POLYA TYPE DISTRIBUTIONS, II!

By SamMuerL KARLIN

Stanford University

In a previous publication a specific smoothing property characterizing a class
of distributions which we called Pélya Type (P.T.) distributions was introduced
[1]. Most of the standard distributions occurring in statistical practice are of
Pélya Type. For this class of distributions many of the usual decision theoretic
questions were analyzed. Explicitly in the case of the two action problem, com-
plete classes of statistical procedures were characterized and Bayes and admissi-
ble procedures were also determined. This paper continues the further develop-
ment of statistical applications for Pélya type distributions. We are still prin-
cipally concerned with the two action problem. In a subsequent publication the
n-action and estimation problem for P.T. distributions will be presented.

Our investigation is divided into three main parts. Part I describes some new
characterizations of P.T. distribution. Attention is called to Lemma 3 which
is very useful in establishing the fundamental variation diminishing properties
of P.T. distributions as described in Theorem 3. Finally, Part I closes with two
further results about the sums of two random variables one of which has a
P.T. distribution.

In Part II we examine in detail many of the standard Neyman-Pearson con-
cepts for the case when the underlying distributions are known to be Pélya
Type. Representative topics treated include the principle of unbiasedness, en-
velope power functions, likelihood ratio tests, etc. Specifically,.it is shown that
in any testing problem uniformly most powerful unbiased tests always exist
and in fact can easily be explicitly constructed. Although we deal here with the
case where there is only a single free parameter, for many examples a problem
involving several parameters can be reduced to that of one parameter by using
the principle of similarity or the principle of invariance. At this point our theory
can be directly applied. Another interesting consequence of the theory is the
result that the likelihood ratio test for a composite hypothesis versus a com-
posite alternative when the underlying family of distributions are of P.T. is an
admissible test.

A general minimax theorem for the two action decision problem is developed
in Part ITI. Explicitly the game defined by the usual risk function is shown to
have a value (under very mild conditions imposed on the loss functions). Fur-
thermore, the optimal strategies for both the statistician and nature are charac-
terized. Specific attention is directed to the one and two-sided testing problems.
A discussion of the computational job for obtaining the minimax strategies is
also given.
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282 SAMUEL KARLIN

Although the three chapters are basically related, they may be read sepa-
rately with only few references to other parts.

Finally I wish to express my gratitude to Rupert Miller for his help in the
writing of the manuscript.

Part I. Definition and Properties of Pélya Type Distributions.
Sec. 1. Definitions and preliminaries.

Def. 1. A family of distributions P(z, w)
Pz, o) = B) [ p(s,0) du(a)

of a real random variable X depending on a real parameter  is said to belong
to the class ®, (Pélya Type n) if

P(xl, w) - P(-’Dx ) Wm)

v
=)

.y

P(@m,w1) -+ P(Tm, Om)

forevery l Sm S nandallz; < 22 < -+ < ZTp,andw < w2 < -+ < m.
The family belongs strictly to ®, if strict inequality holds in (1.1). u is a o-finite
measure on the real line and p(z, ) is taken to be continuous in each variable.
Most of the results can be easily extended to the case where we allow p(z, w) to
have a finite number of discontinuities of the first kind, in each variable
separately

If the family of distributions P(z, ) belongs to ®, for every n, then we say
that the family belongs to @, . If it belongs strictly to ®, for every =, then it
belongs strictly to ®,, . We shall sometimes say that p(z, ») is Pélya Type n()
if P(z, ») belongs to ®.(®,, ).

For n = 1, 2 the conditions of being Pélya Type n reduce to familiar ones.
p is Polya Type 1 (strictly Pélya Type 1) if and only if p(z, ©) Z 0(> 0) for
all z and w. p is Pélya Type 2 if and only if it has a monotone likelihood ratio,
i.e., for every 2, < 3, [p(z1, w)]/[p(z2, )] is nonincreasing in w. It is strictly
Pélya Type 2 if and only if it has a strict monotone likelihood ratio, i.e., [p(z: , @)/
[p(x; , w)] is decreasing in w for 2, < z2.

The distributions that can be classified as Pélya Type include almost all of
the principal distributions occurring in statistical practice. The exponential
family, the noncentral ¢, the noncentral F, and the noncentral chi-square dis-
tributions all belong strictly to @, . For a proof of this the reader is referred
to [1]. Other examples are given in [2]. The most notable example of a density
which is not Pélya Type is the Cauchy, i.e.,
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Sec. 2. Some characterizations of Pdlya Type distributions. This section will
be devoted to presenting some alternative characterizations and some analytic
properties of Pélya Type distributions. Theorem 3 and its corollaries should be
carefully noted because the decision theory for Pélya Type distributions de-
veloped alternately in [1] is based almost entirely on this theorem.

THEOREM 1. If p-is Pélya type 2 and the derivatives involved exist everywhere,
then '

p(z1, w) % p(21, w)
(2.2) >0
(22, w) % P22, w)

for all w and all 2, < z,, and

p(@, @) 5= P, @)
(2.3) =0

2 b0, ) -2 p(z, )
ax » 7 920w ’
for all w and all x. Conversely, if p(x, w) > 0 for all z and w, (2.3) implies (2.2),
which in turn implies that p is Pélya type 2. Strict inequality in (2.3) implies
strict inequality in (2.2) and this implies that p is strictly Pélya Type 2.

RemARk. The requirement that p(z, @) > 0 in the converse theorem can
be greatly relaxed by use of a device which will be fully explained in connection
with Theorem 2 below,

PROOF. p ¢ @, implies that for all 2; < z; and w; < w,

(21 w1) P(x1, w) — p(a1, 1)

w —
= 2 0.

p(x2 wl) p($2 ’ wg) — p(xz , wr)
’ wp — W

1 |per, @) p(er, o)

@2 — w1

(22, w1) p(z2, w2)

The limit as w, approaches w; gives (2.2). Also, (2.3) is obtained from (2.2)
analogous to the preceding by operating on columns.

The converse is established by showing that p has a monotone likelihood
ratio. Indeed, (2.3) can be written as

d
(24) oz, I %{% p(a, "”} 20
: p(xy "")

for all z and w. This implies that (3/dw)p(z, w)/p(x, w) is nondecreasing in z for
all w. This yields (2.2) which in turn implies
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p(x2 ) ‘-")} >

(25) e, o 2222 2 0
for all z; < . (2.5) implies [p(z;, w)]/[p(71, w)] is nondecreasing in « for all
x; < 2 ;i.e., p has a monotone likelihood ratio.

The strict converse is obtained by replacing = by >, nondecreasing by
increasing, and monotone by strictly monotone in the preceding paragraph.

CoroLLARY 1. Suppose (3°/0xdw) log p(x, w) ewists and p belongs strictly to
®, . Then p belongs to ®, if and only if

62
Eye log p(z,w) 2 0

for all x and w.

Our attention is now directed to consider a generalization of Theorem 1 for
density functions which are Pélya Type of arbitrary degree.

TuroreM 2. If p is Pélya Type m and all the derivatives involved exist every-
where, then
n—1

) 9
p(zl,w)%p(xl,w) a—g;_—,p(zx,w)

(2.6) . . . =0

n—1

9
=i P(zs, @)

foralln S m, 0, and 23 < 2, < -+ < 2, and

F)
p(xn,w)&;p(xn,w)

n—1

a a
p(x’ w) 5; P(x, w) ot W_‘l P(x, O))
2

d 9 a"
e p(z, ©) Fyery p(z, w) 3291 p(z, @)

ox
2.7

v
=]

2n—2
d

i”—_——(vc,)

dzx™! P @, ) -

(z, w)

30w " =t

for all n < m, w, and z. Conversely, strict inequality in (2.6) for every 1 g §
implies that p is strictly Pélya Type m and strict inequality in (2.7) for all 1
n < m implies the same in (2.6).

Proor. We need the following lemma.

m
s
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LemMa 1. If fi, fa, -+ , fa are differentiable real-valued functions on the real
lineand & < & , then there exists a £, & < & < & , such that

an - i fil$) fi(8) ares o0 ain

An1 * °* Qpuj fn(fl) fn(E?) An,j43 *** Qpn
au -+ a; fild) fi®) aras - G1a

=(E—-8)- S . . - |

nt *+ g ful2) Fal®) Qriaa -+ - Gun

where the a;j’s are any real numbers.

The proof of this lemma is an easy application of the mean value theorem
and will be omitted.
The proof of the first part of the theorem proceeds as follgws. Let.pi(w) =
p(z:, w) and pi(w) = (3*/00")pi(w). Suppose n andz; < z; < --+ < 2, are
given. For vy < wy < -+ < w,

pl(wl) cce Pl(wn)

(28) 0 =< sgn

Pn(wx) cee pn(wn) ,
pr(w) pi(wd) pilwd) piwd) -+ P Hwd™)

= sgn . . . . . )

Dlwr) Dhlws) ph(ws) Pa(wd) -+ pr (wn ™)

where '] £ o} £ i This equality is obtained by repeated application of

Lemms 1. Sgn is the function which equals +1 if its argument is positive, —1
if its argument is negative; and 0 if its argument is zero. Letting w; — w1, w3 —
wp, **, wa — w, the last determinant approaches the determinant in (2.6)
and therefore (2.6) must hold. (2.7) is derived from (2.6) by applying the same
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operations on the rows of the determinants in (2.6) as were applied to the col-
umns of the first determinant in (2.8).

The proof of the converse of this theorem depends on Lemma 2 below.
Lemmas 3 and 4 which will be needed subsequently in proving Theorem 3 are
also included at this point because of the similarity of their proofs with the
proof of Lemma 2.

Lemma 2. If all the derivatives involved exist and are continuous and

mw) pi(w) --- pr(w)

(2.9 . . . >0

Pa(w) pra(w) - - pr ' (w)
for all w and n £ m where p’is the jth derivative of p; , then
p(wy) -+ pa(w,)

(2.10) . - >0

Pa(wy) -+ palwn)
forallw, < -+ < wpandalln = m.

Proor. The proof proceeds by mathematical induction. Clearly the lemma
holds for m = 1. Suppose it holds up to m — 1, and suppose w; < we < --- <
w, are given. Let ¢;(w) = pi(w)/p1(w). Then

‘ 1 ... 1

pwy) - puwy) a(w) -+ galw,)

sgn| - - |=sgn

pr(wy) -+ pa(wy)

Qn(wl) tee q".(wn)
1 0 cee 0

Q2(’wx) qi(ue) q;('ll«n)

(2.11)

= sgn ’

q'x(wl) q;(’ua) e q}k(un)
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wherew; < s < wy < w3 < - <u,.<'w,. But

& f(w)
dw pi(w) md—wﬂ w) + Zaxw) f(w)

where the a.(w)’s do not depend on f. Therefore, for all w

n(w) piw) -+ i (w) pw) 0 -~ 0

p2(w) pa(w) -+ P (w) po(w) ga(w) -+ g7 ' (w)
(2.12) sgn . . . = sgn

Pa(w) pr(w) -+ prH(w) Pa(w) gn(w) -+ gn(w)

Since the first determinant in (2.12) is positive by assumption, for all w and

n=<m
g@(w) - g7 (w)

>0
gn(w) -+ gn (w)
By the induction assumption this implies
aw) - qa(u)
> 0

gnlu) -+ gnlun)

for.all yp < :--+< u, and all » =< m. But this determinant equals the last deter-
minant in (2.11) so (2.10) follows:
Lemma 3. If p is strictly Pélya Type « and all the derivatives involved exist
and are continuous, then
sgn det “ p(xi” wt') " = sgn qﬂ(E) Wnil, Wn,y ", wl):
2 < @3 < +++ < Zny1, for some appropriate £ satisfying 21 < £ < Tpq1,
where

d pl¢, w)
_ d [p ) _ d Jdzp(E w)
QI(E; w, wl) {p(s’ )}: 92(5, w, ws, wl) = % mw_;) H

d—x p(f, wl)
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d
QiEy @y hy Wrety 0ty 1) = %{

Qr1(E, 0, W1, =+, @1)
Gr1(E, Wk, W1, * ¢, 1)

where iy < wp < +++ < w, but wand wn1 are allowed to occur anywhere. (The nota-
tion means that the derivalives are taken with respect to x and evaluated at x = &.)
Proor. The proof proceeds by induction. Let p(z;, wi) = pi(z;). Forn = 1

1 1 1 0
sen| 7 pl(xz)i 80 py(z) palen) | = BB | e d pu(®)
= p2(21) pa(2) | = p(z1) d pa(§)
Pal@r) o) P1(71) Pr(22) p1(21) dz p1($)
by Lemma 1. Assume the theorem is true for n — 1. Then
1 0 0
p1(xi) coo s pi(Zng) Pz(xl) q1(lev, wg,wy) o 91(5;“, wg, w1)
y2EN)
sgn . . = Sgn
Pn+1(231) o pn-i-l(xn-i-l) ()
Doty (8}, Wnga, 1) ++ - QEni1, Wni1, @)
P1(21)

91(".:;, w2, wl) e QI(£;+1, w2, wl)

I

sgn . . ,

Q&3 , wngty @) -+ @lEnia, @i, @)
where z; 4 < £ < i,4 =2, -+ ,n + 1. By the induction hypothesis

* qE, w,wm) >0forj=2---,n+ 1
Therefore dividing each row by the first and applying Lemma 1,

QI(Eéy w2, wl) M ql(stﬂ-l, w2, wl)

sgn

QI(Eg, Wat1, @1) * Q1($§~+1, Wn1, 1)
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qz(Eg y W3, W2, wl) ce 92(5’:';+1, w3, w2, wl)
== Bgn . . ,
(12(53’ ) Wnily Wg, @y) * ¢ Q2(£’1,»+13 Wnil, W2, w1)
where £1 < £ < £,% = 3, .-+, n + 1. Continuing in this manner and at

each step using the fact that the first row is positive by the induction assump-
tion the sequence terminates with the expression qa(£, wny1, Wn, *** , @), T3 <
£ < %u41, which has the same sign as the original determinant.

£ is a real number which occurs between z; and z,,; and dependson ; , 25, - - -,
Za41 . Det || p(z;, ;) || will always have the same sign, regardless of the values
of the z;’s and w/’s, just so long as the same order relation exists between them.
By the continuity assumptions in Lemma 3, £ can be found to take on any arbi-
trary real value by varying ,, ;, -+, Z.;1 . Hence we have the following
lemma,

LemmMa 3a. If the conditions of Lemma 3 are satisfied, then

sgn det " (s, ws) " = 5g0 ¢a(T, Wns1 y Wny *t°y wl):

where 13 < T2 < +++ < Tnyry, 0 < e < <+ < w, , and where wa1 15 allowed
to occur anywhere, and x is any real number.

The proof of the converse to Theorem 2 follows readily from Lemma 2. In
fact, strict inequality in (2.6) for every n = m implies that p is strictly Pélya
Type m by Lemma 2 with p;(w) = p(z;, w), » playing the role of w in Lemma, 2.
Strict inequality in (2.7) implies strict inequality in (2.6) by Lemma 2 with
pi(w) = (07/3w ™) p(z, w), w being fixed and x playing the role of w in Lemma 2.

The converse statement in Theorem 2 involves strict inequality in (2.6) and
(2.7). What can be said if just (2.6) and (2.7) hold? A positive result can be
achieved if the following slight condition holds. If relations (2.6) and (2.7) are
valid and if for every w and n < m they hold with strict inequality for some
7 < 1 < -+ < Z,, which may depend upon w, then we can generally still
prove that p is Pélya Type m by use of the following device. Let

[ 4 = u, ) plu, o) dutw)

(2.13) Do, w) =

)

[ : 6@ — u, o) du(w)

where ¢ is the normal density function with mean 0 and variance o. The measure
u is chosen so that the integrals exist and are positive with u possessing positive
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measure everywhere. As ¢ — 0, p,(z, @) — p(z, ») uniformly in any finite interval
and

[ 4@ =) o o, o) dutu)
(1) < p,(x w) = = 3= p(®, @),
[ ; ¢(z — u, o) du(w)

where we have assumed that (2.14) is valid, i.e., the integral can be differentiated
inside the integral sign. But®
n—1

i) ¥e)
pv(xly w) % pv(xly w) e 6_(0”:i pd(xl ’ w)

n—1

= Do(Tn , @)

a
pv(xn 5 w) ’a_a" pc(a'n ) w) .

(s — 21,0) -+ d(ur — Zn, 0)

“([oa-wo d#(“)) ,L l"

o(Un —1,0) -+ ¢(Un — Tn,0)
n—1

3 9
p(ur, ) 5‘—0p(u1, w) - P p(u, w)

dp(u) -+ du(un).

n—1

)
P(Un, @) o= Ptin, @) - 9t PUns )

Since ¢ is strictly Pélya Type « for each o, the first determinant in the integrand
is always positive. By assumption the second determinant is not identically
zero. Therefore p, satisfies the determinant criterion for strictly Pélya Type m
densities by Theorem 2, and p is Pélya Type m since det || p(z1, ;) || = limg.o
det ” pv(x'i ) wi) ” .

2 See G. Pélya and G. Szego, Aufgaben und Lehrsatze aus der Analysis, Vol. 1, p. 48,
Problem 68.




POLYA II 291

This completes the various characterizations of Pélya Type distributions
that will be given here. The remaining theorems and corollaries summarize the
main properties of Pélya Type distributions. Theorem 3 and its corollaries are
crucial to the decision theory in Parts II and III.

Sec. 3. Basic oscillation theorem for P. T. distribution. The following defini-
tion is needed to make the concepts in the theorem precise.

Def. 2: The number of sign changes V() of a function A(w) is taken to be
SUDuy -0, NV (h(w;)), where N(h(w;)) is the number of changes of sign of the
sequence h(w), h(ws), «* -« , h(w,), wi < wiy1. A point we is called a change point
for h(w) if h(w) h(w’) < O whenever w S wy < o' with w 7 ' (w, ' essentially
near wg) and definite inequality occurs for some specific choice of w and o’ or
h(wo) h(w) h(e’) = 0 for 0 < wp < .

THEOREM 3. Let p be strictly Pélya Type © and assume that p can be differen-
tiated n times with respect to x for all w. Let F be a measure on the real line, and let
h be a function of w which changes sign n times. If

0@ = [ oz, whie) dF (o)

can be differentiated n times with respect to x inside the inlegral sign, then g changes
sign at most n times and has at most n zeros counting multiplicities or is identically
zero. The function g is identically zero if and only if the spectrum of F is contained
in the set of zeros of h.

Proor. Let wy , ws, -+ - , w, be the change points of h. w; < w; < +++ < wy.
Form

df 9@ \_ [22) 10y aF
%{m, o = | T oG,y M@ F

(2.15)

q’fl(x; Wny Wp—1y **°, wl) = f Qu(x) Wy W,y *** )wl)h(w) dF("’)-

The function ¢%(x, wn, -+ , @) is the function g.(x, @, wa, =+ - , @) with p(z, w)
replaced by g(x). All the above integrands are well-defined since Lemma 3 can
be applied.

Suppose for definiteness h(w) > 0 for w < w; and n even. Then det || p(z;, ws) [,
5,7=1,2---,n4+ 1, with w,yy = 0, and 2; < 22 < +++ < Zn41 has the same
sign as the determinant obtained from the above with first and last rows inter-
changed. This last determinant is positive as p is assumed to be Pélya Type .
Hence, by Lemma 3 ¢u(z, @, wn, -+, @) > 0 for o < w 80 the integrand in
(2.15) is positive. For w; < w < wp With @ = w1 the original det || p(z;, wi) ||
has the opposite sign of the determinant which has the last row inserted between
the first and second rows in this determinant. This second determinant is positive
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so det || p(z;, w:) | < 0. Applying Lemma 3 again we see that the integrand is
positive for w; < w < w; . Repeating this line of argument we find that &(w) and
gn(Z, ®, ws, -+, w) have the same sign so the integrand in (2.15) is always
positive. Therefore qh(x, wn, wna, -+, w) > 0 for all z. Now, gni
(T, Wn—1, Wn-z, ---, w) is likewise positive for all z, by Lemma 3. Since ¢h
(@, wny e+, w1) > 0and gy, wpy, -+ -, w1) > 0for all z, from the definition
of ¢%1(, way, -+ , 1) we deduce that this function changes sign at most once
and has at most one zero. Similarly, since ¢,—o(Z, wp—2, +++, @) > 0 for all z,
this implies that ¢%_s(z, wn—z, - -+, w;) changes sign at most twice and has at
most two zeros counting multiplicities. The end of this sequence of implications
is that g(z) changes $ign at most n times and has at most n zeros counting
multiplicities.

Suppose h(w) > 0 for w < wi, but n is odd. Then reasoning analogous to that
used in the even case shows that the integrand in (2.15) is always negative.
Thus ¢4, @, wn, -+, @) < 0 for all z, and this implies the desired conclusion.
A similar argument proves the result when h(w) < 0 for w < .

By following the sequence of implications in reverse order it can be checked
that if g changes sign n times, then it changes sign in the same order as h(w).
This gives us Corollary 2.

CoROLLARY 2. If the number of sign changes of g s n = V(h), then g and h
change signs in the same order.

CoROLLARY 3. If p is Pélya Type « but not strictly so, the results of Theorem 3
still hold if for any n and any prescribed w; < - -+ < wy there exists a set of z; <
e+ < 1, (which may depend on w; , - -+ , w,) such that det || p(z:, wj) | > 0.

This can be established by approximating p(z, w) by p.(z, w) as in (2.13).

The condition that p be strictly Pélya Type « can be weakened also in another
manner different from Corollary 3. The results of the theorem still hold if p
is strictly Pélya Type n + 1, one more than the number of sign changes of h.

Completely analogous results can also be proved about the function

00) = [ 2@, Wh@) duto).

Sec. 4. Addition theorem for P. T. distribution. The following two theerems
present results which are interesting per se but which will not be of 4ny use in
the subsequent sections. These theorems illustrate some other nice smoothening

properties possessed by Pélya frequency functions.
TueoreM 4. Let X and Y be independent real random variables having con-

tinuously differentiable densities f and g, and let f(x — w) = f*(x, w) be strictly
Pélya Type . If g has k modes, then the density of z = = + v,

W@ = [ 500 = ) @

has at most k modes. Furthermore, for any constant ¢, h — ¢ changes sign no more
often than g — c.
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To expedite the discussion we assume that differentiation can be performed
underneath the integral.
Proor.

e = [ 100 - a= [ ja- e a.

Since the number of modes of a density is bounded above by the number of
changes of sign of its derivative, the first conclusion follows from Theorem 3.
The second conclusion also follows from Theorem 3 since

W) —c= [ 0t~ —da = [ f&— 6 - da.

Z. W. Birnbaum calls a real random variable X less peaked than another real
random variable Yif Pr { | X | S u} S Pr{| Y| = u} for all u > 0. He proves
that if X is less peaked than ¥ and Z is independent of X and Y and has a sym-
metric unimodal density, then X + Z is less peaked than X + Y (Ref. [3]).
We can generalize this definition and with the aid of Theorem 3 generalize the
result.

Def. 3. A real random variable X is less peaked of order n» than another real
random variable ¥ if g(u) ='Pr { | X| S u} — Pr {|Y | £ u} changes sign
n times and is nonpositive for sufficiently large u or else changes sign less than
n times.

Birnbaum’s definition of less peaked corresponds to less peaked of order 0.

TaeoreM 5. Let X be less peaked of order n than Y. If Z is independent of X and
Y and has a density h which is symmetric and is such that h(z — w) = h*(2, w) 18
strictly Pélya Type «, then X + Z is less peaked of order nthan Y + Z.

Proor. If F and @ are the cdf’s of X and Y respectively, then

Pri|X+Z|=u} —Pr{| Y+ Z| = u}
= /: [F(s) — F(—s) — G(s) + G(—3)Ih(u — s) ds.

The first factor in the integrand is an odd function of s which changes sign at
most n times for positive s and hence at most 2n + 1 times altogether. The
second factor is a symmetric, strict Pélya Type « density function. By Theo-
rem 3 the integral is an antisymmetric function of » which changes sign at most
2n + 1 times and hence at most n times for positive u. Furthermore, if it changes
sign » times for positive u, it changes 2n 4 1 times altogether and must there-
fore have the same sign for very large u that F(s) — F(—s) — G(s) + G(—s)
does for very large s.

Part II. Application of Pélya Type Distributions to Classical Results of the
Neyman Pearson Variety.

Sec. 1. Preliminaries. A number of classical results can be derived when the
underlying distribution is Pélya Type. These results concern Type A regions,
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uniformly most pewerful tests, unbiased tests, the likelihood ratio test, ete. They
unify and strengthen essentially all previously known results. A great deal of
the literature on the theory of testing statistical hypotheses deals with special
cases [4], whereas this approach is of a more general nature and yields much
stronger results and at the same time constructive methods in determining the
specialized tests.

The general situation we are dealing with is that of testing a null hypothesis
against its alternative hypothesis, i.e., a 2-action problem. The parameter space
Q is the real line. There exist two measurable loss functions L; and L, on @ where
Ly(w) is the loss incurred if action 7 is taken and w is the true parameter point.
The set in which L;(w) < Ly(w) is the set in which action 1 is preferred when w
is the true state of nature, and the set in which Ly(w) < L;(w) is the set in which
action 2 is preferred. The two actions are indifferent at all other points. We shall
assume that L; — L, = h changes sign exactly »n times where n will vary according
to the problem we are considering but will remain constant within each problem.
The points where L, — L, changes sign are assumed isolated and are o}, w3,

-+, wn. For the sake of definiteness we shall assume that Ly(w) — L(w) is
positive for w < wi . Two successive w¥’s may be equal but not more than two.
In fact, if wf = wis1, then [Ly(w) — La(w)] [L1(w') — La(w)] > 0for w < o} < o'
(@, @ near wy) and [Ly(w) — La(w)]. [Ly(w}) — La(w})] < O for the same choice
of w. This corresponds to the case where one action is preferred in a neighborhood
of w; except for w = w; where the other action is preferred.

Let ¢ be a randomized decision procedure. ¢ is a measurable function on the
real line, and ¢(x) is the probability of taking action 2 (accepting the alternative
hypothesis) if  is-the observed value of the real random variable X. (z is usually
a sufficient statistic based on several observations.) Consider decision procedures
¢ of the form

1f01'.’l)2¢'<$<$2i+1, i:O,l’---,[;—L]

#(2) = Mforz=2;,0 S \; S 1, J=4L2 -0
0 elsewhere

[a] denotes the greatest integer < a. o = — . All randomized decision proce-
dures of this form will be said to belong to the class 911, of monotone procedures.
If the z;’s are all distinct, then action 2 is preferred in n intervals, action 1 in
n or n — 1, and at n points there is possible randomization. Strategies with
fewer intervals but essentially the same form also belong to 91, ; this corre-
sponds to the case where the z,’s are not all distinct.

The following theorem and lemma will be used in the subsequent discussion.
For proofs and greater detail the reader is referred to [1]. It should be remarked
that the proofs of Theorem 6 and Lemma 4 can be based essentially on Theorem 3.

THEOREM 6. If p(x, w) belongs strictly to @1, then for any randomized decision
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procedure ¢ not in I, there exists a unique ¢’ zn M, such that p(w, ¢°) < p(w, ¢)
with inequality everywhere except for w = wy , ws , -+ - , wx . p 15 given by p(w, ¢) =
JI(1 — ¢())L1(w) + ¢(x) La(w)] p(z, w) du(x). Moreover, the set M, constitules
a minimal complete class of strategies.

If the underlying distribution p(z, w) does not strictly belong to ®,.1, then
the strategies of 91, still constitute a complete class but the uniqueness and
minimality conclusion of Theorem 6 is not valid in general. However, by a
general device of approximating non strict Pélya Type distributions by strict
Pélya Type (see Part I), many of the foregoing results can be extended. This
shall be left as an exercise for the reader.

LemMa 4. If ¢' and ¢° are two strategies in M, and p is strictly Pélya Type
n + 1, then

[ #@ - #@Ip, ») du)

has less than n zeros counting multiplicities.
In the future, when we say assume strictly Pélya Type n, we mean that the
underlying distribution belongs strictly to @, .

Sec. 2. Uniformly most powerful one-sided tests. The case of uniformly most
powerful tests for the classical exponential family of distributions and other
specific examples was treated in Lehman’s notes [4]. This represents a slight
extension to the situation of Pélya Type distributions.

Assume strictly @, . For a one-sided testing problem, a uniformly most power-
ful level & test exists.

A one-sided testing problem occurs when

1 w<w 0 w<uw
Ll(w) = and Lz(w) =
0 w=w I w=wm

for some w; . Then p(w, ¢) = [¢(z)p(x, w) du(z) for @ = w and p(w, ¢) = [
(1 — ¢(z)) p(x, @) du(z) for @ < w; . Consider the function fy(w) = [é(2)p(z, w)
du(z) where ¢e M, . f5(w) — ¢ = [(#(x) — c) p(z, w) du(x) where c is an arbiirary
positive constant. Since ¢ £ 9, ¢ — ¢ changes sign at most once and in the_
direction from + to — if at all. Therefore by Theorem 3 and Corollary 2, fs — ¢
changes sign at most once and in the same direction if at all. This implies that
fs is a monotone decreasing function of . Consider that unique monotone test
¢* (unique [u]) for which fu(w) = Je*(x)p(x, w1) du(z) = a. For any other
level « monotone test ¢; the corresponding f,, is uniformly smaller than fz. by
Lemma 4 so that ¢* is best among the monotone tests. Now consider any non-
monotone level a test ¢. By Theorem 6 there is a unique monotone test ¢, which
is better than ¢ except at w; , where equality holds. But since fy« = fs, , ¢* also
improves on ¢.
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Sec. 3. Nonexistence of uniformly most powerful two-sided tests. Assume
strictly ®;. For the two-sided testing problem uniformly most powerful level
a tests do not exist in general. We discuss this now in greater detail.

A two-sided testing problem is determined by

0 vy Sw=we l e Sw= o
Li(w) = and Ly(w) =
1 elsewhere 0 elsewhere

for some w; £ w;. By virtue of Theorem 6 we can restrict our consideration
exclusively to monotone tests, i.e., tests in 917, . Let ¢3 be a monotone test and
Jos(w) = [¢s(z) p(x, w) du(z) be the corresponding power function. Consider the
one-sided testing problem obtained from the two-sided problem above by
removing one tail.

0 w=w 1 w=w
LY (w) = and Li(w) =
1 o< 0 w<uw

The existence of a u:m.p. level a test ¢* for this problem was shown in section 2.
Suppose ¢; 2 My . Then fys(w) > f4,(w) for w < w1, and ¢; is not u.m.p. for the
two-sided test. The strict inequality is assured by Theorem 6. Suppose ¢3 € IN; .
Then f4, is monotone decreasing which means that for w > w; the test ¢ = «
is better.

A word should be said about what happens when p is not strictly Pélya Type 3.
When w; = w; and P(z, w) is the rectangular distribution on the interval [0, w],
a8 u.m.p. test exists. The acceptance region is [z, w;] where 2’ = aw; . When
P(z, w) is the rectangular distribution on [0, w] but if w; < ws, no u.m.p. test
exists; i.e., when the null hypothesis is an interval no u.m.p. test exists. The
rectangular distribution on [0, w] is Pélya Type 3, but it is not strictly so. It
even satisfies the condition that for every w; < w; < w; there exists a set z; <
23 < z3 such that det || p(z;, w;) || > 0. Thus the condition of strictness in this
result seems very essential.

Sec. 4. Uniformly most powerful unbiased tests.

(a) Assume strictly ®; . For a two-sided testing problem a u.m.p. unbiased
test exists. For this special testing problem the result is known for scattered
“examples.

A test ¢ is unbiased if and only if fy(w) < @ for v S 0 £ we and fy(w) = a
for w £ w; and w = w, . Consider the test ¢ = a. By Theorem 6 there exists a
unique test ¢* & 9, which uniformly improves in terms of risk over ¢ = a except
at o, and w, . Clearly ¢* is unbiased. ¢* is determined by 2¥ , 27 , Af and A3 which
are the values satisfying [¢*(z) p(z, @) du(z) = a, 7 = 1, 2, where w; < w; and
z1 , 73 , AT, and A} , determined satisfying [¢*(x) p(z, 1) du(z) = a and (d/dw)
Jo*(z) p(z, ©) du(z) | o, = 0if wy = wy. When w; = w, the null hypothesis con-
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sists of a single point. Lemma 4 shows that fixing the value of f,« at two points
or fixing f4+ and its derivative at one point is sufficient to determine ¢* uniquely.
Suppose there were an unbiased level « test ¢ for which fs(w) > fs«(w) for some
w < w1 Or w > wy . Then there would have to be a monotone test ¢4 which improves
on ¢ except at wy and w, . But. this contradicts the fact that ¢* is the unique
monotone test uniformly better than ¢ = a except for w; and we . Thus ¢* is the
u.m.p. unbiased level a test.

(b) Assume strictly ®.,;-. For any preference pattern for the two-action
testing problem say involving n + 1 distinct regions where action 1 is favored,
a u.m.p. unbiased test exists.

The above argument generalizes easily to any preference pattern. The unique
test ¢* £ 9, which is uniformly better than ¢ = a except at w1, wz, -, wy 18
the u.m.p. unbiased level a test where w; corresponds to the change points of
L, — L, . ¢* is uniquely determined by solving the system of equations [¢*(z)
p(z, w) du(z) = a,5 = 1,2, --- ,nforaf 25, -+, 25, \F,AF, .-+, Ah . For
the case where w; = w;4; for some ¢ replace the equation [¢«(z) (2, wit1) du(z) =
a by (d/dw) [¢*(x) p(x, @) du(x) | o; = 0. Lemma 4 shows that the system of
equations in this latter case is still sufficient to determine ¢* uniquely.

Sec. b. Generalization of unbiased tests. Assume strictly ®,+1, and assume
the two-action testing problem under consideration involves n 4 1 preference
regions. Let ¢° be an arbitrary but fixed test. There exists a test u.m.p. with
respect to the class ®4, of all tests which improve on ¢

This generalizes the concept of unbiased tests because the class of unbiased
tests can be defined as the class of all tests which improve on the test ¢ = «.

There exists a unique monotone test ¢* which improves on ¢". fs» lies above
feo in those intervals in which action 2 is preferred to action 1 and it lies below
in the other intervals. Some intervals may be degenerate and consist of a single
point. Two-tests in 91, cannot improve on ¢’ since they both must have the
same power as ¢’ at wy, we, -+, w, and this is impossible by Lemma 4. Any
nonmonotone test improving on ¢’ has a nionotone test improving on it by
Theorem 6, and this monotone test must be ¢*.

Sec. 6. Nature of Type A critical regions. Assume strictly ®; and assume that
for any power function differentiation inside the integral sign with respect to
w is valid. For testing a single point w; against all alternatives a Type A region
can be characterized as the union of at most two semi-infinite intervals, i.e.,
its complement is a single interval.

A Type A critical region is the critical region for any test ¢ which maximizes

" the curvature [¢(z) (3°/8w’) p(x, ) | «; du(z) subject to the constraints [¢(x)
p(x, w1) du(z) = aand [¢(x) (8/0w) P(Z, ®) | w, du(x) = 0. We know from section 4
that a u.m.p. unbiased level « test exists. In fact it is the unique test ¢* £ 91, for
which [¢*(z) p(z, w1) du(x) = 0 and (8/3w) [¢*(2) p(z, @) du(x) |« = 0. By
Theorem 6 any nonmonotone test satisfying the constraints has a unique mono-
tone test improving on it and this test must be ¢* because of the uniqueness.
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Thus ¢* defines the Type A critical region, and since ¢* belongs to 91; the critical
region is the union of at most two semi-infinite intervals.

Two remarks should be made. First, all of the known Pélya Type distributions
can be differentiated inside the integral sign. Second, for general distributions
it is not true that a Type A critical region is the union of two semi-infinite
intervals.

Sec. 7. Type A critical regions as a function of the level of significance. Assume
strictly ®; and assume that every power function can be differentiated inside
the integral sign with respect to w. Further, suppose p(z, w) > 0 for all z and
(8/8w) p(z, wy) is continuous in z. The assertion is that the complement of the
Type A critical region for testing w; against all alternative at level « contains
the complement of the Type A critical region for testing w; at level o' whenever
a < o'. In other words, whenever the hypothesis is rejected for the level of sig-
nificance «, then it should be rejected also for level o' where o' > a.

This property is not true for Type A regions in general. (See [5].) In order to
establish the above result, we need to use the following lemma.

Lemma 5. Assume ®@;. If p(x, w1) > 0 for all x and (8/0w)p(x, w1) exists and
has at most isolated zeros, then there exists an x, such that

{go r < 2

=0 T >x

F)
% p(z, 1)

Proor. By Theorem 1

d
P(xl , w1) %% P(xl , w1)
(8.1 s 20
p(x2 ) wl) a_a') p(x2 > wl)

for 21 < z2. If (3/dw) p(x, w1) has no zeros, then the lemma is true with z, =
4+ . If (8/dw) p(z, w1) has zeros, take xo to be any one of them. Choose z; =
z < Zo = 23 . (3.1) reduces to —p(xo , w1) (9/9w) p(z, 1) = 0. Since p(xo , w1) > O,
we deduce that (9/dw) p(z, w1) < 0 for z < zo. Now, select z; = 7 < = = 5.
(8.1) reduces to p(xo , w1) (8/9w) p(x, w1) = 0. Since p(xo , w1) > 0, (3/3w)p(x, w1)
= 0forz > x,.

From section 6 we know that the Type A critical region for level « is given
by a test ¢, € M, . For simplicity of exposition let us suppose that no randomiza-
‘tion is involved and that ¢, is defined by the points z; and z, which must satisfy

23 T2
f p(x, w1) du(x) = 1 — a and f (,;—a-w p(z, w) du(z) = 0.
£ 71 z1
We assert that ; < zo < 7z, for otherwise the integrand [22 (8/9w)p(z, w1) du(z)

would be of one sign. (The hypothesis implies that (3/9w)p(2: , w1) is not identi-
cally zero in the interval (z;, zz).) Let z1 and x; be the two points defining the
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level o test, where 1 < zo < z2 with o’ near a (¢/ > ) so that z; and 2, are
near z; and z, respectively. Clearly the first constraint prevents the interval
(x1, z) from containing the interval (z;, z,). Suppose 1 = z; and z; > z3.
Subtracting the second constraint for x;, z; from the second constraint from
z1 , T3 yields

zy F zi 9
32) [ 2 e, o) dute) — [ L p(a, @) duta) = 0.

zy OW z, 0w
Between z; and z; (9/8w)p(z, w1) > 0 and between z; and z1 (8/0w)p(z, &) < O.
Hence (3.2) is impossible. A similar argument excludes the case 21 < z; , 3 < 25 .
Thus z; = z1 and 22 £ .. The reader can furnish the modifications necessary
for the argument when randomization is required at the end points.

Sec. 8. Envelope power function. Assume strictly @®;. For the problem of
testing at level a a single point w; against all alternatives the envelope power
function p(w) decreases monotonically away from w; in both directions. Let
U, be the class of tests ¢ such that if p(w’) > p(w”) where w; £ o' < 0” or 0” <
o' = w, then p(o’, ¢) > p(w”, ¢). It will now be established that there exists a
test u.m.p. with respect to the class U, .

Theorem 6 shows that in obtaining the envelope power function the only
tests that need be considered are those in 917, . For w = w1, p(w) = p(w, ¢*) where
¢* is the u.m.p. level « one-sided test of w < w; against w > w;. For w < o
o(w) = p(w, $**) where ¢** is the u.m.p. level a one-sided test of w = w, against
w < w;. Lemma 4 shows that ne other monotone test can improve on p(w, ¢*)
for w = w; or on p(w, $**) for w < w; . Thus the p so defined is actually the envelope
power function, and from its definition it is clear that it decreases monotonically
away from w; in both directions.. '

By Section 4 there exists a u.m.p. unbiased level o test. Now any test of 91,
has the form that the power function can have at most one relative maximum.
Indeed, it is sufficient to show that the set of points w where [¢(z) p(z, w) du(z)
exceeds any given constant 0 < K < 1 consists of a single interval. As ¢(x) — K
changes sign twice in the order — 4+ —, we deduce that the same holds for
[@(x) — K) p(z, ) Jp.(x) = [¢(x) p(z, w) du(x) — K from which the conclusion
follows. Any.unbiased test in 91, must therefore also be in U, , and conversely.
The only other possible competing tests that need be worried about are the
u.m.p. unbiased level o’ tests where o’ < a. By Section 7 the acceptance region
for ¢ contains the acceptance region for ¢, . Thus the probability of rejection
at any w for ¢, is at least as small as that for ¢, . Hence p(w, ¢or) = p(w, ¢a)
forall w 5 w, .

Sec. 9. The nature of the likelihood ratio test. Assume strictly ®;, and assume
p(x, ) is a continuous function of z and w. We prove that the likelihood ratio

test is a monotone test.
More explicitly what we mean by the likelihood ratio test being monotone
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is the following. Let the null hypothesis be that « £ A and the alternative hypoth-
esis be that w e 2. A nQ = ¢ and A u @ = R'. Suppose A is the union of n dis-
joint intervals some of which may be degenerate, i.e., points. Then

sup p(z, »)
I¢c) =4z|————==2=c¢
@ sup p(z, w) =
we@
is the union of at most n disjoint intervals and hence belongs to 91, .
Consider a point w; in one of the intervals of A. Let I, =

{z | p(x, @) = ¢ SUPuea P(z, w)}.

That I.,, depends on ¢ will be understood. I,, = Nu.a {z | p(z, w1) = cp(z, w)}.
Since p € @z, [p(x, w1)l/[p(z, w)] is a monotone decreasing (increasing) function
of z for w > w; (v < w1). Thus {z | p(z, w1) = cp(z, w)} is a semi-infinite interval
either to the left or right so I, is an interval. If w; is not a degenerate interval
of A, consider another point w, (for definiteness w; < w;) which is in the same
interval of A as w; . I, = {z| p(z, w2) = ¢ supua P(z, w)} is an interval. Either
I, is contained in I,, , or I.,, contains points of I.,, and points greater than those
in I,, . It cannot happen that I.,, contains points less than those in I.,, with-
out containing all points in I., . Suppose the contrary that this did happen.
There then exist two points z; > =, such that 2, € I, , 22 2 I, , ©1 € I, and
2y 2 L., . Since z; € L, [p(22, w)]/[p(22, w) = ¢ for all w in Q, and since z; £ I,
there exists a «’ £ such that [p(z:, w1)l/[p(x:, o’)] < ¢. Thus p(z2, we) >
p(x2; w1). By a similar argument p(2;, w1) > p(21, we). This gives p(21, wi1)
p(xz, wg) — p(T1, wp) P(x2, @) > 0 which is impossible by assumption since
21 > ;. Thus the assertion is true.
The continuity of p(z, ») in both variables simultaneously implies the following
continuity property between I, and w. The proof is standard and shall be omitted.
Property 1. Let w be a fixed point in a nondegenerate interval J of A. For
every open interval U properly containing I,, there exists an ¢ > 0 such that
I, is contained in the open interval U for all w & J satisfying | o — wo | < e
Consider any nondegenerate interval I = (a, b) ¢ A. It will now be shown
that U,.r I, is an interval. Suppose to the contrary that there is a point z* such
that 2* £U..; I, and there exist I,, for w ¢ I above and below «*. Property 1 and
the fact_that if w; < we I, contains points less than those in I,, only if I,, C
I, show that the set of w ¢ I for which I, lies above z* is an open interval if
b 21 and a half-open irterval if b ¢ I. Similarly the set of w € I for which I, lies
below z* is an open interval if @ £, and a half-open interval if a & I. But if
‘a, b £1 it is impossible for the interval I = (a, b) to be the union of two disjoint
nonempty open intervals. Similar contradictions hold when a eI, b eI, and
a, b £ I. Therefore U,.r I, is an interval. The next interval in @ to the right of
I will produce an interval in the z-space to the right of U I, or including U ,.r
I,, . Repeating this reasoning we see that the proof of our proposition is complete.
It has thus been shown that the likelihood ratio test is a monotone test and
hence admissible by virtue of Theorem 6.
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Part III. Minimax Strategies for Nature and the Statistician in the General
Two-action Problem. A brief summary of the results already obtained in [2] for
the one-sided testing problem will first be given for the sake of completeness.
The parameter space @ is an interval (¢, d) of the real line. ¢ may be —x, d
may be + «, and the interval may be open or closed at ¢ or d if either or both
are finite. There is a point wo € (¢, d) such that action 1 is preferred for v < wo
and action 2 is preferred for @ = wo. The two loss functions L;(w) and Ls(w)
are continuous, and Ly(w) = 0 for w < wo; > 0 for v > wo and Ly(w) = 0 for
w = wo; > 0for w < wp. The risk function p is given by

@D o9 = [[ L@@ + L)1 — s@Np(z, ) dule) dF (),

where F is the randomized strategy (a priori distribution) for nature and ¢ is
the randomized strategy for the statistician. p is assumed to be strictly Pélya
Type 2. The following two conditions were required:

Condition 1. If Q is open at d and a is in the interior of the convex hull of the
spectrum of p, then as w — d

L) [ P, o) du@) 0.

Condition 2. If @ is open at ¢ and b is in the interior of the convex hull of the
spectrum of u, then as w — ¢

Lie) [ P, o) duta) 0.

Under the above assumptions it was shown in [2] that the game G = ({F},
{#}, p) has a value and both nature and the statisticidn have minimax strategies.
Moreover the statistician has a monotone minimax strategy and nature has a
minimax strategy which concentrates at just two points.

Sec. 1. Minimax theorem in the case when Q is closed. Our first objective is
to present the basic minimax theorem for the general two-action problem in the
case where the parameter space @ is closed. We deal with the situation where
there exists n + 1 distinct intervals arranged in order in which actions 1 and 2
are successively preferred. When n = 1 then our general preference pattern
reduces principally to the classical one-sided test of hypothesis. For n = 2, we
are treating the classical two-sided testing problem. We assume throughout
that L;(w) and Ly(w) are both continuous. The fundamental preliminary mini-
max theorem becomes:

‘TueorEM 7. If the parameter space Q is closed, then the game defined by the risk
function p(F, ¢) is determined (has a value) and the statistician possesses a mono-
tone mintmax strategy while nature has a minimaz strategy involving at most n + 1
points of increase, i.e. the nature’s minimax distribution concenirales at most al
n + 1 points. n + 1 s the total number of disconnected preference regions of both
actions.

ProoF. As Q is closed we know that the space of distributions F over @ is



302 SAMUEL KARLIN

compact in the weak* topology with respect to the continuous functions on Q.
This is essentially the Helly selection theorem. Also, the space of strategies ¢
in the two-action problem is also compact in the weak* topology over the inte-
grable functions on X. Obviously, p(F, ) is linear and continuous with respect
to the appropriate weak* topologies and thus optimal strategies F* and ¢’ exist
and the game p(F, ¢) has a value (see [6]).

As the class of all monotone strategies constitute a complete class [1], there
exists a monotone strategy ¢* which improves uniformly on ¢’ in terms of risk
and hence ¢* is minimax. Let

= {w| p(w, *) = max. p(w, ¢*) = v},

where v is the value of the game. We must distinguish between n odd or even.
The analysis will be made for n odd and the details for n even are left for the
reader to supply. Suppose for definiteness that the monotonic strategy ¢* has
the form

1 20 <z < o2
*(x) = i=1---,m,
0 2 <z < T2i41

with 2; = — © and @ym41 = + © and where the z; are distinct. In other words
there are 2m disconnected intervals where different preferences of actions 1 and
2 are desired. Of course, m is limited such that 2m < n + 1 (see Theorem 6).

We now assert that T meets at least 2m alternate intervals where actions 1
and 2 are successively preferred. Suppose the contrary: let us consider

(42) [ o, ) — L)) dF'(a).

As F°(w) must concentrate its full measure in 7 and the only sign changes of
Ly(w) — Ly(w) occur as we pass from one preference region to another, we infer
that [Li(w) — La(w)] dF®(w) changes sign less than 2m — 1 times. Thus, (4.2)
by Theorem 3 must change signs fewer than 2m — 1 times. However, ¢* is Bayes
against F° and must therefore take the values +1 or 0 according as (4.2) is
negative or positive. Thus ¢* cannot have the form as indicated. This contra-
dietion implies the assertion made above about 7.

Select 2m points T* in T each belonging to a different preference region such
that Ly(w) — Li(w) traversing these points changes sign 2m — 1 times. By
Theorem 5 of [1] there exists a distribution F* which fully concentrates on' T*
" against which ¢* is Bayes. We now show that F* is minimax. As F* concentrates
in T* C T, we get v = p(F*, ¢*). Using the Baysian nature of ¢* for F*, we
obtain

v = p(F* ¢*) < o(F*, ¢), for all strategies ¢.

The proof of the theorem is thus complete.
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Sec. 2. Two-sided minimax theorem. Our next task is to eliminate the re-
striction that @ is closed. For this purpose we need to impose some further
conditions on the family of densities p(z, w). To expedite and clarify the reason-
ing, we restrict ourselves to the two-sided problem. Similar analysis would
apply to the general two-action problem.

Reviewing the basic assumptions, we have that the parameter space € is an
interval (¢, d) of the real line. ¢ may be — «, d may be + «, and the interval
may be open or closed at ¢ or d if either or both are finite.. There exist two points
w1, ws € (¢, d) such that action 1 is preferred for w < wy and w = w. and action 2
is preferred for w; £ @ = w; . The two loss functions L; and L, are continuous,
and Ly(w) = 0forw < w1, w = wz; > 0for wy < w < wg, and Ly(w) = Oforw =
® = wy ;> 0forw < w, w > we. There is no loss of generality in taking the loss
function equal to zero where the action is preferred as differences of the loss
functions are the only relevant quantities involved. The risk function is again
given by (3.1). This time p is assumed to be strictly Pélya Type 3.

The assertion that will be proven under certain hypothesis of smoothness is
that the game G = ({F}, {¢}, p) has a value and both players have minimax
strategies. The statistician has a monotone minimax strategy, and nature has
a minimax strategy which concentrates on at most 3 points. To establish this
assertion we impose three conditions:

Condition A. If Q is open at d and ¢ is interior to the convex hull of the spec-
trum of u, then as w — d

L) [ Plo, o) duta) 0.

Condition B. If Q is open at ¢ and b is interior to the convex hull of the spec-
trum of u, then as w — ¢

Lu(w) f P(z, w) du(z) — 0.

These conditions require that if either endpoint is open then as « tends to
this endpoint the mass of probability shifts away from the opposite end of the
axis in such a way that the probability at the opposite end of the axis must
tend. to zero at s faster rate than the loss L blows up. These conditions are
similar to those imposed in the one-sided problem.

Condition C. Let l(c) = limy.. Ly(w) and I(d) = lim,.q Ls(w) (the existence
of the limits is postulated).

(i) I = min(l(c), Ud)) > maxe, goge, Lr(w)

(ii) If @ is open at ¢, then I(c) > max.<.<p Lo(w) for any closed interval
contained in Q.

(iii) If @ is open at d, then I{(d) > maxX.<.<s L2(w) for any closed interval
contained in Q.

Condition C has essentially the effect of eliminating the possibility that nature
will desire to concentrate at the ends of the:parameter space in choosing an
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optimal strategy. This condition is fulfilled, for instance, when the losses tend
to « at both ends.

Suppose 2 is not a closed interval (the case treated in Theorem 7). Then the
result is not immediate because the space {F} is not compact. In fact it is no
longer true unless for example the three conditions A, B, and C are imposed
on the problem; that is, some conditions are necessary. The method of proof
consists in considering the sequence of games G" = ({F"}, {¢}, p) where Q" =
[wn , @n] and wn — ¢, wh — d. That is, we consider a sequence of games defined
over closed intervals contained in @ which in the limit approach @. If one end
of Q is closed, say d, then vy, = d for all n. Each game G" has a value, and for
each game G" the statistician has a monotone minimax strategy ¢" and nature
has a strategy (distribution F” which concentrates at at most three points by
Theorem 7. The problem is to show that subsequences can be selected from
{¢"} and {F"} which converge to strategies yielding the desired properties in
the original game G.

Let », be the value of the game G". The sequence of »,’s is bounded away from
gzero. Indeed, consider the closed interval [w;, wi]. Choose three points o', o’
and »’ such that w1 < o' < wy, 0 < & < wg, and wy < o* < w}. (We assume
of course that w; < w; and w; < &} . The game G™ has no meaning otherwise.)
Let F' be the strategy for nature which plays ', «’, and «® with equal probability.
Clearly p(F’, ) = a > 0 for all ¢ when & = min(Ls(e'), L1(o’), La(«’)). Hence
v = a > 0 for all n.

Let T, = {w:w]wn, wal, p(w, ") = va}. T contains points in both preference
regions; i.e., T, contains w.in the interval (w;, we) and T, also meets at least
one of the intervals (¢, w), (w2 , d). Suppose not. Suppose T, C (w; , ws). F™ must
concentrate at points of T, . Let ¢o(z) = O for all . Then p(F*, ¢o) = 0 which
contradicts the fact that », > 0. An analogous argument using ¢;(z) = 1 elim-
inates the possibility that T', contain no points of (wi, ws).

The monotone minimax strategies ¢" are characterized by two points . , ¥a
(» < ya). In order to show that two subsequences of {¢"} and {F"} can be
selected which converge to minimax strategies in the original game G' we need
the fact that the sets T, are bounded away from the open ends or end of Q.
This is established by showing that the z,’s or y,’s or both are bounded away
frorx ¢’ and &, the ends of the spectrum of u. ¢’ may be — « and d’ may be + «.

Suppose @ is open at ¢; @ can be open or closed at d. We assert that ¢’ cannot
be a limit of the sequence {x,}. Suppose there were a subsequence {z.;} of {z.}
with the limit ¢'.

Case 1. ¢’ is a limit point of the sequence {y.,}.

There exists a subsequence {¢"/} of strategies such that {z.;} and {ya.,} each
have the limit ¢’. For w < w; and

n;
o> p(¢",0) = L) [ ' Pls, ) du(z),  Therefore p(4™, @) —0
Ing

asn; — o for w < wand w > w,. Since », = a > O for all n, this means that
T, is totally contained in the interval (w;, ws), & contradiction.
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Case 2. ¢’ is not a limit point of {ya;}.

It is assumed there exists a y.. such that y., = y.- for all n;.

LemMA A. Under the conditions that x., — ¢’ there exists a limit point of {va;} =
l(c).

Proor. By condition B given n > 0 there exists M(n) such that (X% P(z, w)
du(z) = (1 — 9) for w < M(n). Given ¢ > 0 there exists w. < M(n) such that
La(we) > U(c) — € (orif I(c) = o« for arbitrarily large K there exists wx < M (1)
such that Ly(wg) > K). For w. (or wx) there exists N(w., ¢) such that

Ye Yo
[ P(z, w.) du(z) — f P(z, we) du(z) < €
0 zn‘
for n; =2 N(w., €). Therefore, when l(¢c) < «
Ye
p(6™,0) 2 L) [ P(z,0) du(e) 2 (Ue) = 91 = 7 = &)
Zng

for n; = N(w., €¢). But ¢, 9, ¢ are arbitrary constants so the assertion follows.
When l(c) = « p(¢p™ , wx) = K(1 — n — ¢), and the assertion still holds.
LemMmA B. Under the same conditions as in Lemma A, v, < l(c) — B for all
n; where 8 > 0.
Proor. Let ¢’ be a monotone strategy for which the characterizing points
2’ and ¥’ are interior to the spectrum of u. '

o, 8) = 1) [ [ Pla, o) du@) + [ Pa, ) dute) |

+ Io) [ Pe, ) dula).
Let a = I(¢) — max Li(w). @ > 0 and
1@ [ [ P o) dute) + [Pl o) duta) | 160 - @

If Q is also open at d, then by virtue of conditions A and B for every ¢ > 0 there
exist two constants H(e) and K(e) such that Ly(w) [% P(z, ) du(z) < e for
w < H(e) and w > K(e). For H(e) £ w < K(¢) the second factor in p(w, ¢') is
< l{c) — b for some b > 0 by condition C. Thus p(w, ¢’) < max (I — a, ¢, I — b)
< lforall w, and v,; < max (I — a, ¢, — b) for all n;. If 2is closed at d, by condi-
tion B there exists H(e) such that Li(w) [% P(z, ») du(x) < e for w < H(e).
For H(e¢) £ w = d this factoris < I — b for some b > 0 by condition C. Again
Vo S 1 — Bwheref=1—max (I —a,¢l—b)>0.

But Lemmas A and B are contradictory assertions. Hence the original assump-
tion that ¢’ was a limit point of {z,} is untenable.

An analogous argument shows that if Q is open at d the sequence’ {y,} cannot
have d’ as a limit point.

The required theorem follows almost immediately.

Lemma C. If Q is open at ¢ and d, there exist two constants C, and C, such that
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c<C<C<dand T, C [Cy, Cd] for all n. If Q is open at c(d) and closed al
d(c), there exists a constant Cy(Cy) such that ¢ < Cy(C; < d) and T, C [Cy, d]
(le, C2)) for all n.

Proor. For w near ¢ and d p(w, ¢") = La(w) [o* P(x, w) du(z). By the previous
discussion if @ is open at both ends there exist constants z.» and 3. interior to
the’ spectrum of u such that 2 = z, and y, = zs for all n. p(w, ¢") = La(w)

23, P(z, w) du(x). By conditions A and B'there exist constants Ci(5) and C(n)
such that

17

"
L@ [ P du@) <
for ¢ < w < Cy(n) and Cz(n) < w < d. Choose 7 = /2 where « is the bound of
va(va = a > 0 for all n). Thus T, cannot have points below C; = Ci(a/2) or
above C; = Cy(a/2). A similar argument works when © is open at just one end.

For each game G" = ({F"}, {¢}, p) in which Q is open at both ends there is
a triplet (F", ¢", v,) where F" is the minimax strategy for nature which concen-
trates at three points, ¢” is the monotone minimax strategy for the statistician
characterized by two points, and », is the value of the game. F" concentrates at
exactly three points (and not at at'most three) for it has been shown that ¢"
defines a split selection region for action 1, and by virtue of Theorem 5 and the
fact that ¢" is Bayes against F™ this would be impossible unless #* concentrates
at three points. A subsequence {¢"‘} can be selected which converges to a mono-
tone strategy ¢* for the statistician. ¢* also defines a split-selection region for
action 1 since the z,,’s and y,,’s are bounded away from the ends of the spec-
trum of u. Since the T,’s are contained in a closed interval contained in @, a
subsubsequence {F"/} can be selected which converges to at most a three-point
distribution, F*, for nature. Finally a subsubsequence {v,,} can be chosen which
converges to a value v. p(F, ¢"*) < v, so by the Lebesgue convergence theorem
o(F, ¢*) < v, for every F. Similarly p(F™* , ¢) = v, 80 p(F*, ¢) = v. Thus » is
the value of the game, and F* and ¢* are minimax strategies for nature and the
statistician respectively. F* concentrates at exactly three points since ¢* defines
a split selection region for actien 1.

When Q is closed at one end, analogous arguments prove the existence of
minimax strategies ¢* and F* where F* concentrates at at most three points.

Summing up the foregoing results, we have

TuEoREM 8. If conditions A, B, and C are satisfied and no other restriction on
the parameter space Q is made, then the game with payoff kernel p(F, ¢) has a value,
where optimal strategies exist with the same properties as is given in Theorem 7.

Sec. 3. Computation of minimax strategies. The previous discussion has been
an existence discussion, and no mention was made of how the statistician’s
monotone minimax strategy can be found or constructed. The remainder of this
section is devoted to giving two general methods for constructing the minimax
strategy-—one for the one-sided problem and one for the two-sided problem.
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In the one-sided problem

Ly(w) j: :) P(z, w) du(z), 0 = wo

plw, ¢) = N
Li(w) ‘/; . P(z, w) du(z), w < wo

where x, is the point characterizing the monotone strategy ¢. As zo decreases
Ly(w) 2% P(z, ) du(z) decreases for each w = wo and Ly(w) [, P(z, w) du(x)
increases for each w =< wy. The method is now obvious. Choose an arbitrary
Xo . If

o zo
max P(z, w) du(r) < max [ P(z, w) du(x),
wSwy Yo W= wo 0
decrease o until the maximums are equal. If the reverse is true, increase z .
That ze which implies equal maximums above and below wy defines the monotone
minimax strategy. There is no danger of the maximums not existing since by
conditions 1 and 2, p(w, ¢) > 0asw —c, d.
In the two-sided problem

Ln(w) [ [P tu@) + [ Pa e d#(x)] oSS o

plw, ¢) = v
Lz(w)_/; P(z, ») du(z) S w,w = W

where zo, Yo are the points characterizing the monotone strategy ¢. Assume Q
is open at both ends. Choose an arbitrary z, . Determine y, (as a function of o)
so that

vo ve
max Ly(w) P(z, ») du(r) = max Ly(w) f P(z, w) du(x).
wSw) z9 wos zo

This cannot be done for all zy. As w — d, Ly(w) [2, P(x, @) du(z) — I(d) and
I(d) > max.<w<b Ls(w) for any closed interval [a, b] € © so that for yo sufficiently
large max., <o > IMax, <., - Both maximums equal 0 for yo = o S0 unless max,, <»
2 maXu<e, , for all yo > x,o there will be equality at some point. méx,, <. >
max, <e, for all yo > zo when xo is chosen too close to d’. In this case decrease o
until it is possible to determine y, so that the maximums are equal. There will
be some point z,, such that for all z, < z,, a yo can be found. Now vary z, in the
appropriate direction until the outer maximums are equal to

wlglfng [ [ :o P(z, w) du(z) + L :zo) P(z, w) du(x):l .

The xo and corresponding ¥, which give three equal maximums determine the
monotone minimax strategy for the statistician.
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A further useful fact is that the monotone minimax strategy for the statistician
is unique. This can be demonstrated with the aid of Lemma 4.
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