SEQUENTIAL LIFE TESTS IN THE EXPONENTIAL CASE!

By BenyaMIN EpSTEIN AND MILTON SOBEL

Wayne University and Cornell University

1. Introduction and summary. This paper describes sequential life test
procedures, considering, as in a recent paper [4] devoted to nonsequential
methods, the special case in which the underlying distribution of the length of
life is given by the exponential density

(1) fz, 6) = ¢™°/8, z > 0.

The unknown parameter § > 0 can be thought of physically as the mean life.

Our primary aim is to test the simple hypothesis Hy : 6 = 6, against thesimple
alternative H; : 6 = 6,, where 6; < 6, , with type I and II errors equal to pre-
assigned values « and 3, respectively. The test is carried out by drawing n items
at random from the population and placing them all on a life test. We consider
both the replacement case, in which failed items are immediately replaced by new
items, and the nonreplacement case.

The test can be terminated either at failure times with rejection of H,, or at
any time between failures with acceptance of H, . Since abnormally long inter-
vals between failures furnish “information” in favor of Hy and abnormally short
intervals furnish “information” in favor of H,, these features are not only
reasonable but actually desirable. Similar problems involving a continuous time
parameter have recently appeared [3], [5].

In this paper we obtain likelihood ratio tests and give approximate formulae
for the O.C. (operating characteristic) curve, for the expected number of failures
Ey(r), and for the expected waiting time Ey(f) before a decision is reached. In the
replacement case where the number of items on test throughout the experiment
is the same, namely n, it is shown that Ey(f) = (6/n)Es(r). A table giving ap-
proximate values of Ee(r) for certain choices of 6,/6:, a, and 8 is given for the
replacement case. Some calculations of exact L(6) and Ee(r) values using formulae
in [1] and [3] are reported. Several numerical examples are worked out.

2. Basic formulae. Wald’s work on sequential analysis [8] can be used virtually
without modification in a situation where decisions are made continuously. In
fact, in a truly continuous situation, Wald’s formulae become exact, since there
is then no excess over the boundary. It will become clear as we proceed that, in
the problem at hand, the situation can be termed semicontinuous (not to be
confused with the concept of the same name in real variable theory). There is no
excess over the boundaryused foraccepting Hy , but in general there will be some
excess over the boundary used in accepting H; .

Let us assume that from the underlying exponential p.d.f. (1), n items are
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drawn at random and placed on life test. We wish to test Hy : 6 = 6, against
H,: 6 = 6, with type I error = « and type II error = S. Since information is
available continuously, a continuous analogue of the sequential probability ratio
test of Wald can be used. The decision as time unfolds depends on

2) B < (60/61)" exp[—(1/61 — 1/6)V(t)] < A
where B and A are constants, depending on « and 8, such that B < 1 < A.
The decision to continue experimentation is made as long as the inequality
(2) holds. At the time the experiment is stopped, if the first inequality in (2) is
violated, we accept H, ; if the second inequality is violated, we accept H; .
As in Wald’s case, the test obtained by setting B = 8/(1 — a)and 4 = (1 — 8)/a
is a satisfactory solution of the problem from a practical point of view. Details
are given in remarks 1 and 2 in Section 4.

In (2), V(¢) is a statistic which can be interpreted as the total life observed up
to time ¢. In the replacement case

3) V() = nt,
while in the nonreplacement case?

VO = 2 (0= i + Dl — 2i2) + (1 — 1)t — 2)
(4) = .
= glm. + (n — )t — =),

where z; denotes the time of the <th failure, with z, = 0.
To graph the data continuously in time, it is convenient to write (2) in the
form

(5) —h+rs < V(@) < hy + rs,
where ho , hy, and s are positive constants given by

_ —logB _ log4 _ log (66/61)
(6) ho = 1/6, — 1/6,° b= /6, —1/6° °° 1/6, — 1/6,

Further, it can be shown ([8], pp. 48-50) that the O.C. curve, that is, the
probability of accepting Hy when 6 is the true parameter value, is given approxi-
mately by a pair of parametric equations

_ A -1 _ (8/8)" — 1
@) Lo =3—3 = iwm=1/my

by letting the parameter A run through all real values.

* In the nonreplacement case it may happen that no decision has been reached by the
time ¢ = z, , when all n items have failed. This will then require that we either put more
items on test and wait until (2) is violated or else have a rule which will tell us how to
terminate the experiment and with what decision at ¢ = z, . Fortunately = is often at our
disposal and so can be chosen sufficiently large so that the probability of reaching no deci-
sion by time z, is negligible. For large enough =, it really makes very little difference how
we truncate experimentation. We could, for example, adopt the rule that H, is accepted if
(2) is satisfied for all ¢ < =z, .
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The values of L(6) at the five points § = 0, 6,, s, 6, and « enable one to
sketch the entire curve. These values are respectively 0, 8, log A/(log A —
logB), 1 — a,and 1.

We now give, in terms of L(6), an approximate formula for Es(r), the expected
number of observations required to reach a decision when 6 is the true parameter
value. Since the logarithm of the middle expression in (2) is either log B or log A
at the time experimentation stops, we have, neglecting only the excess over log 4,

(8)  Ei(r) log (60/6:) — Eo(V(£))[1/8: — 1/65] ~ L(6) log B + [1 — L(6)] log A.
It is proved in the next section that

9) Eo(V(8)) = 0Eo(r).

Hence we have from (8) and (9)

L) log B + [1 — L(6)] log A _ k1 — L(8)(ho + M) 0 5 s
log (00/01) - 0(1/01 - 1/00) s — 0 ’

“logA logB _ hh

(log (60/61)]? §’

If we let k = 6y/6, , the approximate values of Ey(r) become particularly simple
when 6 = 6,, s, or 6, . They are

B (r) ~ [Blog B+ (1 — B)log A] /[log k — (k — 1)/k],
(11) E.(r) ~ —logA log B/ (logk)’,
Ey(r) ~ [(1 — @)log B+ alog A] /[logk — (k — 1)].

(10) Ey(r) ~

In Table 1 we give Eo(r) for five values of 6 (0, 6, s, 6o, =), for four values of
k (34,2, 94, 3), and for the four number pairs («, 8) which can be made with the
numbers .01 and .05.

3. A basic identity. In this section (9) is derived. While this result can be ob-
tained as a consequence of a theorem of Doob on continuous parameter martin-
gales ([2], p. 376), a simpler proof is desirable. We shall consider the replacement
case, where V() = nt, although the proof can be trivially modified so as to hold
in nonreplacement and truncated situations.

In the replacement case (9) becomes

(12) Eo(t) = Eo(r) 0/n.

Thus we are relating expected waiting time to reach a decision to the expected
number of failures.

To prove (12) we introduce a “large” integer N and let z» denote the time of
the Nth failure. Let ¢ denote the (first) time at which the inequality (2) is violated
or the time zy, whichever comes sooner. Then we can write

(13) y =t+ @1 — &) + @rg2 — Tr11) + -+ + (@v — TH-1).
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TaBLE 1

Approximate values of Eo(r) for sequential tests for various values of k = 00/6;

and o, B
E = 00/61 3/2 2 5/2 3
« .01 .05 .ot .05 .01 .05 .0t .05
6 8
0 .01 11 7 7 4 5 3 4 3
.05 11 7 7 4 5 3 4 3
01 .01 62.4 40.3 23.3 15.1 14.2 9.20 10.4 6.74
.05 60.4 36.7 22.6 13.7 13.8 8.38 10.1 6.14
N .01 | 128 82.7 43.9 28.3 25.1 16.2 17.5 11.3
.05 82.7 52.7 28.3 18.0 16.2 0.3 11.3 7.18
8o .01 47.6 44.2 14.7 13.6 7.71 7.16 5.00 4.63
.05 30.8 28.0 9.48 8.64 4.99 4.54 3.23 2.94
0 any 0 0 0 0 0 0 0 0

Three actions are possible: accept H; before zy , in which case ¢ = z, ; accept Hy
before zy , in which case z, < ¢ < z,41 ; or take no action before xy , in which
case t = zy and r = N. Since N is fixed in advance

(14) E(zy) = No/n.

Further, it is easily verified that the (N — r) random variables (x.;1 — 1),
(@r42 — Tr41), -+, (v — xy-1) are independently and identically distributed
with the exponential density (n/6)e "*°, for z > 0. Hence if we take the ex-
pectation of both sides of (14), first holding r fixed and then taking the expecta-
tion with respect to r, we obtain

(15) N6/n = Eo(t; N) + [N — Ey(r; N)18/n
or
(16) Eo(t; N) = Eo(?‘; N)o/n.

Formula (16) holds for all N. As N — « the probability of coming to a decision
before xy tends to unity. Moreover as N — o

a7) Eo(r; N) T Eo(r),  Eo(t; N) T Eo(t),

where Eq(r) and E,(f) are respectively the expected number of failures and ex-
pected waiting time to reach a decision if N = oo . Thus it follows, letting N — oo,
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that (16) becomes (12). The nonreplacement case can be treated in exactly the
same way, because

Vs = VO + (0 — N@en— ) + 0 — 1 — D@42 — Tri1)
+ e+ (Tn — o).

As before, t = x, , if H, is accepted; z, < t < x,41, if Hy is accepted; and t = z, ,
if no decision. is reached by the time all n items have failed. The last (n — r)
components on the right side of (18) are mutually independent random variables,
each distributed with the p.d.f. (1). Thus it follows as in the replacement case
that

(19) Ey(V(t); n) = 0Ey(r; n).

As n increases, E4(r; n) T Es(r), the expected number of failures in reaching
a decision in the replacement case. Thus no matter how we decide to terminate
experimentation, E;(V(f); n) can be replaced by Es(V(£)) = 6Es(r), when = is
large. In practice, for ‘“large” n one could take n > 3 maxy Ey(r).

While (12) relates expected waiting time to the expected number of failures in
the replacement case, (19) relates expected total life (not waiting time) to the ex-
pected number of failures in the nonreplacement case. Actually one has to know
the probability distribution of r in order to compute Ey(f) exactly in the non-
replacement case. It can be shown that in the nonreplacement case the formula
for Ey(t) is given by

(18)

(0) B0 = LPr(r = klOB(X.), B =0 —

In the replacement case one has, analogous to (20),

20) Eot) = g: Pr(r = K|OB(Xen),  BoXin) =22,

where 7 is the sample size maintained throughout the experiment. Thus, in the
replacement case (20’) clearly becomes (12). Equation (20) is valid for all life test
procedures which involve nonreplacement. Similarly (20’) holds for all life test
procedures, where items which fail are replaced.’

4. Some remarks. This section contains three extended remarks on certain
aspects of Sections 2 and 3.

Remark 1. Upper and lower bounds for L(0) and Ey(r). The formulae for L(8)
and Ey(r), given by (7) and (10) respectively, are approximations to the actual
L(6) and actual Es(r) arising from the use of the semi-continuous sequential
decision rule specified by the inequalities (2). The question arises as to how good
these approximations are. A modification of the results of Wald on bounds for the

3 Here, ‘“‘all” means truncated or untruncated, sequential, or any similar procedures.
Of course the probability distribution of r does depend on the procedure which is followed.
In [6] explicit formulae for Pr(r = k | 8) are worked out for three procedures.
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0.C. and ASN curves in the binomial case [8] and of results of Herbach [7] on the
discrete Poisson yields the following bounds on the actual L(6) and Ey(r):

C)  GTESLO s g L h 5% 0 (that is, for 0  s),
L®)log B+ [1 — L@)]log 4 (=
oy | VBF = 0B 1/6) {g} Byr)

{ é} L(6)log B+ [1 — L(®)lllog A + log k]
= logk — 6(1/6, — 1/6,)

where the upper inequality signs hold for § < s and the lower inequality signs
hold for # > s.

One unpleasant feature of the bounds given in (22) is that they involve
L(6), which is unknown. However, this matters little in actual practice because
the limits on L(6) given by (21) are quite close together for the range of values
of k and (e, 8) covered in Table 1. Thus, for example, for

k=10/6=3, a=8=.05 A=(1—-8)/a=19, B=g/(1-a)=1/19,

we get from (21) .95 < L(6) < .983 and .05 < L(6,) < .052. The upper and
lower bounds for Ey(r) given by (22) are close together for 8 = 6, and compar-
atively far apart for § = 6, . Thus for the case k = 3 and @« = 8 = .05, the
difference between the upper and lower bounds is <.06 for § = 6, and is about
25forf = 6.

The left side of (22) is the approximate formula (10) for Ey(r) except that the
L(6) in (22) refers to the exact value and the L(6) in (10) is given by the approxi-
mation (7). In view of the preceding paragraph, the values of Ej,(r) given in
Table 1 are very close to the correct values, while the values of Es,(r) are es-
sentially lower bounds for the correct value. We cannot say more unless we 2o
through more extensive calculations of the sort to be described in Remark 2.

Remark 2. Some exact calculations of L(0) and Ey(r).

Wald ([8], pp. 45-46) pointed out that in order to have a test of exactly
strength (a, 8), the A and B in (2) should be replaced by A* and B*, where
A* < A = (1 - p)/aand B* 2 B = 8/(1 — a). In the present case, with
information available continuously in time, B* = B = /(1 — «) since the
acceptance of Hy involves no excess over the boundary. However, acceptance of
H, does, in general, entail a positive excess over the boundary, and all we can
say initially about A* is that it should lie between A 6,/6, and A. Thus using
A = (1 — B)/a instead of A* is an approximation.

The approximate test based on using A and B is suitable for all practical pur-
poses, since one consequence of the inequalities (21) is that the strength (o, 8) is
such that o’ < a,8 £ 8/ < 8/(1 — a). Since a and 8 are generally small (.10
say) a procedure based on A and B provides essentially the same protection
against errors of the first and second kind as does the test based on using A*
and B*. However, the use of A rather than A* in (2) will entail a small increase
in E¢(r), particularly for § < s.
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As a practical matter, one would usually be content with a test based on (2)
which uses 4 and B. As a matter of fact, this is what is done all the time by
people faced with a practical decision problem. For most sequential problems, the
problem of finding the A* and B* which will give exactly strength (e, 3) has not
been solved. One has to rely, in such cases, on the results of Wald which indicate
that the errors involved in using 4, B, and approximate formulae for L(6) and
Eo(r) are “reasonably” small.

In the problem at hand we know, in view of the continuous availability of in-
formation, that B* = B = 8/(1 — a). Furthermore, formulae are available for
computing A* and for computing O.C. and ASN curves exactly. The formulae for
accomplishing these tasks are available [1], [3]. While the computational labor
involved in any special case is exceedingly heavy, the results of such computa-
tions do throw some light on how exact O.C. and ASN curves compare with those
computed by using approximations.

Formulae (4.17) and (4.23) in [3] (similar formulae are given in [1], p. 102)
were used to compute

(1) the exact O.C. and Ey(r) curves for the semi-continuous rule (2) with
B =8/(1 —a)and A = (1 — B)/a. This was done for the case k = 6,/6, = 3
and @ = 8 = .05, and

(ii) A* (where A 6,/6, < A* < A) such that the decision rule

@) B/(L — a) < (8o/61)"exp[— (1/6: — 1/60) V ()] < A*

has an O.C. curve for which L(6,) = 1 — « and L(6;) = 8 exactly, and then
to compute Ey(r) for the (B, A*) rule. This was done for the cases « = 8 =
05and k = 6,/6, = 3/2,2, and 3, and also fora = 8 = .01l and k = 3.

The result of (i) was

L) = 968, L(s) = .529, L(6) = .051,
Eq(r) = 3.03, E,r) = 8.10, E,(r) = 7.00.

Computation (ii) gave

a=0 k A* Egy(n) Eo(r) Egy(r)
3 13.25 2.94 7.22 6.21

.05 2 15.1 8.64 18.0 13.8
3% 16.6 27.9 52.8 36.8

.01 3 68.9 5.00 17.5 10.5

Bearing in mind that the computations were carried through only in a small
number of cases, one can make three observations:

(a) For the case ¥ = 3 and a = 8 = .05, theuse of B = Y{gand 4 = 19
results in getting o/ = .032 and 8’ = .051 as compared with @ = 8 = .05 when
one uses B* = B = {9 and A* = 13.25. Also, Ey(r) is increased by .09, .88,
and .79 at 8 = 6,, s, 6, respectively.
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(b) Of more interest is the fact that the exact values of E,(r) for the (B, A*)
rule practically coincide with the approximate values of Es(r) computed for the
(B, A) rule by formulae (10) and (11) and given in Table 1.

(¢) In the range of values of k& = 6y/6, and of « and 8 covered by Table 1, a
good guess at the value of A* is the value A** lying midway between A and
A/k, the upper and lower limits on A*. This means that A** = (k¢ 4+ 1)A4/2k.
On the basis of our limited calculations we conjecture that in the range of values
covered in Table 1, a semi-continuous decision rule (2) with A replaced by A**
will have almost exactly strength (a, 8). The values of Es(r) associated with a
(B, A**) rule will be given to a close approximation by (10).

Remark 3. An approximate formula for Ey(t) in the nonreplacement case. A
useful approximation to Es(f) in the nonreplacement case is given by Eo(t) ~
0 log (n/[n — E,(r)]). This approximation is obtained by replacing Es(Xy,,) in
(20) by its approximation 6 log (n/[n — k]). Thus (20) becomes

Eyt) ~ 0 E, [log <1T—Z—I?:)] ~ 0 log (n-——%x;)) .

This approximation has been tested numerically by calculations on truncated
nonreplacement decision procedures, where the exact values of Ey(¢) can be
computed and compared with the suggested approximation. The agreement is
close.

6. Numerical examples. These methods have been applied to eight problems.

Problem 1. Find a sequential replacement procedure for testing Hy : 6 = 6, =
7500 hours against H, : 6; = 2500 hours with & = 8 = .05. The constant number
of items under test is n = 100.

Solution 1 (approximate). The (B, A) test (2) becomes in this case

Yo < 87 TR < 19,

where V() = 100t hours. For this rule o’ = .032 and g’ = .051.
Solution 2 (exact). The (B, A*) test (2') becomes

%9 < 3re—V(t)/3750 < 13.25.

For this rule « = 8 = .05 exactly.

Problem 2. Compute E;(r) and Es(t) for § = 0, 6.(= 2500), s(= 4115),
8o(= 7500), . '

Solution. For the (B, A) and (B, A*) rules, respectively, the values of Es(r)
are given in Remark 2 of Section 4. In the replacement case Es(¢) is found most
easily for all values of 8(# o) by using (12), Es(f) = (6/n)E,(r).

6= 0 01 S 00
{0 175 333 227 using the (B, A) rule;

Ea(t) = .
(0 155 297 220 using the (B, 4*) rule.
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For § = «, the expected waiting time to reach a decision is given by ¢, , where
e W0 — 140 This gives to = Eo(t) = 110.
Remark. More generally, in terms of B, n, 8, , and &, we find

t, = —6logB/n(k — 1).

This means that if no items fail by £, , we stop experimentation at {,, with ac-
ceptance of Hy .

Problem 3. Assume that we are testing the hypothesis in problem 1 and that
we are using the (B, A) rule. A sample of size 100 is placed on test. Items which
fail are replaced by new items drawn from the same lot. The experiment is
started at time ¢t = 0. The first five failures occur at z; = 20.1 hours, x, = 100.5
hours, zz = 121.7 hours, z; = 167.4 hours, and x5 = 179.2 hours, all times being
measured from ¢ = 0.

(a) Verify that no decision has been reached by time s .

(b) Verify that if the sixth failure has not yet occurred at 287.5 hours, meas-
ured from ¢ = 0, we can stop experimentation at that time with acceptance
Of H, 0.

Solution. It can be readily verified that, in this case, (5) becomes —100 +
37.5r < t < 100 + 37.5r. This region is drawn in Figures 1 and 2. The life
test data are plotted by moving vertically so long as we are waiting for the
next failure to occur and moving horizontally by one unit (in r) at each failure
time. In Figure 1, the path crosses into the region of acceptance, when r = 5,
at time ¢ = 100 + (37.5)5 = 287.5. Since the sixth failure has not yet occurred,
we can stop experimentation at ¢ = 287.5 with acceptance of H, .

Remark. As a matter of fact we happen to know in this case that the
sixth failure occurs at s = 346.7 hours. Thus, as indicated in Figure 1, we
saved 346.7 — 287.5 = 59.2 hours by observing the life test continuously in
time. .

Problem 4. The first seven failure times in a sample of 100 (with replacement)
are z; = 193, z, = 458, x3 = 49.9, =z, = 96.7, x5 = 115.2, =z = 127.7,
and z; = 131.2. Verify that if the hypotheses being tested are those in Problem 1,
then H, is rejected at time z; = 131.2 hours.

Solution. See Figure 2.

Remark. While the acceptance in Problem 3 is made between failure times
x5 and zs , the rejection in Problem 4 is made at failure time 27, with an excess
over the boundary.

Problem 5. Find a truncated (nonsequential) replacement procedure for testing
the hypothesis in Problem 1, using a constant sample size n = 100.

Solution. From results in [6], it can be verified that the truncated replacement
procedure meeting the requirements is:

If min [z1 , 407.5] = 407.5, truncate the experiment at 407.5 with acceptance
Of H 0.

If min [z, 407.5] = =z, truncate the experiment at z;, with acceptance
Of H 1.
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The solid lines in Figures 1 and 2 give the boundaries of a sequential with replacement test!of
Hy :00 = 7500 hours against H, :6, = 2500 hours, with « = 8 = .05, and n = sample size = 100,
when one uses a (B, A) rule. For the (B, A*) rule the upper boundary remains the same, but
the lower boundary becomes the dashed line, t = 37.5r — 88. Figure 1 gives a graphical treat-
ment of Problem 3. Figure 2 gives a graphical treatment of Problems 4 and 8.

The O.C. curves of this test procedure and of the one in Problem 1 are es-
sentially the same.

Problem 6. Compute Ep(r) and E,(¢) for the plan in Problem 5 for § = 0,
0, y S, 00 y ©.

Solution. From results in [6], Ee(r) =, 10, 9.93, 8.75, 5.39, 0, and Ey(t) =
(8/n)Es(r). For 6 = 0, 6,, s, 8, =, respectively, Es(t) = 0, 248, 360, 404.5,
407.5, respectively.

Remark. In Figure 3 we compare the Ey(r) and Ey(t) curves for Problems 2
(using a B, A* rule) and 6. This will give some idea of the saving in the expected
number of failures and time to reach a decision.

Problem 7. Find ¢, in Problem 1 if « = 8 = .01.

Solution. t, = —6, log B/ n(k — 1) = 230. This is about twice the value of
t, when @ = g = .05.
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F1a. 3
Comparison of Ee(r) (upper portion) and Eg(t) (lower portion) curves for sequential and
truncated with replacement plans. The O.C. curves for each plan are such that L(6,) = .95

and L(8;) = .05, with 6y = 7500 and 8, = 2500. The 110 dashed line gives the value which
Ey(t) approaches asymptotically as § — .

Problem 8. What happens in Problems 3 and 4 if a (B, A*) rule is used?
Solution. The decision regions are

(B, A): —100 + 37.5r < ¢t < 100 + 37.5r.
(B = Yo, A* = 13.25): —88 + 37.5r < ¢ < 100 + 37.5r.

No change occurs in the solution of Problem 3, since exactly the same decision
boundary is being used for accepting H, . However, the boundary used for re-
jecting Ho, when using (B, A*) is shifted by .32 units (in r) to the left in Figures
1 and 2. For the data in Problem 4, this results in rejecting H, at time zs = 127.7
hours, since for r = 6, we have —88 4 37.5r = 137. This decision to reject
H, is thus reached with one less item failed and 3.5 hours sooner than in Problem 4.

6. Acknowledgement. We wish to express our appreciation for the work of Mr.
Hershel Harrison, who devoted many hours carrying out the calculations, the
results of which are summarized in Remark 2 of Section 4.
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