall z < a.
In the same way F(z) = 1 for allz > b.

THEOREM 6.2. Let F(x) = 0 forx <a, 0 < F(zx) <lfora<z <b, F(z) =
1 for b < z, where —o < a < b < . Then for every £ in a < & < b there
ts a unique simple rool To of K'(T) = &. As T increases from — » to «, K'(T)
increases continuously from ¢ = a to & = b.

Proor. When a < £ < b, M'(—x,§) = —w and M'(», £) = o, and
M'(T, ¢ is strictly increasing with T since M"'(T) > 0. So for each £ ina <
¢ < b there is a unique root Ty of M'(T, £) = 0 and hence of K’(T) = &. Also
K"(To) = M" (T, £)/M(T, £) so that 0 < K" (Ty) < =, and Ty is a simple
root and K'(Ty) is a strictly increasing function of T .

» Forall T, M'(T,b) < 0and so K'(T) < b,but M'(T,b — ¢) — © as T — o
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for every ¢ > 0 so that K'(T) > b — e for all sufficiently large 7', Hence
K'(T) > basT — . Similarly K'(T) — a as T — — «. This also implies
K'(T) > 0asT — .

The theorem has an obvious interpretation in terms of the family of conjugate
distributions (the term is due to Khinchin [14])

dF(z, T) = CeT’dF(x)

which have mean K’(T) and variance K’ (T).

A complication arises when @ and b are allowed to be infinite. Suppose for
example that a is finite but b = «, so that K(T) exists in — o < T < ¢; where
0= ¢ =< ©.Ife, = o, then K'(T) — » as T — « and the theorems still hold,
for however large ¢ is, M'(T, £) — » as T — « and so K’(T) > & for all suffi-
ciently large 7.

But if ¢, < o« the corresponding theorems do not hold without a further
condition, for it is not necessarily true that K’(T) — « as T — c; . Consider the
class of distributions

dF(z) = ¢ °* dG(x)
wheref dG(x) = my < andf 2dGx) = m < », butf e"dd(a:) = o,

for all € > 0. Here K’(T) increases from — « to m;/me as T increases from — <«
to ¢z, but K'(T) = o forall T > ¢,. So for ¢ > my/me, K'(T) = ¢ has no
real root though the distribution may extend to «.

The case a = — © can be discussed similarly. In the general case where K(T')
exists in —¢; < T < ¢; and a and b may be infinite, the conditions

(6.1) lim K'(T) = b, lim K(T) =a
T——cy T——cy

are required for every £ in (a, b) to have a corresponding T in (—¢;, ¢2). They
will be automatically satisfied except when a or b is infinite and the corresponding
¢1 or ¢, is finite, in which case the appropriate condition has to be stated ex-
plicitly. But even when (6.1) is not satisfied the approximation g.(Z) and the
expansion (2.6) can still be used whenever £ lies within the restricted range of
values assumed by K’(7T).

7. Accuracy at the ends of the range of X. We return to the distributions
having a density function, and examine the accuracy of ¢.(£) and the expansion
(2.6) for values of £ near the ends of its admissible range (a, b), where the ap-
proximation might be expected to fail. It is assumed that the appropriate con-
ditions hold for K’(T) = % to have a unique real root T, for every Z in (a, b).

It has been proved that

(7.1) | fa(®)/g2(Z) — 1< A(&)/n,
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where A (Z) may depend on Z since it is a function of T . The family of expan-
sions (4.3) provides similar inequalities, and in particular an inequality of type
(7.1) holds for-symmetrical distributions when g,(Z) is replaced by the limiting
normal approximation to f,(£). But it is well known that the relative accuracy
of the normal approximation, and of the Edgeworth series generally, deteriorates
in most cases as Z approaches the ends of its range. For example, if the interval
(a, ) is finite and f.(Z) — 0 as £ — a or b, what corresponds to A (£) in (7.1)
becomes intolerably large as x approaches a or b, since the normal approximation
can never be zero.

We now show that for a wide class of distributions g,() satisfies (7.1) with
A(£) = A, independent of &, as & approaches g or b. In fact, for such distribu-
tions the asymptotic expansion of f,(£)/g.(Z) given by (2.6) is valid uniformly as
Z — a or b. This will be so if A;(T) remains bounded as T — —¢; or ¢, for every
fixed j, so we examine the behaviour of X ;(T') near the ends of the interval. Equiv-
alently, we study the conjugate distributions with density function

(7.2) fl@, T) = Ce"f(z)

whose jth cumulant is K‘”(T). The form of f(z, T) as T approaches —c; or cz
depends on the behaviour of f(x) as = approaches a or b. For the commonest
end conditions on f(z), it will appear that f(x, T) approximates either to the
gamma form of Example 5.2 or to the normal form as T — —e¢; or ¢; . In the first
case \;(T) is bounded for given j; in the second case M\;(T) — 0 so that g,(Z),
for any n, becomes progressively more accurate as & — b, its relative error tend-
ing to a limiting value which is of smaller order than any power of n ™.

We begin by discussing distributions with b = « and first consider asymp-
totic forms of f(x) when z is large for which f(xz, T) approximates to the
gamma form.

ExampLE 7.1. flx) ~ Az* e, a>0,c>0.
Let X be large. Then

M(T) = f”:z:’e"f(x) de = I, + I

X
where I, = f #’e"*f(x) dx is bounded as T — ¢, and for small ¢ — T,

' © . 1 —(e— A o o
~ jta—1 —(c—T)z = jta—1 —w
I, j; T e dx (__c — DR L(c_n w e " dw
~ AT + a)/(c — T)*=
Thus
{7.3) _ KT) ~ —%__ . M(T) ~ o=

(c—T)’
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for every j. In this case f(z, T') tends to the gamma form as T' — ¢. The result is
in fact a familiar Abelian theorem for Laplace transforms, and a more general
form of it (Doetsch [7] p. 460) can be restated for our purpose as follows.

TueoREM 7.1. Let f(x) ~ Az*"I(x)e™ for « > 0 and ¢ > 0, where I(x) is con-
tinuous and l(kx)/l(x) — 1 as x — o« for every k > 0. Then, as T — c,

ey o 4 TG+ a) ( 1 > (T ~o il
MYN(T) A(c_ T)i+al p— and  M(T) ~ a7
This enables us to include end conditions of the form Az*™ log z e~ or Az
log log z ¢™, ete. In all such cases f(x, T') tends to the gamma form as T — c.
In the second class of end conditions f(z, T') approximates to the normal

form for limiting values of T'. We first consider heuristically some typical exam-
ples, again with b = o

ExamrLE 7.2. flx) ~ A exp (Bz" — cx), B>0,c>0,0<2<1.

Here we might expect A ;(T) — 0 as T' — ¢, for when ¢ — T is small the dom-
inant part of f(x, T) lies in the region of large x where
‘ fx, T) ~ CA exp (Bz* — (¢ — T)x).

This has a unique maximum at z, = [a8/(c — T)]”(l‘“) which is large for
small ¢ — 7. If we put £ = zoy the corresponding density for y is ¢’ exp [Bzo
(y* — ay)) which has a sharp maximum at y = 1, near which it approximates
to the normal form ¢”’ exp [—3Ba(l — a)zi(y — 1)7; it is relatively negligible
elsewhere.

ExampLE 7.3. flx) ~ A exp (—Bz"), B>0,a>1.

In this case T can be indefinitely large. We again expect A;(T) —-0as T — o,
for

C: a—1

f@@, T) ~ CA exp [—Bz" + Tz]
has a unique maximum at z, = (T/aB)**~® which tends to infinity with 7';
with = 2y the density for y becomes ¢’ exp [8z¢(y* — ay)], which approx-
imates to ¢’/ exp [—1Bala — 1)z5(y — 1)7] as before.
These examples are included in the following general theorem concerning end
conditions of the type f(z) ~ ¢ @, where z*h"(z) — ® as z — «. Subject to a
restriction on the variation of A’/(x) it is shown that A;(T) — 0 in such cases as

T tends to its upper limit.
TrEoREM 7.2. Let f(z) ~ ¢ @ for large z, where h(z) > 0and 0 < b (x) < .
Let v(x) and w(x) exist such that

@) PR (@) - (D) eOh@) -0
monotonically as x — o, where

v(z) > 0, [ V() | £ a < , w(z) = f(l/v(x)) dzx.

Then \;(T) — 0 as T tends to its upper limiting value.
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Examples 7.2 and 7.3 are covered by v(z) = z/v for some ¥ > 0, conditions
(i) and (ii) reducing to z’h”(z) — o, and 2 "A""(z) — 0. For h(z) = ¢ one can
take v(z) = %, for h(z) = ¢~ take v(x) = %e¢°, and so on. In all cases v(z)/z is
bounded and w(x) increases at least as fast as log x.

Since 0 < A''(x) < =, h'(x) is strictly increasing and h’(x) > ¢ £ = asz —
. Thus for large z, f(z, T) ~ Ce™ ™ has a single maximum at the unique
root x, of h'(xy) = T, where &y — © as T —¢ = .

The jth moment of f(x, T') about x, is

w® = ¢ [ = 2@ a.

It will be shown that as T — ¢ the major contribution to the integral comes
from within a range z¢ =+ ev(x,) where e is arbitrarily, small. Consider first the
behaviour of v(x) and w(x) in this interval. Since | v'(z) | < e as x — « we have
for large o and |z — 20| £ e(20),

lo(@) — v(@) | = alz — 20| < ae(®)
that is
(7.4) | v(x)/v(x0) — 1] < ae.
Also for some z; in (z, 2o),
w(@) — ww) = (x — z)w'(x1) = (& — 20)/v(x1)

so that for [z — x| < e(x0),

<€’i@< €
=) T 1 — e

Let X be large, but choose 7" so that o > X + j/7. Then

(7.5) | w(z) — wlxo) |

pi(T) ~ C f_‘ : (x — z0) flz)e™ da

zo—ev (2g) zo+ev (z9) © .
4 C{ [T [ WW} (o — a)" exp loh'(a) — h(a)] do

zo—ev (20)
=11+Iz+Is+I4
say. We examine the magnitude of each term as 7' — c.
Since (zo — z)’%”” has its maximum at (zo — j/7T) > X,
| | 1| < C(zo — z)’e"™F(X) < Cxie™ @
For I, ,

z0—ev (z0)

(7.6) |12| = Cezohl(:co)——h(zo)f (xo _ x)ie-—W(z,a:o) dx

X

where we write ¥(z, o) = h(z) — h(x) — (x — zo)h'(x0). By condition (ii) of
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the theorem, when « = x,,
h”(x) > ew(z)—w(zo)h//(xo) >0

and for z < 2, — ev(xo),

%o
k' (xo) — h'(x) > A '(xo) ew(z)—w(zo) da

zg—ev (zg)

= qu(zo)h”’ (20),

where 7 = e 7“7, by (7.5). So ¥(x, x) > n(x)h” (x0)(xe — ), and from
(7.6),

lI2| < Cezoh'(%)—h(zo)/[nv(xo)h//(xo)].1'+1'
FOI’ Ia y

z0 zo+ev (20) .
I, = Cezoh'(xo)—h(zo){f - + f } (x — xo)ae—qlf((z.zo) dz
zo—ev (2o

= Qe Ehe (g L gy )
say. When 2y — ev(29) < = = , we have from (i) and (ii),
(7.7) " @7 < B (@) /B (@) S [o(w)/v(@)]
and so from (7.4) and (7.5),
W)@ — )'e T = Yz, 2) = @) — 2’1+ e

Putting u = (x — zo)[h" (20)]"* in J; makes the lower limit of integration be-
come — ev(o)[h” (x0)]"*, which tends to — o as 29 — « for fixed ¢, by (i). Hence

2(5—1)I2P[(j + 1)/2]
[h” (xo)](f'i'l)/2

In the range 20 < z < m + ev(w) the inequalities (7.7) are reversed and

Ji~ (=) {1+ 0}

W ()@ — 20’1 — ae)’ < Y@, 20) = /(@)@ — 3%
so that

29 VED((j + 1)/2]
[h” (xo)] @G+1)/2

Ja2 ~ {14 0(e)}.

Hence lf] iS even )
’ —h 2 »
zoh’ (z9)—h (zq) ( J)'

TGEE gy @n' 1L+ 0()

IsNC

while if j is odd
zoh’ (z9)—h(zg)

O GEEN O(e).

IaNC
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For I,

0
I = eroh (z0)—h (z0) f (x _ xo)le—W(Z.zo) dz.
zo+€ev (29)

The inequality A”(x) = [v(2e)/v(x)]’h” (x0) > O shows, as with I, that
Cezoh' (zo)—h(zo)j!

L< ti = v @™

We now show that I; is the dominant.term. First let 7 be even. As T — ¢,
both I,/I; and I./I; are O{[v*(mo)h”’ (xo)]"*"*},and so — 0 for fixed e. Further,

IIl I/I3 < x{;[h"(xo)]("“)/26"(":)_‘“’{"”.

From (ii), " (zs) < € as z becomes large. Also since »(z)/x is bounded, (i)
implies that (x — X)A’”(z)v(z) — « and so for all large enough w, ,

WXz = [ - OW@ds >4 [ " (1ole)) dz = Afwlzy) — (X))}

whatever A > 0. Thus
[ I1|/Is = Ofexp [jlog z — [A — 3(j + D]w(x)]}

which tends to zero as T' — ¢ for fixed X if A4 is large enough, since w(x) increases
at least as fast as log z.
It follows that for even j,

Cezoh'(zo)—h(zo) (2.7) ! e
© o @m)

My (T) ~ [ 7 ( lo)] GFD /2

o 1=iiz (29)1
~ @)™ —2%

since uo(T) = 1. Similarly when j is odd,
i(T) ~ [ ()] O(e)

as T — ¢, so the odd moments can be made relatively negligible for arbitrarily
small e. Thus the moments tend to those of the normal distribution and \;(T)
—0asT —ec.

Turning now to the case where z < b < « we consider forms of f(x) when
b — « is small. Again there are found to be two classes of end conditions for
which A;(T) is bounded as 7 — «, where f(z, T) tends respectively to the
gamma and to the normal form. It is convenient to put » = b — x and regard
(=)’KY(T) as the jth cumulant of the distribution of » with density f(b — w,
T) = Be ™f(b — u) for u = 0.

+ EXAMPLE 7 4. fx) ~ A — )7, a > 0.
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The jth moment of « about its origin is
© L) )
B f we ™ f(b — u) du ~ BA f wt e ™ du + B f we T (b — u) du
0 0 8
T(a + j)

NBA_T:T

T— o,

where § is small, the remainder being 0(¢™™) for large T. It follows that X;(T)
~ (=)™, As in Example 7.1 this is a well known result on Laplace trans-
forms, and its more general form (Doetsch [7], p. 476) yields the following
theorem.

TrEOREM 7.3. Let f(x) ~ A(b — 2)*U(b — z) for a > 0, where l(u) is continu-
ous and [L(ku)]/1(w) — 1 as u — O for every k > 0. Then \;(T) ~ (=)',

For example I(«) could be log (1/u) or log log (1/w), etc.

The second class of end conditions is typified by the following example.

ExampLe 7.5. flx) ~ A exp [—8/(b — 2)], 8>0v>0.
As in Example 7.2 we expect A;(T) — 0 as T' — «, for

Ce™™*f(b — u) ~ CA exp [— Tu — B/u"]

has a unique maximum at u, = (8v/T)" ) and the density function for
Yy = u/uois

C’ exp [—Bus"(vy + ¥y "] ~ C” exp [—3Bv(y + Duo "y — 1)’]
The general theorem analogous to Theorem 7.2 is:

TuroreM 7.4. Let f(z) ~ ¢ for small b — x, where h(x) > 0 and 0 < k" (x)
< . Let v(u) and w(u) exist such that

@) ® — D" (@) — ©, (i) "1 @) — 0,

monotonically as x — b, where v(0) = 0 and w(u) = [[1/v(w)] du, and 0 <
v(w) £ a< o foru>0.Then \;(T) - 0as T — .

As before b/(z) is strictly increasing, and h/(x) — « as z — b since (i) implies
(b — 2)’h"(x) — «, and A'(xe) = T has a unique root z, where o — b as T —
. Thus f(b — u, T) has a unique maximum at o = b — z, for large T, and
4o — 0 as T — «. The jth moment of « about u, is

ui(T) = B fo o uo)’e”"f(b — u) du.

© uo—ev (ug) ug+ev(ug) 8 o
Y ST ey Y
0 0 ug—ev(ug) uo+ev(ug) 8

where e and & are small. The proof then proceeds with appropriate modifications
* as in Theorem 7.2.

We write
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8. Discrete variables. The discussion has so far been concerned with ap-
proximations to probability densities, but the saddlepoint method provides
similar approximations to probabilities when the variable is discrete, and indeed
it is typically used for this purpose in statistical mechanics. Consider, for ex-
ample, a variable x which takes only integral values x = r with nonzero proba-
bilities p(r). The moment generating function,

(8.1) M(T) = &P =3, p(r)e™

is assumed to satisfy conditions (6.1).
The mean £ of n independent z’s can take only values £ = r/n, for which the

probabilities are

N1 T kn—ra

(8.2) (%) = 5ms _/; e i aT

analogous to (2.2). The contour is again chosen to be the line T = Ty, + iy
passing through the unique real saddle point T, , but it now terminates at T ==
iw. This ensures that the integrand attains its maximum modulus at 7, but
nowhere else on the contour, provided we exclude cases where p(r) = 0 except
at multiples of an integer greater than unity. The discussion of Section 2 shows
that the maximum modulus is attained when y satisfies cos (ry — «) = 1 for some
a and all integral r, and y = 0 is the only possible value in (—, 7). The argu-
ment then proceeds as before and leads to the approximation

en[K(To)—Toél

(8.3) Pa(E) ~ [—W {1+ 0™}

where £ = r/n and r is an integer.
As an example, consider the binomial distribution

o) = (V) (- o5
Here
K(T) = Nlog {1+ pler = D}, K'(To) = Npe™/[1 + pe™ — 1)] = 4,
&7 = [/ — D0~ p/pl, KT = 50V — 8N,
N+1/2 (1 — p)ﬂ(N—i)pn.’i {1 + O(n—l)}.

1 Pa(E) ~ Crn) 12 (N — Z)n =212 gna+ifa

This is the familiar intermediate form obtained on replacing the factorials by
Stirling’s approximation before passing to the normal limit.

9. Ratio of sums of random variables. The saddlepoint technique can also be
applied to the distribution of ratios. Cramér (4) has shown that if x and y are
two independent random variables with densities fi(z) and f.(y) and character-

- istic functions ¢:(f) and ¢s(w), and if y = 0, the density function for r = z/y is
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given by
(9.1) ) = 2—% L &1(Dpo(—rt) dt

provided y has a finite mean. (Gurland [11] relaxes this condition by introducing
principal values. Cramér states the condition differently and appears to require
unnecessarily that z shall have a finite mean also.) Cramér deduced the result
from the distribution of z — ry for fixed r, but it also follows on applying Parse-
val’s theorem to the formula

9.2) i) = j: Hy)f(y)y dy

where y must have a finite mean to make ¢3(—t) the Fourier transform of 4yfs(y).
In terms of cumulant generating functions (9.1) takes the form

7'+

o) = = f 1N Ko (—rT) dT.
2wt Jr—in

Let 2y, 22, +--, z, and 41, ¥2, - -+, Yo be independent random samples from

these distributions, their sums being X and Y. The density for R-= x/y is then

Frma(R) = 2 f e MEV MK R gl pTy g,
27t Jr—iw
When n, and n. are large, an approximation is found by passing the path of
integration through a saddlepoint 7T, of the exponential part of the integrand,
given by

(9.3) mKi(To) — neRKs(—RT) = 0

Assuming conditions (6.1) to be satisfied, both K1(T) and K(T) are increasing
functions of T taking every admissible value of X and Y respectively as T varies
over its appropriate interval, so that to every R there is a single real root T, of
(9.3). (However, it is possible for the same T, to correspond to more than one
value of R, since TK:(T) is not necessarily monotonic and so dTo/dR may change
sign). Proceeding as before, expanding Ks(—RT) also, we obtain an asymptotic
expansion whose dominant term is

g K;(_RTo)enlxl(To)-lmsz(—RTo)
Ism(B) = (b KT + ma PR (— BT

the remainder being relatively O(n™") where n = min (n , ny).

ExaMpLi 9.1. fi(z) = A@® ¢ ™", fi(y) = Aw* e,
where x , y, a1, B, a2, B2 are all positive. In this case

1 (neaeBrR — nlalﬁZ).

T, = —
0 R (n1a1 + nzaz)
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The approximation is found to be

. (R) Blﬂlalﬁ 2az(n1 o1 + noa )nlax+"2az—1/2 Rnlal—l
e Cm) 2 (n )1 B (g )22 12 (B R + B mortree’

which differs from the exact density function only in the normalising constant,
and so is “exact” in the sense of Example 5.2. This suggests that there may again
be a class of distributions for which the relative error is bounded uniformly over
the whole range of R for every n.

An extension of (9.1) is available when the variables are not independent
(Cramér [6] p. 317, ex. 6; Geary [10]). If (z, y) has a bivariate density function
f(x, y) everywhere and characteristic function ¢(¢, u), and if y = 0, the density
function for r = z/y is

0.4) 0= ["“’(‘ “)]M it

provided the integral is absolutely convergent, which requires y to have a
finite mean. The following proof of (9.4) shows the integrand to be proportional
to a characteristic function which attains its maximum modulus only at ¢ = 0,
so that the previous methods are applicable. Corresponding to (9.2) we have

(9.5) fr) = fo i fCry, )y dy.

Write = E(y) and define a new distribution with density and characteristic
function

_1 1 6¢(t u)
(9.6) h(x,y) = ;yf(x, y) o,y == o

From (9.5) it is seen that (1/7)f(r) can be regarded as the probability density at
zero of the variable w = x — ry, where (z, y) has the distribution (9.6). The
result then follows from the fact that w has the characteristic function

1 [a¢(t, u)]
7 iau U=—rt )

For a random sample of n, the ratio R of the sums X and Y has density

7/+i0
ax(r—zn | _ 1 3K(T, -RT)]

) = 5% | i [ T~ ok |7
in terms of the bivariate cumulant generating function. The saddlepoint approxi-
mation is

_ n 1 nE(To,—RTo) [—1 K (T, —RTo)]
g(R) = {21:K"(To, —RTO)} ¢ T, — R

where

K (To, —RT.)
aTo

@

= 0.
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ExampLE 9.2. Let # = 34’ and y = %v*, where u and v have a bivariate nor-
mal distribution with unit variances and correlation coefficient p. Thus R = X/¥
is a “‘variance ratio” calculated from two equal correlated samples. The exact
distribution of R has been given by Bose [1] and Finney [8]. We find

K(T, —RT) = 3 log {1 + (R — 1)T — RT*(1 — oY},

— (R - 1) 1" - _ 4R(1 - pz)z
B M L e Tk

—10K(Ty, —RT;) _ (R + 1)(1 — /Y
To oR (0 + R)* — 40°R)’

1/2 2y n/2 1 (n/2)—1
_ o (n P — MR + R)
gn(R) =2 (%) [T+ R)? — 4p?R] (v D2

which again agrees with the exact distribution except for the normalising con-
stant.

In the most general situation where the sample members are themselves cor-
related, the saddlepoint method can still be applied. In each particular case the
contribution to the integral from parts of the contour outside a neighbourhood of
the saddlepoint must be established as negligible. One can obtain, in this way an
approximation to the distribution of the sample serial correlation coefficient of
lag 1 from a linear Markoff population. With the usual “eircular’ definitions it
turns out to be the approximation given by Leipnik [15], but a similar approxima-
tion can also be found for the noncircular case. A detailed account of this work
will appear elsewhere.
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11. Appendix. The identity of the series (2.6) and 3.3) may be established as
follows. For the contour T' = T, + 1y the inversion formula is

0
f,.(:l:') — 22 en[K(To)—Toa‘:] [ e—nw2/2 dy
T

-

where w’ is defined by (3.2). With » = y[nK"(Ts)]"* and s = n~2 this becomes

fn(ﬁ) = §1_ [K//,'ZT“‘)jllm CMK(TO)-TOH fw 6—1”2(‘”)/2‘2 dv
™ 0 — o0

with z = s in (3.2). To get (2.5) the integrand is expanded as a power series in
s. Term-by-term integration gives (2.6). Thus

exp [— @fé%?z] = Zo bm(v)s™
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where

bult) = - o exp |:._ _"iz(i_gi)]

mlasm -
R V"w'(ix)
=m? W»e"p[ 22 | lio

Since w*(ix)/2* ~ 1 + O(x), for small z we can interchange the order of differ-
entiation with respect to  and integration with respect to ». Only the even terms

survive and
® _ 1 a [” 2r "l (iz)
L, ) dv = i g LV | o [P,

(2”_)1/2 dzr :E 2r4-1
= o Ja‘:-z—’[w(ix)] 2=0

~ = (27" 1/2an

putting z = iz in (3.4).
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