THE EFFICIENCY OF SOME NONPARAMETRIC COMPETITORS OF
THE t-TEST

By J. L. Hopages, Jr., AND E. L. LEHMANN!
University of California, Berkeley

0. Summary. Consider samples from continuous distributions F(z) and
F(x — 6). We may test the hypothesis 8 = 0 by using the two-sample Wilcoxon
test. We show in Section 1 that its asymptotic Pitman efficiency, relative to the
{-test, never falls below 0.864. This result also holds for the Kruskal-Wallis test
compared with the F-test, and for testing the location parameter of a single
symmetric distribution.

A number of alternative notions of asymptotic efficiency are compared in
Section 2. In this connection, certain difficulties arise because power is not
necessarily a convex function of sample size. As an alternative to the Pitman
notion of asymptotic efficiency, we consider in Section 3 one based on the speed
with which power at a fixed alternative tends to 1. In particular we obtain, for
the sign test relative to the ¢ in normal populations, the limit as n — c« of the
sequence of power efficiency functions. It is noted that certain interchanges of
limit passages are not always possible.

1. Minimum Pitman efficiency of the Wilcoxon and sign tests. For comparing
the large sample power of two sequences of tests, the concept of asymptotic
relative efficiency was developed by Pitman [1]. An exposition of his work, to-
gether with some extensions, was recently given in [2] and [3]. Applications to a
number of specific problems are made in [4] and [5]. -

Let By(6) and Bx(6) denote the power functions of two tests, say 4 and A*,
based on the same set of N observations, against a parametric family of alterna-
tives labeled by 6, and let 6, be the value of 8 specified by the hypothesis. We
shall assume that all tests are at level of significance a. Let 8 be a specified power
with @ < 8 < 1. Consider a sequence of alternatives 8y such that

(1.1) Bu(6x) — B, asN — =,
and a sequence N* = h(N) such that

1.2) B;-(ON) -8, as N — o,
Then if ‘
(1.3) €ar, 4 = },vi.ig NNT:
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exists, and is independent of &, 8 and the particular sequences {65} and {h(N)}
chosen, then e+ 4 is defined to be the relative asymptotic efficiency of the test A*
with respect to the test A. Under weak assumptions (1.1) implies that 0y — 6o,
and in the most common cases it turns out that 6y tends to 6 at the rate N*%,
Usually the N observations constitute a sample, or are divided into two samples
of sizes m and n with m + n = N. In the latter case we assume that m/n tends
to some limit p, 0 < p < «, as N tends to «. In many problems, including
those we study, e4x,4 is independent of p.

Pitman gave a method for obtaining the limit (1.3), and evaluated it for a
number of problems. Consider in particular the case of samples X;, -++, Xax
and Yy, ---, Y, from continuous distributions F and G and the hypothesis
H:F = @G. We shall be concerned with the narrower alternatives that G differs
from F only by a shift, so that G(u) = F(u — 6) for all . The discussion applies
to both the one-sided case § > 6 = 0 and the two-sided case 6§ # 6, = 0. If F
is a normal distribution, the appropriate test is Student’s ¢-test. A nonparametric
test proposed by Wilcoxon is based on the rank sum of the ¥’s among the set of
N-ordered observations. Pitman computed the relative asymptotic efficiency of
the Wilcoxon test relative to the {-test as

(1.4) Cw,s = 120° [ f () dx:r,

where f is the probability density of the distribution F, and o* is the common vari-
ance of the X’s and Y’s. Some particular values given by Pitman are e,,; =
3/m ~ .95 when f is a normal density, e,,; = 1 for the case of a uniform distribu-
tion, and e,,; = 81/64 when f(z) = % */T'(3) for = 0. All of these values are
surprisingly high and raise the question as to how low e can actually drop. We
shall prove, below, the following theorem.

TureoreM 1. Let N* satisfy (1.2) where the tests A and A* are the (two-sample)
t-test and Wilcoxon test, respectively, for testing against shift of a continuous dis-
tribution F. Then (a)

(1.5) lim inf N/N* = 108/125 = 0.864

N>

whatever F may be.
Furthermore, (b) the lower limit is attained for the distribution with density

(1.12, 1.13). for which e = .864.
ProoF. It was shown by Andrews [5] that if F is continuous, and

(1.6) lim f Lire + 0) - F@) dFG) = ¢,
6-»0 0

then the efficiency, given by (1.3), exists and is 12¢%*. This proof also shows that
quite generally

(17 lminf o = 12 [hm inf ¢ [ PG + 0) - P@)] dF(:c)]
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By Fatou’s lemma, the right-hand side is greater than or equal to
. — 2
(18) 124* { [ [Iim inf P&+ "; F (x)] dF(x)} .

00

It follows further, from the Decomposition Theorem of De La Vallée Poussin
(see [6], p. 127), that when F has a singular component,
lim [F(x 4+ 6) — F(x)]/8 =

on a set of positive F-measure, so that (1.8), and hence ¢, is infinite. We may
therefore assume that except on a set of F-measure zero, the density F(z) =
F'(z) exists, in which case (1.8) becomes

(1.9) 126* [ [ 7@ de.

If o* = o, then it follows from (1.6) that e = «, so that we may assume
" to be finite. Since (1.9) is invariant under a change of location or sale, we may
take ¢ = 1, and the problem of minimizing (1.9) then reduces to that of mini-

mizing

(1.10) [ @ da

subject to the conditions

(1.11) fxf(:c) dz = 0; ff(x) dz = faff(x) dr=1; f(z) = 0for all z.
According to the method of undetermined multipliers, it is sufficient to minimize

[ #@ + 2 — e d.

For nonnegative f, this is achieved by setting

(1.12) f(x) = b(a® — o), if 2* < o,
and f(z) = 0 otherwise. The constants a and b are determined from (1.11) to be
(1.13) s =5, b=4dV5

and with these values, (1.9) becomes equal to 108/125, which is therefore a lower
bound to (1.7). Since for the density (1.12) the limit of (1.6) may be taken under
the integral sign, it is seen that the efficiency exists in this case, and equals the
lower bound, which therefore cannot be improved.

To the extent that the above concept of efficiency adequately represents
what happens for the sample sizes and alternatives arising in practice, this result
shows that use of the Wilcoxon test instead of the Student’s {-test can never entail
a serious loss of efficiency for testing against shift. (On the other hand, it is
obvious from (1.4) that the Wilcoxon test may be infinitely more efficient than
the t-test.)
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It should be mentioned that there are rank tests: that of Fisher and Yates,
which has been discussed by Hoeffding [7], Terry [8], and Dwass [9]; and that
of van der Waerden [10], for which the asymptotic efficiénty relative to the ¢-test
is 1 when F is normal, and is conjectured to be >1 when F is not normal. Should
this be correct, then for these tests the lower bound .864 in (1.5) would be re- .
placed by the even better value 1.

The conclusion of Theorem 1 also applies to the H-test of Kruskal and Wallis
[11] for testing equality of k distributions Fy, - -, F), which are assumed to
differ only in location. This follows from the fact that Andrews’ work, quoted
above, was carried out for this more general problem, and that in particular
formulae (1.6) and (1.7) hold for all values of k.

Another application is to the case of a single sample X;, -+, Xy from a
distribution F(z — ), where F is symmetric about 0. The hypothesis to be tested
is H:0 = 0, and if F is known to be normal, the one-sample ¢-test is appropriate.
The Wilcoxon test for this problem is based on the rank sum of the positive X’s
among the ordered absolute values |X|, - -+, |Xx|. Pitman showed that (1.4)
also applies in this case, and the considerations of Andrews can be used to
generalize this again to (1.6) and (1.7). '

A particularly simple test of the hypothesis H:6 = 0 in the one-sample problem
is the sign test, based on the number of positive observations. For asymptotic
efficiency of the sign test, relative to the i-test, Pitman obtained the result

(1.14) e = 46° f0),

which is valid whenever the derivative F(o, = f(0) of F at the origin exists. A
particular value given by Pitman is ¢ = 2/ in case of a normal distribution. In
the present case there is, of course, no positive lower bound, since ¢ = 0 when
f(0) = 0. If the distribution F is assumed to possess a unimodal density (in the
weak sense that 0 < |z| < |2/| implies f(z') < f(z)), then it is easily seen that
e = %, the value  being attained for the case of a rectangular distribution. For
let f(0) = 1 without loss of generality, since (1.14) is invariant under a change
of scale. Then we must minimize

f (& — &)f(z) dx

subject to 0 < f(z) < 1, and this is achieved by putting f(z) = 1 when |z| < a
and f(z) = 0 otherwise.

It may be questioned whether the high efficiency of Wilcoxon relative to ¢
established by Theorem 1 is the result of the particular alternatives considered.
It is therefore of interest to make the comparison for other than shift alterna-
tives. We shall now consider what may be called mixture or contamination al-
ternatives. In the two-sample problem this takes the form

Xl, cee ,X,,.:F,
Yi, -, Yai(l — O)F + 0G.
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In the one-sample problem, the form is
Zyy -, Zy:(1 — O)F + 6G, F(z) + F(—2z) = 1.

In both cases we take G = F and test the hypothesis 6§ = 0.

Mixture alternatives may be reasonable in many situations. For example, a
treatment may be effective in only a proportion 6 of the population of subjects.
Thus, cancer operations are effective only if metastasis has not occurred; vitamin
therapy is useful only if there is a vitamin deficiency.

If we let (m and) n tend to infinity (at the same rate), while 8 tends to 0, with
F and @ fixed, we can compute the limiting efficiency of the Wilcoxon test relative
to the t-test (or, equivalently, to the test based on ¥ — X) from Pitman’s for-

mula
. 06) ux (00) T
= hm ON ( 0. 4 ,
¢ [di\"r(ﬂo) px (80)
where T'y and Ty are the statistics on which the tests are based and it is assumed
that

Tx — un(6) Tw — ux(6)
@ PE10)

have the limiting distribution N(0, 1). If Ty = ¥ — X and mnTy is the Mann-
Whitney form of the Wilcoxon statistic, one obtains

ox (0) = (1/12)(1/m + 1/n),
ow(0) = *(1/m + 1/n),

W3O =PXsY)=—0[FaF+0[Fde,

ux(®) = E(Y) - EX) = o[ [vig -2 dF].

It follows that
2 2
f(F—G)dF f(F—G)dF
(1.15) e=12"—on— | =12 —m— |,
fxd(G—F) f(F—G)dx

where, as before, ¢® is the variance of an observation from F. The equality of
the denominators in (1.15) follows by viewing each as an expression for the
(signed) area between F and G. The above computation can be made rigorous
by the methods of [5].

It is clear that [(F — @) dF < %, while [(F — @) dz may be arbitrarily large
if @ is far to the right of F. Thus (1.15) has no positive lower bound, which cor-
responds to our intuition that the Wilcoxon test, like any rank test, is insensitive
to the size of large deviations.
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If we particularize to G(z) = F(x — A), A fixed, we obtain
2
(1.16) , 12#[ f (F (@) = Flz — A)) dF(x)].

A

As A — 0, (1.16) agrees (under suitable regularity conditions) with (1.4), so
there is no finite upper bound to (1.15). We observe that

[ F@ — Pz — M aF@) = Pr{| X = Xu| 5 8},

and that Pr {|{X; — X,| < A}/A will be a decreasing function of A whenever
X; — X, is unimodal. Thus in particular, if X itself is unimodal, the efficiency
decreases as A increases [12], so that the performance of Wilcoxon relative to
¢ is often less good against contamination with a shift than against shift itself.
For example, if F is normal and A = ¢, (1.16) has the value 0.812; for A = 2¢
it is 0.533; and it tends to 0 as A — .

We remark that the greater sensitivity of the {-test to contamination is not an
unmixed blessing, as the contamination may, in some cases, represent gross
errors of observation rather than the true effect of the treatment. In fact, in-
sensitivity to large deviations is one of the advantages of nonparametric tests_

2. Alternative notions of asymptotic efficiency. The result obtained above
suggests that if Pitman efficiency is taken as a guide, one may prefer the Wil-
coxon test to the {-test in almost all problems of testing against shift. But how
reliable is Pitman efficiency? Dixon [13], [14] has emphasized that a comprehen-
sive efficiency comparison of two tests cannot be made with a single number.
Suppose that a test 4 of level & and using N observations has power 84(N, «, 6)
against alternative 6. If test A* also of level @, requires N* observations to
produce the same power at the same alternative, we define the efficiency of 4*
relative to A in these circumstances to be the ratio N/N*, and denote it by
esr, a(N, o, 0). The complete comparison of A* with 4 would require the evalua-
tion of this “power efficiency function’ for all values of its three arguments.

We note that the definition of N* just given is not quite complete. There
usually will not exist an integer N* such that B.«(N*, o, 8) = B.(N, «, §), but
rather an Ny such that 84Ny, @, 0) < Bu(N, o, 8) < Bax(No + 1, , 6). Dixon
suggests that N* be defined by inverse interpolation of 84x(N*, e, 6) as a function
of N*; specifically, he proposes polynomial interpolation of N* against
P (B4+(N*, , 6)) in [13], [14]. Wee feel that this method, while yielding “smooth”
results, lacks any operational or functional meaning. Instead, we prefer to define
N* to be Ny + p, where the test A* has power 84(N, «, 6) if its number of ob-
servations is randomly chosen with probability p of being Ny + 1 and probability
1 — p of being Ny . Thus, our N* is the expected number of observations re-
quired with test A* to match the power of test A; when randomizing between
consecutive integers. (Our definition implies linear interpolation.)

We note in this connection a curious fact. For some tests, and specifically for
the {-test against normal shift, B(¥, «, 0) is not always convex as a function of N.
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Thus, if we wish to attain a stated power for stated « and & with smallest expected
number of observations, we would nof randomize between consecutive integers!
However, as our main objective is to define an N* which gives the desired power,
and the randomization is introduced only out of necessity, we shall use the defini-
tion given.

It might be felt that the question of the definition of N* is too trivial to require
so much discussion, and indeed if N is large this is so. But efficiency comparisons
are often made for small N and here (especially with 8 large) the precise defini-
tion of N* becomes important. To illustrate the point we present, below, the
efficiency figures given by Dixon [14] for Wilcoxon against ¢ for normal shift of
amount 3, equal samplesof 5, « = 4/126, and the corresponding values as computed
by our definition. (We are not able to obtain a worthwhile figure for 8 = 4, since
the value of B, is not given by Dixon to enough decimal places.) It is seen that
Dixon’s conclusion that the “power efficiency decreases slightly for more distant
alternatives” is dependent on his method of mterpolatlon for N*. With our defini-
tion, the efficiency rises as ,

] .5 1 1.5 2 2.5 3 3.5 4 4.5
Bw .072 .210 .431 .674 .858 .953 .988 .998 .9996
e (Dixon’s paper) 97 .97 96 .95 .94 .94 .93 .92 .91
e (this paper) .968 .978 .961 .956 .960 .960 .964 .976 4 .01 —

8 is increased beyond about 3, and appears never to fall below about 0.96, while
the efficiency as computed by Dixon reaches .91 at § = 4.5 and seems still to be
dropping. Similar results hold for the sign test as discussed in Section 3.

Depending as it does on three arguments, the function e« , is difficult of
complete evaluation, and interest has centered on finding simpler quantities
which will serve to represent its general behavior. It is obvious that the Pitman
efficiency denoted above by e s« is limysw €as,4(N, @, 04), where 6y satisfies
(1.1).

A second kind of efficiency limit is considered by Dixon [13], who evaluates
for the sign test compared with the ¢-test the limit e,,(N, @, ) (which he denotes
by E,). This limit would be of interest if we were concerned with small N,
moderate a, but 8 very near to 1. (He also obtains e, (N, a, 0) and finds that
limy-ve €,:(N, @, C) is, for his problem, equal to the Pitman efficiency.)

It is clear that a wide choice of limiting values of e4+, (N, e, 6) might be defined,
many of them pertinent in one situation or another. We wish next to call atten-
tion to one possibility which is in a sense intermediate between those of Pitman
and Dixon and which seems to help to round out some comparisons. Instead of
letting 6 — 0 as does Pitman, or § — « as does Dixon, we hold 6 as well as «
fixed and let N — o, This limit we denote by esa(, a, ). It is closely related
to the “index” of Chernoff [15], differing mainly in that Chernoff requires that
a — 0, so that @ and 1 — B remain of the same order. Our limit is presumably
pertinent when one is interested in large samples and the region of high power,
but its main interest seems to reside in the fact that it can, in some cases, be



COMPETITORS OF THE {-TEST 331

computed and serves to give the limit as N — o« of sequences of efficiency curves
of the form computed by Dixon for small N, permitting interpolation for mod-
erate N.

3. Limiting efficiencies for the sign test. All of the tests we shall now consider
(sign, normal, #) arise in both one-sided and two-sided versions. However, it is
true for all of them that as the power tends to 1, the probability of type II error
for the one-sided test of level « is asymptotically equivalent to that for the cor-
responding two-sided test of level 2a. The reason for this is simply that the two
tests have identical critical values, and that one of the two tails in the two-sided
test is dominant. This consideration simplifies the efficiency comparisons made
below.

We are interested in the limiting behavior as N — « of the probability of
second-kind error of the sign test. Suppose X is binomial for N trials with success
probability p. We may test H:p = r against the alternatives p < r. The test
acceptsif X = ay, whereay = rN — ¢ /N + dy. That dy is bounded follows
easﬂy from the fact that the error of the normal approximation to the binomial
is of order 1/4/N (see, for example, [16], p. 129). (Using this critical value, the
level of significance tends to ®(—c¢).) The probability of second-kind error is
then

Py = Z (),

z2an
where 7(z) = <’Z> p*(1 — p)¥ ",

We can study the behavior of Py; by separately considering the initial term
m(ax), and the ratio of the sum to this initial term.
Lemma 3.1, If N — « and a/N — r > p, then

% #(@)/n(@) > r(l = D)/ = ).

Proor. Since R(x) = n(x 4 1)/x(z) is strictly decreasing, [R(a)]° > =(a + ¢)/
m(a) > [R(a + b — 1)]°, where 0 < ¢ < b. Summing for 0 < ¢ < b we get

PR 0N S0\ e g
N — R(a) 1r(a) 1—Rla+b—-1) °
AsN — ©,b— »,and a/N —r, we have R(a) > (1 — 7)/r-p/(1 — p) < 1,
so that the upper bound in (3.1) tends to 7(1 — p)/(r — p). If, in addition, we
require b/N — o, the lower bound has the same limit. Since R(z) is decreasing
for z > a, we have > evars w()/ 2ot (x) — 0, from which the result follows.
Lemuma 3.2. If ay = tN — ¢ /N + dy with dy bounded, then

= A () T

as N — =,
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The proof consists in using Stirling’s formula and simplifying.
Combining Lemmas 3.1 and 3.2, we see that

r 1—r

(32) 'VN P — (3—?) <i—€-—€> as N — o,
Note that the limit depends on the hypothesis r and alternative p, but not on
a. Since it happens in each of the three problems dealt with in this section that
A/ P1; tends to a positive limit as N — o , we shall give to this limit a name,
referring to it as the base of Py; . The base is essentially the quantity p discussed
by Chernoff [15]. In fact, the limit in (3.2) is the value obtained in [15] for p in
the binomial case. However, Chernoff’s p involves @ — 0, whereas our « is fixed,
and as he considers a much more general problem his results are less sharp. A
similar remark applies to the normal test, below.

We shall also need the bases for the normal and t-tests. Consider the problem
of testing that the mean of a normal population of unit variance is zero, against
the alternative that the mean is 8 > 0. From a sample X; , - - - , Xx we compute
NX = XX, and reject if v/NX > K, where ®(K) = 1 — a. The power is
BN,a,8) =1 — &K — v/N§).Ifwefixaandsandlet N — w,1 — g = Py
is equivalent (in the sense of ratio) to

(1/ V/N3)-(1//2r) expl—(3)(V/Ns — K.

The limit of /Py is thus exp[— (3)°], as given by Chernoff. This is our base,
say by(a, 6), which turns out to depend on 6 but not on a.

Now suppose that the variance is unknown. We estimate it by §’/(N — 1),
where 8 = > (X; — Xy):x¥_1, form ty = VNXx/(s/A/N = 1), and reject
if tv > Ky, where Ky — K. The power is

SKN 6}

BY(®) = P{\/NXN >IN =1
- P{VE®e = 8> —ov/F + s o).

Thus
1-g0 = [ o (—avzv + %) Py, (s) ds.

We first consider an upper bound. Break the integration at (N — 1)** to get
1 — B¥®) < &(—8/N + Kx(N — 1)) + P(xyo1 > (N — 1)*®.The first
term has base exp [— (3)8?] as before; the second has base 0, since (writing N —
1=m) '

entt™ 2 exp (—3u®) du < exp (—im**(+/2)™!

Lo (o) [ () <5 o,

Take the 1/(m + 1) power and pass to limit to get 0.
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A straightforward calculus argument permits us to verify the

LemMa. If base {ay} < base {by}, then base {ax + by} = base {bx}.

With the aid of this lemma we see that our upper bound has the same base
exp[— (3)8”] as does Py for the normal test. But since the normal test is more
powerful than the ¢, it follows that the base of the ¢-test is also Pyy .

We now apply these results to make limiting efficiency statements for fixed
8 with N — . Suppose, for a standard test, that /1 — g(5) — A(3) as N — «;
while for a second test, suppose that /T — g*(3) — A*(8). If we define N*(V)
as in Section 2, it is easy to see that N*(W)/N — (log A*(8))/(log A(5)). Thus,
for the -test compared to the normal, e; (%, @, 8) = 1 for all «, 8. It follows that
the comparison of sign to ¢ will be the same as that of sign to normal; and as the
latter is simpler, we shall examine it.

Let Xy, -+, X be a sample from a normal population of unit variance.
We may test the hypothesis that E(X;) = 0 against the alternative that E(X;) =
3 > 0 by using X , in which case v/T — Bx(5) — exp [— (3)5?] as seen above. We
could also employ the sign test, rejecting the hypothesis if too many of the X; are
positive. The number of positive signs is binomial, with p = § under the hypothesis,
p = ®(5) under the alternative. Therefore, for the sign test, we have from (3.2)
the base 24/3(3) [1 — ®(5)]. Thus for the sign test relative to the normal (and
hence to the ?),

(33) e(e0, e, 8) = 2log 2 + log Q(&)aj— log [1 — &(8)] .

This quantity is seen to be independent of a but dependent on . As é — 0,
e(, a, 8) — 2/, which agrees with the Pitman efficiency. As § — «, e(«, a, 8)
— 1. A few values of (3.3) are shown in the table. It is notable that (3.3) is very
flat for & in the range of interest, thus giving results in good agreement with
those obtained from the simpler Pitman limit.

TABLE

3 1—2() €s,6(0, &, 8)
0 .50 .637
.253 .40 .636
.524 .30 .634
1.645 .05 .614
3.090 .001 .578
3.719 .0001 .566
o ‘ 0 .500

The curve (3.3) may be regarded as the limit as N — o« of the power efficiency
function, values of which for the sign test relative to the ¢-test have been given
by Dixon [13]. It appears from Dixon’s charts that for fixed «, the actual power
efficiency curve decreases smoothly toward its limit (3.3), making it possible
to interpolate for intermediate N and thus to obtain rough values of the power
of the ¢-test from binomial tables.
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As a curiosity we finally examine the limit of e(N, «, 8) as 8 — « with N,
a fixed—a limit which Dixon denotes by E, . Our tool is an analog of basis:
we recall that for the normal test, 1 — Bx(8) = exp[— (3)N¥&]-f(N, a, §), where
log f(N, a, §) = O(N&"). Restricting ourselves to even N, we can use formula
(10) of [17] to show that for the t-test

1 — Bx(8) = exp[—(1 — z)N3*/4]-g(N, a, 3),
where again log g(N, «, §) = 0(Né’) and z is the a-point on the beta distribution.

Lemma 3.3. Suppose that two tests A and B are available for each sample size
N, and that

1- BA(N) a, 6) = exp (_a'st)f(Nf «, 6))
1- BB(N, a, 6) = exp (—bNBz)g(N, «, 5))

where log f(N, a, 8) and log g(N, a, 8) are o(5°).

Suppose that Bs(N, a, 8) is strictly monotonely increasing in N, Bs(1, e, 8) =
a, Bs(N,a,8) —1as N — o, Then ess(N, @, ©) = (No + 1)/N, where N,
18 the greatest integer less than ay/b.

Proor. We shall first assume that ax/b is not an integer, so that there exists
an integer No with No < ax/b < Ny 4 1. Examining the ratio [1 — B.(N))/
[1 — Bs(m)] = [f(N)/g(m)) exp [(bm — ax)3?], we see that for all sufficiently large 5,

Bz(No, &, 8) < Ba(N, a, 8) < Bs(No + 1, @, d).
Recalling our definition of efficiency, we see that if p(8) is defined by
(34) p()Bs(No, @, 8) + [1 — p@®)1Bs(No + 1, @, 8) = Bu(N, «, d),
then '
No+ 1 — p(3)
—

If we solve (3.4) for p(5) and let § — «, we find that p(8) — 0. Therefore
es,8(N, @, ©) = (No + 1)/N.

In the remaining case, in which ay/b is an integer, let No + 1 = ax/b. A
similar analysis then produces the same limiting formula.

It is convenient to introduce the convention that [u] denotes the greatest
integer less than w. Then we see that

eA,B(N, a, 5) =

|
2

N]+1
¥ -

It is notable that this limiting efficiency is a discontinuous function of a. Given
any N, there exists an ao(NV) such that for @ < ay(N), e:,,(N, a, ©) = 1. But if
we fix @ and let N — o, ¢;,,(N, a, » ) tends to a limit less than 1. Thus,

lim lim e,,(N, a,8) % lim lim e, ,(N, a, 5).

N-»w §->0 8>00 N>

e (N, a, ©) = [
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Now consider the behavior of 8.(N, «, 8) as § — «. For an individual obser-
vation, the probability p of a positive sign is ®(8) ~ 1 — (1/8)¢(5) for large 6.
Examination of Lemmas 3.1 and 3.2 shows that the assumptions of Lemma 3.3
are met by the sign test with a, the critical value for the number of positive

signs. Therefore
[ ]+
ec.t(N’ a, °°) = '*T—o
This formula is not comparable to the E,, of Dixon, since our definition of N*
is not the same as his.
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