ASYMPTOTIC FORMULAE FOR THE DISTRIBUTION OF HOTELLING’S
GENERALIZED T: STATISTIC!

By Korcrr Ito®
University of North Carolina

1. Summary. In this paper the asymptotic expansion of a percentage point
of Hotelling’s generalized T} distribution is derived in terms of the corresponding
percentage point of a x* distribution. Our result generalizes Hotelling’s and
Frankel’s asymptotic expansion for the generalized Student T [3], [4]. The tech-
nique used in this paper for obtaining the asymptotic expansion of T3 is an ex-
tension of the previous methods of Welch [8] and of James [5], [6], who used
them to solve the distribution problem of various statistics in connection with
the Behrens-Fisher problem. An asymptotic formula for the cumulative distribu-
tion function (c.d.f.) of T3 is also given together with an upper bound for the
error committed when all but the first few terms are omitted in the series. This
formula is a sort of multivariate analogue of Hartley’s formula of ‘“Studenti-
zation” [2].

2. Introduction. In the multivariate analysis of variance we use the following
canonical probability law:

P(Xo, X1)
= const. exp [—% tr A(X; — £)(X1 — &) —% tr AXXo] dXodX,,

where X; and Xoarep X mand p X m matrices, respectively, and (1/m)X:X 1=8
is the sample “between” dispersion matrix and (1/n) XoXo = S, is the sample
“within” dispersion matrix, the prime denoting the transpose of a matrix. ¢is a
p X m matrix, (1/m)g¢' being the population “between” dispersion matrix, and
A is a p X p symmetric positive definite matrix. It is assumed that m may be
= por <p,butn = p. To test the null hypothesis Ho:{ = 0, Hotelling [3] pro-
posed a test based on the statistic:

(2.2) Ts = mtr $iSo

(2.1)

and derived the exact distribution of this statistic when p = 2 and ¢ = 0. For
general values of p the exact distribution of T3 is not available at present, even
in the null case £ = 0.

3. Derivation of asymptotic formula of 7’ . For general values of p it is known
that the statistic

(3.1) » X = mtr SiA

Received July 6, 1955.

1 Sponsored by the Office of Naval Research under the contract for research in prob-
ability and statistics at Chapel Hill. Reproduction in whole or in part is permitted for any
purpose of the United States Government.

2 Now at Nanzan University, Nagoya, Japan.

1091

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ%%
The Annals of Mathematical Statistics. IIEGIE ®

WWWw.jstor.org



1092 KOICHI ITO

has a x* distribution with mp degrees of freedom. That is to say, we have

(3.2) Pr {mtr S;A £ 20} = G,(9),

where 26 denotes the tabled value of x* for a particular level of significance,
p = mp/2, and

G,6) = [T(p)]™ / £t

Hence, if. A is known, the statistic x* given by (3.1) may be used to test Ho
exactly, and if A is unknown but if Sy is based on a large number of degrees of
freedom, i.e., if » is large, we may use as an approximation the result

(3.4) Pr {m tr .85 < 20} = G,(6).

This suggests that in the general case we try to find a function h(S,) of the
elements of Sy such that ’

(3.5) Pr {mtr 8185 < 2h(S0)} = (,(6).

When n is large, 2h(So) will approach 20 = x*, and we now expect to write
2h(S0) as a series with x* as its first term and successive terms of decreasing order
of magnitude.

Now

(8.6) Pr {mtr $:8:" £ 2h(So)} = j Pr {m tr 8;S7" < 2h(S0) | So} Pr {dS,},
r

where the first expression on the right denotes the conditional probability of the
relation indicated for fixed values of the elements of Sy, and the second denotes
the probability element of Sy, which hag a Wishart distribution with n degrees
of freedom, and the domain of integration R is over all possible values of the
clements of So. Now we may expand Pr {m tr S;85" < 2h(So) | So} about an

origin (e, o2, "+, Tpp, T2, = *+ , Tp1,p) i0 & Taylor series, where
g1l o crt Oy
A~l - g1 O aT2p
Opl  Op2 Tpp
Thus,
Pr {m tr 815" = 2h(So) | So}
Z i)
v P -1
(37) = {exp[ (S()ij - a,'j) -]} Pr lm tr b] AS Zh(A )l
i g 1 da;j

= {exp [tr (So — A7)} Pr {m tr SiA £ 2h(A7)},
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where so;; is the ith row, jth column element of Sy, and 8 denotes the matrix of
derivative operators:

9 19 1 9
(90’11 2 30’12 2 60'1,,
3 9 9 1 9
(38> 9=z 3021 30’22 2 (90’21, ’
1 9 19 9
| #8090y 30,p

its typical element being 9;; = %(1 + 6;;)(8/d0;;), where §;; is the Kronecker
delta. Whether uniformly convergent or not, the right-hand side of (3.7) is an
asymptotic representation of Pr {m tr 885" < 2h(So) | So}, for sufficiently large
values of n. Hence, substitution of (3.7) into (3.6) and term by term integration,
which may be done legitimately, yields: )

G0 = f exp [tr (So — A™)3] Pr {m tr SiA < 2h(A™")} Pr {dSo}
(39) N

0 Pr {mtr $;A £ 20(A7)},

where
0 = [ exp lir (S — A™)3] Pr (dSh).
R
Since S, has a Wishart distribution with n degrees of freedom, we have

© = exp [—tr A™* 8]-const. | A [*? f | Sp |70
R

.exp [tr (soa - g ASo>] d S

= exp [—tr A7 9]-const. | A |** f | Sp |71/
R

n
-exp [— Str (A - 7% a) so] dS,
—n[2

2

exp [—tr A7 d]- |A]"? A — =0

It

—n /2

)

exp [—tr A7 9] ‘ I - %A—la

where I is the p X p identity matrix. Now using [5],
(3.10) —log|I = Y|=trY +3tr Y+ Ltr YV 4+ ...,
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we obtain

-1 n 2 4
= I._ -™" - Z
O = exp tr A79 3 10g I AT9

_ _ -1 n 2 14¢ 2 4 :
—exp[ tr A 8+2{tr<ﬁA 6>+2tr<;bA 6)

1t (2 A~ > 1]
(3.11) | +ytr<nA a) + J
4
3n?

exp [111, tr (A7) + tr (A7) + .- ]
-1+ %tr (A~%9) + 7%2 (3tr (A719)" + 3(tr (A™9)D)) + O(n™).

It is to be noted here that in (3.11) the operator 8 does not act on A™* present,
in © itself, and it is more useful for our purpose to write (3.11) in suffix form:

6 =1 + '1"]7: Z a'rsa'tuaatam

(312) + ?%E {'é’ Z Ors Oty Ty Ost Ouy Owr + % E Ors Oty Oyw Ty 05t Oyr Oz ayv}
+ 0(n™),
where D denotes the summation over all suffixes r, s, - - - , each of which ranges
from 1 to p.
Now we represent h(Sy) as
(3.13) h(So) = 0 + hi(S0) + h2(So) + -+ -,
h.(So) being of order n™°; i.e., we write h(S,) as an asymptotic series such that
[n°{h(80) — 8 — k(o) — -+ — ha(S0)}|

is made arbitrarily small for sufficiently large values of n. Then (3.13) may be
substituted into Pr {m tr S$;A < 2h(A™")}, and by Taylor’s expansion we have

Pr {mtr $;A £ 2h(A7)}
= exp [{m(A™) +‘h2(A_l) 4 ... }D]Pr {mtr S;A < 26}
[+ {(m(A™) + k(A + -+ }D
+ 3Hm(AT) + (AT + - D4 -]
X Pr {mtr S;A = 26},

(3.14)
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where D = 9/90. By substituting (3.12) and (3.14) into (3.9), we obtain

1
Gp(a) = [1 + 1—;2 Ors Oy Ogt Oyr
DR
+;i2'{'§ Ors Oty Tow Ost Ouy Oy

(3.15) + %Z Ors Otu Oy Tay st Our Oz 311::} + O(n—s):l

X [1 4+ m(A™ D + {h(A™)D + 3hi(A™D*} + 0(n™¥]
X Pr {m tr S;A < 26}.

By equating terms of successive order in (3.15), we obtain

(3.16) {hl(A—l) D + 711/ Z Ore Ogy Ost 6u,} Pr {m tr Si1A = 20} = 0,
[hz(A_l)D + 3hi(A™)D?

(3.17) + }LZ v 0ea (A (AND + 2087 (A™)8u D + hi(A™)4 04 D}

4 1
+ "372 Z Ors Ot Tyw Ost Oup Our + 5;‘{2 Z Ors T tu Tyw Uwastaurawzaw’]
XPr{mtrSiA =20} =0,

and so on, where A{"”(A™) = 8,k (A™") and A" (A7) = 84,0sha(A7Y).

It now remains to carry out the operations 9 and D indicated in (3.16) and
(3.17) in order to obtain hy(A™), he(A™") and hence h4(So), h2(Ss). These operators
will operate on Pr {m tr S;A < 26}, which is a p X m-fold integral, and the
operations may be thought of as differentiations, with respect to the boundary
only, of the integral of the probability density function of the X; throughout a
region in the space of X . The method used to evaluate 9,:9.. Pr {m tr S;A < 26},
9sdusOur Pr {m tr S1A = 26}, -- -, is to change the boundary slightly, expand
the integral in powers of the quantities specifying this change, and obtain the
derivatives by comparison with Taylor’s expansion. We consider

(3.18) J =Pr{mtrSi(A7" + ¢ = 26},
where € is a p X p symmetric matrix. Then by Taylor expansion we have
J = {1 + Z €rs Ors + Q];i Z €rs €1y Ors Ot + :% Z: €rs €tu €y Ors Oty Oy

(3.19) )
+ T Z €75 €t €o €xy Ors Oty Oy Oy + * } Pr {mtr S; A < 26}.
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On the other hand, J is, by definition, written as

A"

[ exp [—3 tr AX, X1] dX,,

R'

where X, X1 = mS; , and domain of integration R’ ranges over all possible values
of the elements of X such that m tr S;(A™" + €)™ < 26. It is now easy to show
that integration of (3.20) yields

= |I — D,E |)—ml2
(321) - J = (—————l T=D.] G,(0),
where D, is a diagonal matrix which satisfies
Xi(p X m) = T(p X p)Z(p X m),
(3.22) e P
T'(A7 + o T = I(p),
and

3TAT = I(p) — Dy,
T being a nonsingular matrix, and E is an operator such that
EG,(0) = G,41(6).
Now, letting A = E — 1 and using (3.22), we have
|\I = D,E| _|I~ Dy,— D,A|

[T —D,] [I—=D,]
_|3MAr — (31707 4 7T — JIVAT}A |
a | /AT |
-1 -1 __
1A - IT\IQ MAL 1t o)t -1y
=|I-XaA)
where X = A7'(A™' + €)™ — L. Hence, (3.21) becomes
(3.23) J = I — XA""™2G,(0).

Now, using (3.10) again, we rewrite (3.23) as

J exp{-— ;i‘log | T — XA 1} G,(9)

I

= exp {g—t tr XA +Z—Ltr XA + ?terAa—i- % tr XA + } G, (6)

I

2
[1 +gtrXA+{%‘trX2+1g— (trX)’}A2
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(3.24) + {g} tr X° + 5 (tr X)(tr X% + ™ 5 (tr X) }
+ {g-" tr X* 4+ ’1"—2 (tr X)(tr X + ."_'. (tr X*)?

m3 2 2
+ I G X0 X 4 1 <trx>} --]G,,m);

X can be represented as
X=A"A"+"'—IT=02"A"4 2 eati)™
—I=U+ X ehdA)™" — 1T
(325) = — X2 en(AR'A) + X enen(AA)(ATEA)
— 2 eremenn(Ar A) (ATuA) (AsaA)
+ 2 encnenen (AR A)ATLA) (AmsA) (A A) — -+,

where A7, is a p X p matrix obtained by operating 9,, on A, i.e., A7y has its sth
row, jth column element, 3(8,:8,; + 8.:5,;). Writing

tr (A A) = (rs),

tr (Are A)(ATWA) = (rs | tu),

tr (A A)(ATeA)(AsA) = (rs | tu | vw),

tr (A7 A)(ATSA) (A A) (A A) = (rs | tu | vw | zy),
and substituting (3.25) into (3.24), we obtain

= [1 + e, {—g} (rs)A} + %Z e,.e,,,{ (rs | tu) (mA + an- A.’)
+ %2 (rs)(tu)Az} + 3—1-'2 €rs€tu€un {(rs | tu | vw)(—3mA — 3mA® — mA®)
+ (rs)(tu | vw) (—3m’A’ — Im’AY) — 287'—3 (rs)(tu)(vw)Aa}

(3.26) + 41' D Ere€rubontay { (rs| tu | vw | zy) (12mA + 18mA® 4+ 12mA® + 3mAY)

+ (rs)(tu | vw | zy) (6m’A* + 6m’A® + 2m’AY)
+ (rs | tu)(ow | zy)(Bm’A® + 3m’A® + Im*A%)
+ (rs)(tu) (vw | zy) Gm’A’ + Jm’A")

(o)) o) ) ™ A} ] G,0).



1098 KOICHI ITO
Then term by term comparison between two expansions for J, (3.19) and (3.26),

gives 9,; Pr {m tr S1A < 20}, 0,:0+ Pr {m tr S1A = 26}, etc., but in doing so we
must take such a care that, for example,

Z Q;ijk€i€j€ = Z bijkéiéjék

implies a;jx = bsp if both a: and b.;x are completely symmetrical in their
suffices. With this in mind and using the relation

| AG,(6) = —Eg,(0),
where g,(8) = D G,(6), we obtain

(327 s Pr {m tr SIA < 20} = ;—”(rs)Eg,,(o),
901 Pr {m tr S;A < 26}

(3.28) _ —{;l‘ (rs | W) + B) + ™% (o) () (B — E)} 0.0,

81601 O Pr {m tr S1A < 26} = {m(rs | tu | vw)(E* + E* + E) + %2
(329) [0 | o) + (@)rs | ww) + (u)rs | OI(E — B)
+ 2 B — 28 + B} - 0,0),
Brsdudeuday P {m tr SiA < 26}
- —{m[(rsltulvwlxy)
+ (rs|ow|zy |tu) + (rs| 2y | tu | ow)] (B* + E* + E* + E)
)t oo | ) + )t | o [ 79) + ) o[ 2y | 9
(630 + @w | ay | B — B) + ™ (s | 1)ow | ay)
+ (rs | vw)(tu | zy) + (rs | 2y)(tu | vw))(B' + E* — E* — E)

1 () () o | ) + (7)) | )

+ (rs)(zy) (tu | vw) + (tu) (ow) (rs | zy) + (tw) (zy) (rs | vw)
+ (w)(zy)(rs | tw)](E* — E* — E*+ E)

+ %4 (rs) (tu) (vw) (zy) (E* — 3E® + 3E" — E)} g,(6).
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Upon substituting (3.28) into (3.16), we obtain

-1 1 02 /]
hl(A ) = 11—;, E Ors Oty [2m(st I ur) {m + ;}
+ m?(st)(ur) {;(po:-——l—) - .z_}]

Now,
C(st) = trATA = 12 (8aides + 8:18,5)0” = 3(e" + &*%) = o™
and also,
(st ur) = tr (AZ'A)(ASPA) = 3(o™0™ + o™o™).
Hence we have
2onou(st| ur) = 4p(p + 1)
and
> Graos(st) (ur) = P.

We also note that 260 = »*, p = mp/2. Therefore we finally obtain, after some
simplification,

- _ 1 jp+m-41 4 _ 2
(3-31) hl(A ) = ;Z{_W x + (P m + I)X}-

In a similar way we substitute (3.29), (3.30), and (3.31) into (3.17) to evaluate
ha(A™). We note here that since k(A7) given by (3.31) is independent of A,
the terms involving A{**(A™) and A{***”(A™) in (3.17 ) do not appear. As before,
it can be easily shown that

D i rutwo(st | v |wr) = §p(@* + 3p + 4), 3 0750 tuomo(SE) (w0 | wr)

= 2 0nonow(w)(st | wr) = 3 Tra0 0o (Wr) (st | uv) = p(p + 1),
Ea,,a,ua,w(st)(uv)'(wr) = D, D 0rTtuTouTay(st | wr |wz | yv)

= 2 om0 wrata(st | we | yo | ur) = Ip(p + 1),
D Cre0 tuOmO (st |y | wr |wz) = ip(p + 3), D Ors0tuTou0y(St) (ur | wz | yv)

= D 0re0tumony () (ur | we | st) = D Tre0 1wy (W) (ur | yo | st)

= 2 onoudeon(ur)(we | yo | st) = ip(p + 1),
2 CrO w0y (st | ur)(w | yo) = 0+ 1), 3 0r0iuGeuoan(st | w)(ur | yv)

= 2 0nOuuTuatn (st | yo)(ur | wz) = 3p(p + 1),
2 0000 () (Ur) (W | 0) = T s vy (1) (y0) (st lur) = 3p°(p + 1),
D Ore tuTpu0y (st) (W) (ur | 90) = 2 0rs0 000y (st) () (ur | wx)

= > Ora0 1u0ou0 sy (Ur) (W) (st | yo) = > Trs0 tuTou0z (ur) (yv) (st | wz) = p,
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and
Z 100 1uTw00 2y (8E) (ur) (wz) (yo) = pz‘
Using these results we obtain from (3.17), after some simplification,

? 48n2 |~ (mp + 2)%(mp + 4)(mp + 6)

4mp® + 2(3m* + 3m + 10)p"
+ 2(2m* + 3m® + 17m + 18)p + 4(5m® + 9Im + 2)
(mp + 2)Xmp + 4) X

13p° + 24p — 11m* + 7 4
mp + 2 x

(3.32) +

+

+ {7p" + (—12m + 12)p + (7m’ — 12m + 1)},(2],

which is independent of A™ just as Ay (A7),
Now we substitute (3.31) and (3.32) into (3.13) to obtain

T2 = 2h(Ss) = 20 + 2hi(Se) + 2ha(So) + O(n™®)
1/p+m+1
2n | mp 4+ 2

1 {G(p — D(p +2)(m — 1(m +2) s
2802 " (mp + 2(mp + H(mp + 6)
(3.33) amp® + 2(3m’ + 3m + 10)p’ + 2(2m’ + 3m’ 4 17m + 18)p
+ + 4(5m* + 9m + 2) o
(mp + 2)*(mp + 9) X
13p° + 24p — 11m* + 7 4
mp + 2 x

=x+ x‘+(p—m+1)x2}

_|_

.+..

+ 79" 4+ (—12m + 12)p + (Tm® — 12m + 1)]x2} + 0™,

which is the asymptotic expression of a percentage point of the T4 distribution in
terms of the corresponding percentage point of the x* distribution with mp
degrees of freedom. 4

If we put m = 1 in (3.33), we have

. 1
T = + 5 Ix' + px’}
(3.34) .

+ g 14X + (13p — ' + (7" — X} + 067,
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which is the asymptotic expression of a percentage point of the generalized
Student T distribution. This result, (3.34), was previously obtained by Hotelling
and Frankel [3], [4].

There is another check of (3.33) by putting p = 1 in the formula.® In this
case we have

T =% + -217L (x* — (m — 2)x’}
(335) 1

+ 24n?

{4x’ — 11(m — 2)x" + (m — 2)(Tm — 10)x’} 4 O(n™),
which is the correct expansion for the ordinary variance ratio F with m, n degrees
of freedom in terms of x* with m degrees of freedom [1].

4. Asymptotic formula for the c.df. of T . Let F(26;) be the c.df. of T3, i.e.,
(4.1) F(26,) = Pr {mtr SiSo" < 26.}.

Then, as (3.6), we can write

If

Pr {m tr 887" < 26:) f Pr {m tr S,87" < 20| So} Pr {dSs}
R

(4.2)

6 Pr {m tr S1A = 201},

where © is given by (3.12). Upon substituting (3.28), (3.29), and (3.30) into
(4.2) we obtain, after some simplification,

1 (2 1)6
F(28) = Gp(6y) — %{% +(p—m+ 1)ol}g,,(01)
24{mp® + 2(m’ + m + 4)p* + (M’ + 2m* + 21m + 20)p
_ 1 + 8m® + 20m + 20}61
48n? (mp + 2)(mp + 4)(mp + 6)
4{3mp® — 2(83m” — 3m — 4)p* — 3(3m® + 2m® + 11lm — 4)p
+ — 40m® — 36m — 4}6}
(4.3) (mp + 2)(mp + 4)
2{3mp® + 2@3m’ + 3m — 4)p* — 3(8m* — 2m’ — 5m + 4)p
— 8m® + 12m + 4}6;

C mp + 2
— {83mp® — 2(3m* — 3m + 4)p* + 3(m® — 2m® + 5m — 4)p

— 8m’ + 12m + 4}01] 9,(61) + 0(n™),

3 The author is indebted to the referee for pointing out this check of (3.33).
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where
0 3
G(0)) = [T(p)]™ [ et dt, g,(0) = — G,(01), and p = mp/2.
) 96,

(4.3) is a sort of multivariate analogue of Hartley’s formula of “Studentiza-
tion.” In fact it can be shown that when p = 1, (4.3) coincides with Hartley’s
formula for the c.d.f. of the univariate analysis of variance F statistic. (See
equation (28), p. 178, [2].)

6. Discussion of the error and remarks. In view of the methods used in
Sections 3 and 4, it is rather difficult to set a bound for the error committed by
omitting all terms after the first few terms in the asymptotic formula for 7%
(3.33) or in the asymptotic formula for the c.d.f. of T§ (4.3). There is, however,
a method to find lower and upper bounds to the c.d.f. of T which is fairly good
for large values of n, and they can be used to set a bound for O(n™®), say, in the
asymptotic expansion of the c.d.f. of 7% .

We shall first obtain lower and upper bounds for the c.d.f. of T3 . It is well
known (e.g., see [7]) that the joint probability law of the characteristic roots
er, e, - ,e of mS8ySy" under the null hypothesis H, is given by

P(elj 62, e ,el)

8 8—1
= C(s, t, p, n) IIl el (1 + g-:)“"'“m de; T1 (e — ),

1<j=1

(5.1)

where) < ¢, < e, = -+ = ¢ < »,s = min (p, m), t = max (p, m), and

a2 r{ii(n +¢t—p + 9}
nt? T {3 — s + 9)IT {3 — p + 9)}T (6/2) °

The statistic T3 is expressed as

C(s, t, p,m) =

(52) Ty = mtr i8Sy = 2 e,

i=]1

and the c.d.f. of T} is given by

F(28,) = C(s,t,p, n) f 5 f

8 s—1
H Rl (1 + %)—(mﬂ)/z de; H (e: — ¢,),

1=1 1<j=1

(5.3)

where R, is the domain of integration such that 0 < e, € 6,1 £ -+ L 1 < ©
and 0 < D !.e; < 26,. Now for any non-negative values of e; and n, the fol-

lowing inequality holds:
‘ﬁ < 9
log (1 + )
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for?z = 1, -+ -, s, where equality holds when ¢; = 0 or n — «. Hence we have

—(m+n)/2
H<1+ ) éexp[ +nZet].

1=1

Therefore, the probability law (5.1) is bounded from below as follows:

(5.4) Pi(er, *-+,e) < Pler, -+, )

where

Pi(er, -+ ,e) = C(s, t, p, n)[Te§™" " de; expl: m+ nz e,] H (e; — ;).
=1 1=1 1<j=1

It must be noted here that Pi(e; , - - - , e,) is not a probability law, although it is

non-negative for all e; such that 0 = é -+ = @ < o, Now integrating both

sides of (5.4) in R; we obtain

(5.5) F1(261) = F(26),

where

Fi(26,) = C(s, t, p, n) f f [ o$meDI2 g

epr: +"Z :I ﬁ (e; — &),

=1 1<j=1
and also integrating both sides of (5.4) in R, where 0 < ¢, < --- < ¢ < ®
and 26, < Z§=l e; < o and subtracting each from 1, we have
(5.6) F(26,) = Fy(26y),
where

Fy(26)) =1 — C(s, t,p,m) f fH e$ R e,
Ry =1

8—1

exp[ +nZe,:| I1 (e = o).

i=1 1<j=1

In order to evaluate F1(26,) and F,(26;), we observe that as n tends to o,
Ty = D11 ¢ has a x* distribution with st degrees of freedom in the limit; i.e.,
we have

K(s, t, p) f R fH eﬁ“"”’z de:
1

(5.7) i exp[ 13 ] T =) = G0,

=1 1<j=1



1104 KOICHI ITO

where
el? 1
K(S, t’ P) = lim C(S, t) D, n) = WZ B N
e I ri3 - s+i)}r<-2->
and p; = st/2. Hence integration of (5.5) yields
(58) Fi(26) = Lis, 1, p, )G, (’” tn o,),
where

s
n p(fL?_t_@

_ Cls, t,p, m) ( n >st/2 _ ( 2 > 2 /
L(s’typrn)_ K(s,t,p) m-+n B m+ n g P(n—p+")
i 2

Similarly we obtain from (5.6)

(5.9) Fa(20) = 1 — L(s, t, p, n) {1 -G, (m : ")}

Now if we write (4.3) as
(6.10) F(28) = a4+ 2+ 2 4 Ry,
n n?

where R; is the error committed by omitting all terms except the first three terms
in the asymptotic series of F(26;), the absolute value of R; has the following

upper bound:
where F;(26:) and F3(26,) are given by (5.8) and (5.9), respectively.

The actual manner in which (3.33) converges to the true value T’ or in which
(4.3) converges to the true value F(26,) is not known, but it is hoped that the
use of the first few corrective terms may result in a test which is more accurate
than the x* approximation, at any rate for moderately large values of n. In the
case of the asymptotic formula for the c.d.f. of T (4.3), we may judge the magni-
tude of the error involved in using the first few terms of the series by (5.11),
which turns out to be rather small numerically when 7 is sufficiently large.

The author wishes to express his indebtedness to Professor Harold Hotelling
for suggesting this problem and for his guidance in the preparation of this paper.

Fa(20) —ap— 2 — 2

1 [12]
2 n n2

F1(20)) — ao -
n

)

G11) | R | < max{
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