NON-PARAMETRIC EMPIRICAL BAYES PROCEDURES!
By M. V. Jonns, Jr.

Columbia University

1. Introduction and summary. In the usual formulation of problems in statis-
tical decision theory the probability distribution of the observations is assumed
to be a’member of some specified class of distribution functions. No a priori
information is ordinarily assumed to exist concerning which member of this
class is the true distribution of the observations although a priori probability
measures defined over this class may be introduced as a technical device for
generating complete classes of decision functions, minimax decision rules, etc.
However, in some experimental situations it may_be reasonable to suppose
that such an a priori probability measure actually exists in the sense that the
distributions of observations occurring in different experiments made under
similar circumstances may be thought of as having been selected from a speci-
fied class of distribution functions according to some probability law.

Such an assumption seems particularly apt in the case where measurements
are made on an individual selected according to some probability law (e.g.,
“at random”) from a population and where it is desired to make inferences
about some characteristic of the individual on the basis of these measurements.
If the class of probability distributions of the measurements for all individuals
in the population and the law of selection are known, an optimum Bayes de-
cision procedure can then be found. In general, however, such information will
not be available to the experimenter, but there may be observations available
on individuals previously selected in the same way from the same population
and, under certain circumstances, these prior observations may be used to ob-
tain approximations to the optimum Bayes decision procedure. The possibility
of using prior observations to approximate Bayes procedures was first estab-
lished for certain estimation problems in [1] by H. Robbins who coined the term
“empirical Bayes procedures” to describe such approximations.

Robbins in [1] discusses the estimation, using a squared error loss function,
of the value A of a random variable A associated with a discrete valued obser-
vation X whose conditional probability function, given A, is p(z | A), where
p(x | A\) is known for each A but where the (a priori) distribution of A is un-
known. For several specific parametric families of discrete probability functions
p(z | N) Robbins shows that if prior independent observations X;, X,, - --,
X., each having the same unconditional distribution as X are available, then
an empirical Bayes estimator using X;, Xz, -+, X, can be found which con-
verges with probability 1 to the Bayes estimator as n increases, for any a priori
distribution of A.
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In Sec. 2 below a similar estimation problem is considered for the “non-
parametric’ case where the class of (conditional) probability distributions of X
is not restricted to a particular parametric family, but is instead the class of
all probability functions assigning probability 1 to some specified denumer-
able set of numbers. The quantity to be estimated is the value of a functional
defined on this class of probability functions and it is assumed that there exists
an unknown a priori probability measure defined on a suitable s-algebra of
subsets of this class. For this case it is shown that under certain circumstances
prior observations may be used to construct empirical Bayes estimators having
the property that, as the number of prior observations increases, the risks of
the empirical Bayes estimators converge to the risk of the Bayes estimator for
any a priori probability measure provided that certain moments exist. The
rate of convergence of these risks is also investigated for two special cases.

In Sec. 3 the techniques of Sec. 2 are modified to apply to the case where
the class of (conditional) distributions of X is the class of all absolutely con-
tinuous distribution functions, and similar results are obtained.

In Sec. 4 the results of the previous sections are used to obtain empirical
Bayes solutions for certain two-decision problems of the hypothesis-testing
type.

Throughout this paper certain elementary properties of conditional expec-
tations are used which are immediate consequences of results contained, for
example, in Chapter VII of [2].

2. Estimation: the discrete case. For a specified denumerable set of numbers
x = {2z} let F = {F(z|w):weQ} be the class of all c.d.f.’s assigning prob-
ability 1 to x, where @ = {w} is an abstract indexing set. Let u be an a priori
probability measure defined on a s-algebra @ of subsets of @, and let ¥ be the
Q-valued random variable which is the identity mapping of @ onto itself. We
may then define the random variables X;, X,, -+, X, so that they are con-
ditionally independently and identically distributed with the common ec.d.f.
F(z | w) given that ¥ = w. Finally, for a given measurable function h(z) we de-
fine the random variable A by

2.1) A= AY) = ERX)|Y),

where X is a generic representative of the X,’s. We assume that the a priori
probability measure space (Q, @, u) is such that

(2.2) ER(X) < w.

Here A may be thought of as a functional defined on F or, equivalently, as a
function defined on Q. We might, for example, define h(x) = z so that the value
of A(w) is the expected value of X given that the c.d.f. of X is F(x | ). Another
possibility would be to let h(x) = 1 if x < ¢, and h(z) = 0 otherwise, so that
A(w) = F(c| w).
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Suppose that we wish to use the vector of observations
X = (X13X2, :Xf)

to obtain an estimate of the value A assumed by A, where the loss incurred
when ¢ is the estimated value is

(2.3) L(t, ) = (¢ — N

Then the risk involved in using any estimator o(z) is

(2.4) R(p) = EL(p(X), A) = Elp(X) — AF.
Now from (2.1) amd (2.2) we have

(2.5) EN’ = E{E*(M(X) | Y)} < ER¥(X) < =,
so that R(p) may be written

R(p)
2.6
29 = E{l¢'(X) — 22(X)E(A | X) + E*(A| X)] + E(A’ | X) — E*(A | X)}

The expression in square brackets is a perfect square and hence is non-negative
and equals zero if and only if ¢(X) = E(A | X). Thus the Bayes estimator
«4(z) which minimizes R(y) is given by

@7) eue) = E(A|X = )

forall z = (x1, 22, -+, xr) ex* = {z:Prob (X = z) > 0}. The risk of the
Bayes estimator is then

(2.8) R(ps) = EA’ — Epy(X) < =.

To obtain the Bayes estimator ¢, we must, of course, know the a priori prob-
ability structure of the problem. Suppose now that this structure is unknown
but that collateral information is available, the form of which is determined
as follows:

Let Y1, Y,, .-+, Y, be mutually independent Q-valued random variables
each of which is independent of ¥ and has the same distribution as Y. Then
let the additional information be in the form of vectors of observations X; =
Xa, Xa, -+, Xirp), t = 1, 2, .-+, n where the X,’s are mutually inde-
pendent and independent of X and where for each 7 the X;;’s are conditionally
independent and identically distributed according to F(zx | ;) given that ¥, =
w; . Here although the X/s are independent of X and A, they nevertheless
contain useful information since they possess the same a priori probability
structure as X. Thus, if we let X{° = (Xa, Xa, -+, X&) then X{” and

E(MX 1) | Y3)
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have the same joint distribution as X and A so that

B(Xirn) | XT = 2) = B{EM(Xir) | ¥i, XD) | XD = o)
E{E(h(Xip31) | V) | X? = 2}
= E(A|X = 1) = i),

(2.9)

for z ¢ x*. This suggests the following empirical Bayes estimation procedure:

Let 2y, ¢ = 1, 2, -+ -, m(z) represent the m(z) distinct vectors obtained
by permuting the components z;, 22, - - -, z, of z. Clearly for each z we have
1 £ m(z) £ rl. Now we define the random functions M.(z), 7 = 1,2, --- , n,
and M,(z) by

1, if there exists a ¢, 1 < ¢ < m(z),
(2.10) M) = such that X{” = z(p,
0, otherwise,

and

(2.11) M.(2) = Z M(z).

1=1

Then we define an empirical Bayes estimator ¢,(z) by

1 al B
_ (@)X pp1), M, (x 0,
(2.12) ¢@w=m@§M@<w> (2) >

0, otherwise.

In order to show that the risk involved in using ¢, approaches the risk for the
Bayes estimator ¢, as n becomes large we first prove two lemmas. For n =
1,2, -+, let

(2.13) P.(z) = Prob {M, > 0},
L i@ >0
(2.14) Valz) = { Ma(2)
0, otherwise,
(2.15) () = EVa(2),
and for z € x¥, '
(2.16) 8(z) = B(W(Xis) | XD = 2).
Lemma 1. For any fized € x*,
(2.17) Eeu(z) = ou(@)Pa(2),
and

(2.18) Eo(z) = [0(z) — 0u(@)]ia(z) + €i(@)Pu(2).
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Proof. For notational simplicity we let H; = h(X, ;) and suppress the fixed
argument z (e x*) in all functions defined above. Then letting

U, = (M17M27 e 7M")
and noting that for each ¢ the joint distribution of the X,’s is invariant under
permutations we have

(2.19) EM:H;|U,) = EQM:H;| M) = Mip,,
by (2.9), and
(2.20) E(MH?| U,) = E(M:H: | M) = M.

Also for 7 5 g,
EMMHH, U = E{MHEM/H,|H;, M;, M) | M;, M,}
(2.21) = E{M.HEMH,|M,) | M;, M,}
= E(M:H:| M)E(MH,| M,) = MM, .

Hence

222)  He, = {5_}— > BOLH: | U

i, >O}P = ¢,P.,

and
B = E{]V}z > B} | U | i > o}
(2.23) +E 2ZZE’(MMHH | Un) | M, >0}P,,,
n  1#g
=oE{_i i, > 0\ P, + B { =33 M, }Pn.

Mn j n 15q
Now since
(2.24) _2ZZMM =1- _i,

M5 i M,
and
[1

(2.25) £, = EV, = E'h7 M, > 0} P,,
we have
(2.26) Eon = 0k + ¢uPy — £,

and the proof of the lemma is complete.
LemMmaA 2. For any z ¢ x¥,

2.27) lim Po(z) = 1,

n->0
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and

(2.28) lim £,(z) = 0.
Proof. Let

(2.29) p(z) = Prob {Mi(z) = 1}.

Then z ¢ x* implies p(z) > 0. Now for any fixed z, M,(z) is a binomial variable
with parameters » and p(z). Hence for sufficiently large n, M,(z) will be arbi-
trarily large with probability arbitrarily close to 1 for any z £ x*. This implies
that for z & x*,

(2.30) lim P,(z) = lim Prob {M,(z) > 0} = 1,

and

(2.31) Valz) — 0, in probability,

ags n — . Now (2.31), together with the fact that 0 = V,.(z) = 1, implies
(2.32) lim £,(z) = lim EV,(z) = 0,

for z £ x*, which completes the proof of the lemma.

We now prove the following theorem:

TueoreM 1. If the a priori probability measure space (R, @, u) is such that
(2.2) 1is satisfied, then

(2.33) lim R(pn) = E(pw)-

n-»0

Proof. We first observe that
(2.34)  R(en) = Elen(X) — A" = Epn(X) — 2E[Aen(X)] + EX,

provided that all of the terms on the right are finite. Now since X and A are
independent of X;, X2, -+, X, we have

(2.35) E(en(X) | X = 2) = Eon(2),
and

E(Apn(X) | X = 7) = E{AE(en(X) | A, X) | X = 2}
E{AE(en(X) | X) | X =12}
ou(@)Epn(2),

for all z e x*. Hence by (2.17) and (2.18) of Lemma 1 together with (2.34),
(2.35) and (2.36) we have

(2.37) R(en) = EA® + E[0(X)n(X)] — Elpou(X)(Pa(X) + £(X))).
Now by (2.27) and (2.28) of Lemma 2, for all ¢ ¢ x*,

(2.36)
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(2.38) }1:2 0(z)én(z) = 0,

and

(2.39) Lim 2u@)(Pa(@) + £@)) = @)
Also since 0 = £,(z) = 1and 0 = P.(z) =< 1, we have
(2.40) |6(2)Ea(2)] = 6(2),

and

(2.41) lek(@) (Pa(@) + £@)] < 26100,
and furthermore since (2.2) is satisfied,

(2.42) E6(X) = EF¥(X) < o,

and

(2.43) Eoi(X) < .

Hence by the Lebesgue Dominated Convergence Theorem we may assert
(2.44) lim R(en) = EA® — Eop(X) = R(ey),

n-»>0

which is the desired result.

This result is “non-parametric’” in the sense that we have assumed that the
unknown a priori probability measure is defined over the class & of all ¢.d.f.’s
assigning probability 1 to the set x. If we are willing to assume that some specific
parametric subclass of & is assigned a priors probability 1 then we may be able
to find empirical Bayes estimators such as those discussed by Robbins in [1]
which (presumably) are more efficient than (2.12) for such cases.

It seems likely that the empirical Bayes estimator ¢, given by (2.12) is rela-
tively inefficient when 7 is small or r is large relative to n, since, in this case,
M ,(X) is small with high probability so that relatively few of the X’s contribute
useful information to ¢, . This difficulty may be offset to some extent by replacing
¢n by an estimate of A based on the value of X when M,(X) is small. Thus, for
example, we may define a modified empirical Bayes estimator o' for fixed ¢ = 0
by

‘Pn(@);‘ Mn(@) > ¢,

245 D) ={1& _
249 O S e, 1w s

It is not difficult to verify that ¢S’ has the same asymptotic properties as ¢,
and that for small n, R(p\”) tends to be smaller than R(e,) except when the dis-
tribution of A is concentrated near zero.

If the vectors of prior observations X; are of the form X; = (Xu, Xu, -,
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Xirtr;) where k; = 1,7 = 1,2, -+ | n, we may make use of the additional in-
formation available when k; > 1 by substituting M,(z)(wi/k:) D rirys h(X:.;)
for M(z)h(X; r1) and )iy wM (z) for M.(z) in (2.11), where wy, wy, -+ , W,
are positive numerical weights depending on the &’s. It can be shown by argu-
ments similar to those of Theorem 1 that whenever the w,’s are uniformly
bounded above and below by positive constants then the risk of the resulting
estimator approaches R(p,) as n becomes large. However, in general when the
ks are not all the same the optimum choice of w; , w,, - - - , w, depends on the
unknown a priori probability structure and hence cannot be determined.

In practice it may happen that the numbers of components in the X,’s and in
X are all the same (= r + 1, say) so that in order to use the estimator ¢, given
by (2.12) we must discard one of the components of X. This seems undesirable
and suggests the use of the modified empirical Bayes estimator

1 r+1 G
2.46 on(T) = —— (2
(2.46) @n(z) r+1j=2;¢(x )y
wherezc(j)-:(xl,xz,-”,xj_l,:v,~+1,~~-,xr+1),j=1,2,---,r-l—land

@x 1s given by (2.12). To evaluate the performance of @,(z) we compare its risk
with that of ¢,(z™) which uses only r components of X, as follows: For all n,

R(¢,) = EA’ + E3%(X) — 2E[A#.(X)]

- BN+ T—Jrl—l Bl (X™)

(247) + [a(XD)en(XP)] — 2E[Ap(X™)]

r
r+1E

- 1l r y _ @472
= R(en) §r+1E[¢n(X ) — en(X)]

= R((Pn) )

with equality holding only in the degenerate case where X = X® with prob-
ability 1. By arguments similar to those of Theorem 1 it may be shown that
(2.48) lim B(.) = RB(&.) = R(pw),
where R(@,) is the risk of the estimator

41

. 1 &) %)
(249) ou) = g 2 BAI X7 = o),
and R(g,) is the risk of the ordinary Bayes estimator ¢,(z"”) = E(A | X® =
) based on only r of the r + 1 components of X. The inequality in (2.48)
will again be strict except in degenerate cases.
It would be interesting to compute the value of R(e,) for various values of n
for some specific a priori probability distribution in order to obtain some idea
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of the rate at which R(g,) converges to R(p,). Unfortunately, such computations
are extremely lengthy even in the simplest non-trivial cases. However, reasonably
good upper and lower bounds for R(¢,) may be computed without much diffi-
culty by using simple bounds for £.(z) obtained as follows:

n

(2.50) £(2) = BVa() = 2 1 b(s; 1, p(z)

where b(s; n, p(z)) is the probability of s successes occurring in n independent
trials where the probability of success at each trial is p(z) = Prob {M.(z) = 1}.
Also

n

; ¥ lb(s n,p (x)) m'—) Eb(s + L;n—+1, p(x))

(2.51) .

1 n
CESN ) {1 -1+ np@I1 — p@]"},
for z ¢ x*. Hence, letting
1

2.52 ba(z) = —F——— {1 = [1 + np@][1 — p@)]I"},
(2.52) ( T 0@ { p(2)] p(@1"}
and noting that 1/(s + 1) < 1/s £ 2/(s+ 1) < 1 for all s = 1, we have
(2.53) ba(2) < £a(z) = 2ba(z) =
for z ¢ x*.

Suppose now that we wish to estimate the expected value of a non-negative
integer-valued random variable X (i.e., we set h(z) = zand x = {0, 1,2, ---}),
and suppose that r = 1 sothat X = X and X; = (Xa, Xe)t=1,2,---, n.

For this problem we may compute the upper bounds based on (2.53) for the risks
of the estimators ¢, and ¢\’ given respectively by (2.12) and (2.45) with¢ = 0,
for the particular a priori probability measure u which assigns probability 1 to
the family of Poisson c.d.f.’s

(2.54) Fz|\) = Z Lo 220 a>o0,
and which induces the I'-distribution

N
— ﬁ —au

(2.55) GO\ = /0 5 du; a8 >0,

as the c.d.f. of A. In Table I below we compare the upper and lower bounds for
R(p») and R(py’) with the risk R(p,) of the Bayes estimator ¢, and with the
risk R(x) of the classical estimator x. These quantities are computed for six
values of n, for « = 2 and 8 = 10 (i.e.,, EA = 5 and VarA = 2.5). In Table II
we compare the same quantities for the case where u assigns a priori probability
1 to the particular member of the family of c¢.d.f.’s (2.54) for which A = Ao = 5
(i.e., A = )¢ with probability 1).
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TasLE I
Rign) ReD)
n Rlpu) R(%)
Lower Bound | Upper Bound | Lower Bound | Upper Bound
15 10.70 12.51 5.21 7.02 1.67 5.00
30 6.74 8.32 4.43 6.01 1.67 5.00
60 4.46 5.54 3.50 4.58 1.67 5.00
120 3.20 3.87 2.79 3.46 1.67 5.00
240 2.50 2.89 2.32 2.72 1.67 5.00
480 2.12 2.34 2.05 2.27 1.67 5.00
TaBLe II
Rlpn) R
n Rlpw) R(=)
Lower Bound | Upper Bound | Lower Bound | Upper Bound
15 6.06 7.44 3.68 5.06 0 5.00
30 2.94 4.04 2.57 3.66 0 5.00
60 1.46 2.17 1.57 2.28 0 5.00
120 0.74 1.16 0.91 1.32 0 5.00
240 0.38 0.61 0.51 0.74 0 5.00
480 0.19 0.32 0.27 0.40 0 5.00

3. Estimation: the continuous case. In this section we extend the methods
of Sec. 2 to cover the case where the observed X’s possess absolutely continu-
ous distribution functions. As before these results will be “non-parametric” in
the sense that the unknown a priori probability measure is assumed to be de-
fined over the class of all absolutely continuous c.d.f.’s subject only to some
conditions on the existence of moments.

LetF = {F(z | w):w £ 2} be the collection of all absolutely continuous c.d.f.’s
where @ = {w} is an abstract indexing set, and let (2, @, x) be an a priori prob-
ability measure space where @ is a o-algebra of subsets of Q. Then there exists a
function f(u | ») defined on (reals) X € such that

3.1) Felo) = [ w f(u) ) du,

for each w £ Q. We assume that (Q, @) is such that the function f(u | ») is a
measurable function on the product space (reals) X Q.

Let Y = Y(w) be the Q-valued random variable which is the identity mapping
of & onto itself. Let the (real) random variables X3, X, , - -+, X, be conditionally
independent and identically distributed according to F(x | ») given that ¥ = w,
and let X = (X;, X;, .-+, X,). Then the unconditional joint c.d.f. of X,
Xz, -+, X, will be

F(xl)"')xf) = F(Z’) = L;I-IF(x]lw)d“
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32) = [T [ st ) dus d
= [_: P [:f(ul’ "'7“1') dul cee dur’
where
(3.3) f@, -, m) =f@) = ff[f(xilw) dp.
Q joml

Thus f(z) is the joint unconditional probability density function of Xy, ---, X, .
Now for a given measurable function h(z) we define the random variable A by

(3.4) A= AY) =ENX)|Y),
where X is a generic representative of the X;’s. As in Sec. 2 we assume that
(3.5) ER(X) < =,

which implies FA® < « and hence the existence of all conditional expectations
with which we will be concerned. Now if we wish to estimate the value of A
using X where the risk is the expected squared error, then, as before, the essen-
tially unique Bayes estimator is

(3.6) @) =EQA|X = 2).

(In this section when conditional expectations are regarded as functions of the
values of random variables it will be understood that we mean the essentially
unique Borel measurable version which is set equal to zero whenever arbitrariness
is possible on sets of positive Lebesgue measure.)

As in Sec. 2 we introduce random variables Y, ---, Y, independent of each
other and of ¥ such that each has the same distribution as ¥. We also introduce
the random vectors of prior observations X; = (Xu, -+, Xipn), 2 = 1, 2,

-, m, where the X,’s are independent of each other and of X and where for
each ¢ the X;;’s are conditionally independent and identically distributed accord-
ing to F(z | w;) given that ¥; = ;. As before we let X{” = (X, , Xu, -+, Xa),
t=1,2 -+, n, and we note that for each ¢

3.7) EhWXir) | X" =12) = EA| X = 2) = ¥u(2).

In order to make use of the results of Sec. 2 we must discretize the X’s in some
way. To this end we consider the double sequence of half-open intervals

(3.8) [t("’:l:tc Q_—I——l)c)’ t=0,£1,+2--; n=12---,
/

ni-dir ’ nl—blr

where ¢ > 0 and 0 < § < 1. For each n we partition r-dimensional euclidean
space into a countable sequence of non-overlapping hypercubes C§™, j = 1, 2,
«++, of the form

(3.9) " =I7) XIG) X oo X I, j=1,2 -,
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where the ¢;;’s are suitably chosen integers. Then for each n and each r-compo-
nent numerical vector z = (21, 22, - -+ , z,) we let C"(z) be the unique member
of the sequence (3.9) containing z. As before, we designate by 2z, ¢ = 1, 2,

-+, m(z), m(z) = 1, the distinct vectors obtained by permuting the compo-
nents of z. Then proceeding by analogy with Sec. 2 we define the random func-
tions

1, if there exists a ¢, 1 < ¢ = m(z),
(3.10) M) = such that X{” & C*”(z(p),
0, otherwise,

fort =1,2,---,mn,and

(3.11) ") = Z M (2),

7=1 .
and finally we define the empirical Bayes estimator ¢,(z) by

)
(12 ) = {

(0, otherwise.

1 e .
m Zl MP (@)X ), M™(z) > 0,

Before we can show that lim,,. R(¥s) = R(¥,) we must prove three prelimi-
nary lemmas.

We first let
(3.13) @) = B((X1,rp1) | M{"(2) = 1), n=12---,
and
(3.14) 0P @) = BW' (X1ep) | MiP@) = 1), n=1,2---.

For each 7, ¢'(z) and 6 (z) are analogous respectively to ¢,(z) and 6(z) of
Sec. 2. We now prove the following lemma:
LeMMma 3. For almost all x such that f(z) > 0,

(3.15) lim () = E(Q(X1rn) | X7 = 2) = (@),
and
(3.16) lim 6 (z) = E(R*(Xar) | X170 = 2).

Proof. Let the joint density function for the » + 1 components of X; (for any
fixed 7) be written as

r+1

(3.17) @, Tep1) = f(@1, Tay' v+, Trpr) = fﬂgf(lew) du.

Then since f(z, z,41) = f(Zw , Tra), ¢ = 1, 2, -+, m(z), we have for almost
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all z
f /w L(v)f(% v) dv du
cn)(z) J— (2
‘/;'(")(g_:) f(.u) dy

(3.18) e™(z) =

’

provided the denominator is not zero. (If the denominator is zero, we conven-
tionally set ™ (z) = 0). Now for each z, C™@),n =12 - isa sequence
of hypercubes converging regularly to the point z. Hence for almost all 2

(3.19)  lim 10(")(33)) fcmm /_ : h()f(u, v) dv du = f_ : h()f(z, v) dv,

now Yolume (

by a well-known theorem on the differentiation of multiple Lebesgue integrals.
A similar limit holds for the denominator of (3.18) so that

[ ne)sa, o) av
(3.20) 3‘1_{2 o™ (@) = WW‘-"
= E(h(Xl,r+l) I Xir) = g}) = ‘PM(Z?);
for almost all ¢ such that f(z) > 0. Similarly

[ f ) K (0)f(w, v) dv du
c(n) (z) v—w
f f(w) du
c(n)(z)

lim 6™ (z) = lim

n->c0 n->00

(3.21) ©
[ #re v a
- J@)
= E(h2(X1,r+]) IXY) = z),

for almost all z such that f(z) > 0, so that (3.15) and (3.16) are verified.
Forn =1,2, ---,let

_‘(nl)_’ M™(z) > 0,
(3.22) V() = iM ()

0, ° otherwise,
(3.23) £7(@) = BV (2),
and
(3.24) P™(z) = Prob {M™(z) > 0}.

For each n, V" (z), £{™(z), and P'™(g) are analogous respectively to V,(z),
£.(z), and P,(z) of Sec. 2.
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Lemma 4. For almost all x such that f(z) > 0

(3.25) lim £"(g) = 0,
and
(3.26) lim P (z) = 1.

Proof. Let
(327) P@ = [ i) du.

c(n)(z)

We have remarked that for almost all z
(3.28) lim 1 F) dy = f@).

n->o Volume (C(")(Q)) c(n)(z)
By (3.8) and (3.9) we have

r

n c
(3.29) Volume (C™(z)) = g
so that whenever f(z) > 0 we may write

(3.30) P = 5@ + @),

where lim,.«» €,(z) = O for almost all z.
Referring to the upper bound (2.53) obtained for £.(z) in Sec. 2 and noting
that m(z)p™ (z) plays the same role as p(z) and that m(z) = 1, we see that

2 2
np™(@)  nief@)(1 + ea(2))’

for all z such that f(z) > 0. Hence
(3.32) lim £ (z) = 0,

n—->0

for almost all z such that f(z) > 0 and (3.25) is verified. Now
(3.33) P™(g) = Prob {M™(z) > 0} 2 1 — [1 — p™(@)]",

u

(3.31) £ () <

and sinceforallu £ 1,¢“ = 1 — u = 0, we may write

(3.34:) P(")(@) g 1 — e—up(")(g).
Hence for almost all z such that f(z) > 0,
(3.35) lim inf P™(g) = 1 — lim ¢ ™/ @ta® _ |

which implies (3.26).
We now prove a simple convergence lemma.
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LemuMa 5. If (S, ®, v) is a measure space, {f.} and {g.} are sequences of non-
negative integrable functions, f is an integrable function and g is a function such that

(i) limf, = f,ae; limg, = g, ae.;

(3.36) (i) gn < fa, all m;
i) limsup [ fudv < [ favs

then g is integrable and

IIA

(337) tim [ gadv = [ ga.
Proof. By (i), (ii) and Fatou’s Lemma, g is integrable,

(3.38) tim inf [ gndv 2 [ 0 v,

and (noting (iii)),

(3.39) tim [ fadv = [ fav.

Furthermore,

tim sup [ (fu = g.) dv < lim sup [ f, dv — lim inf | g, dv

(3.40) n->0 n->0 n->0
=[¢-ow,

and by (i) and (i), limn.w (fa — gx) = f — g and (fa — gs) = 0, so that apply-

ing Fatou’s Lemma again we obtain

(3.41) lim [t =g v = [fav - [aa.

The desired result then follows from (3.39) and (3.41).
TurorzM 3. If the a prior: probability measure space (2, @, u) ¢s such that
(3.5) is satisfied, then

(3.42) }'111: R(y.) = R(‘/’n)
Proof. Since X and A are independent of X;, Xz, -+, X, , we have (as in
Sec. 2)
(3.43) EWn(X) | X = 2) = EYi(z),
and

(3.44) EW(X) | X = 2) = yu(@)Ea(z),
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for almost all . Now applying Lemma 1 of Sec. 2 to ¥.(z) (mutatis mutandis)
we obtain

(3.45) Epa(z) = o (2)P™ (),
and
(3.46) Eya(z) = [0"(@) — ™' @k @) + ™ @)P™(2),

for almost all z. Hence
(347) Ey.(X) = B0 (X)E"(X)] — Ele™ (X)) (X)] + El™"(X)P™ (X))

and

(3.48) E[Ma(X)] = Bpu(X)e™ (X)P™(X)).
Now in terms of the hypercubes Ci”,j = 1,2, - - - , defined by (3.9) we may
write )
© 2
w [ fc(~") f h(v)f(u, v) dv du]
(3.49) BoM(X) = = ,

Jom f(u) du

and

/_: h()f(u, v) dv :
[ f) ] a

[ oo ao|

= ; ‘/c;n) f('l_l) dy';

where it is understood that the ratios appearing in these expressions are to be
replaced by zero whenever their denominators vanish. Furthermore, for each

Byu(X) = f

(3.50)

J we have
0 2
. , | [ w0 ]
@sv | fc;_") [ st oo au| < Jmdw du- [ o Lol ay,
by the Schwartz inequality. Hence
(3.52) EBo™(X) = BYAX), all n,

and since 0 £ P (z) £ 1,

(3.53) Ele™ (X)P™(X)] = BYi(X), all n.
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Now by (3.15) of Lemma 3 and (3.26) of Lemma 4
(3.54) lim ¢ (@) P (2) = ¥u(2),

for 2a,lmost all ¢ such that f(z) > 0. Hence by Lemma 5 (with f, = ¢, =
0™ (z)P'"™(z)) we have

(3.55) lim B[ (X)P™(X)] = EyX(X).

Now -

(3.56) EO”(X) = BK'(Xyr1) = E{E(W(X1,0) | X)),
for all n, and by (3.16) of Lemma 3

(3.57) lim 6 (z) = E(R*(Xy1,4) | X = 2),

n-»00

for almost all z such that f(z) > 0. Also, 0 < £™(z) < 1 and by (3.25) of
Lemma 4

(3.58) lim £ (z) = 0,

n->00

for almost all 2 such that f(z) > 0, so that by Lemma 5 (with f, = 6'”(z) and
gn = 6 (@)t™ (z)) we have

(3.59) lim E[6'”(X)£"(X)] = 0.

n-»00

Similarly, in view of (3.16) of Lemma 3 and (3.52),
(3.60) lim Ble™ (X)¢™(X)] = 0.

n->00

Hence by (3.47), (3.55), (3.59), and (3.60)
(3.61) lim By2(X) = Eg3(X).

n-»00

Now for any fixed n and j the functions ‘™ (z) and P (z) are constant for
all z £ C§™ and we may designate their values by ¢{™ and P{” respectively.
Then by (3.48) we have for each n

EA.(X)] = Eu(X)e™ (X)P™(X)]

= Zl 0Py o v.(@)f(2) dz
= i
J=1

(3.62) = 2 oW P f(,,)f h()f(z, v) dv de
Ci —o0

- ;¢]§n)zp§n> /cj."’f(@) dz
= Ele™"(X)P" (X)),
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so that by (3.55)

(3.63) lim E[Ayn(X)] = E(X).
Now
(3.64) R(Y.) = EA® + EYi(X) — 2E[A¢.(X))],

so that by (3.61) and (3.63) we have

lim R(y,) = EA® + lim Eyi(X) — 2 lim E[Ay.(X)]
(3.65) - n-+>00 n-»0 n-»00
= EA’ — EYX(X) = R@y,),

which was to be proved.

The estimation procedure introduced in this section contains an element of
arbitrariness arising from the fact that the definition of the sequence of intervals
{I{™} involves the two constants ¢ and & whose values must be specified. The
problem of the proper choice of ¢ and § will not, however, be considered further
here.

The remarks made in Sec. 2 concerning various modifications of the estimator
¢n apply as well to the analogous modifications of the estimator ¢, .

4. Hypothesis testing. The empirical Bayes estimation procedures introduced
in the preceding sections may be applied to certain two-decision problems of
the hypothesis-testing type. This is illustrated by the following two examples:

Ezxample 1. (One-sided alternatives): Suppose that we wish to test a hypothe-
sis about the value A of the random variable A associated with the vector of
observations X. In particular, suppose that we wish to test the hypothesis Ho:\ <
a versus the alternative hypothesis Hi:\ = a. Let A, represent the action of
accepting Hy and let A4, represent the action of accepting H; . Then we may
define a loss function L as follows:

max (0, A — a), 1=0,

4.1) L(4:, ) = {

—min (0, A — a), 1= 1.

In the decision theoretic framework this loss function is certainly no less reason-
able than the classical zero-one loss function usually postulated for hypothesis-
testing problems. Now for any decision function 8(z) = Prob {4;| X= z} =
probability of rejecting H, when z is observed, the risk involved in using § is
given by
R(8) = E{8(X)L(4:, A)} + E{[1 — 8(X)IL(4o, A)}
= EL(40, A) — E{8(X)[L(4o, A) — L(4:, M)}
= EL(Ao, A) — E{8(X)[A — al}

= EL(4o, A) — E{s(X)IE(A| X) — al}.

4.2)
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Hence the Bayes decision function 8,(z) minimizing R(8) is

1, EA|X =32)>a,
(4.3) du(z) =
0, otherwise.

Now we have seen in the previous sections that when the a priori probability
measure (and hence the joint distribution of A and X) is unknown we may still
be able, under certain circumstances, to find an empirical Bayes estimator ¢,(z)
based on prior independent observations, such that
(44) lim Elea(z) — E(A| X = g) = 0,

n->0

for all z in some set S which is assigned probability 1 under the distribution of
X. Now (4.4) implies that as n — «,

(4.5) en(@) > E(A| X = z), in probability,

for all z ¢ S, so that if we define the empirical Bayes decision function 8,(z) by
1, en(Z) > a,

(4.6) ou(z) =
0, otherwise,

we will have

4.7 lim E8,(z) = lim Prob {g.(z) > a} = 8.(z),

for all z £ S with the possible exception of values of  for which E(A | X = z) =
a. Hence

lim E{6.(X)A — o] | X = z} = lim [E5,(2)I[E(A | X = z) — a]
(4:.8) n-»0 n->00
=8@[EA]| X =2) — d],

for all ¢ ¢ 8. Also, since 0 = 8,(z) =< 1 for all values of z and n, we have
(4.9) [Esa@)]EA| X =2) —al| = |[E(A|X = 2)| + lal, all z, n.

Hence by (4.8), (4.9) and the Lebesgue Dominated Convergence Theorem we

have '

(4.10) lim R(8,) = R(5,),

whenever the a priori probability measure is such that (4.5) holds and E|A| < .
Example 2. (Two-sided alternatives): Suppose now that we wish to test the

hypothesis Hy:\ ¢ (@ — b, a + b), b > 0, versus the alternative hypothesis

HY:\ £ (@ — b, a + b), where, as before, A is a value of the random variable



668 M. V. JOHNS, JR.

A which is associated with the vector of observations X. Let the loss function
L* be defined by

max (07 [(>\ - a)2 - b2])7 T = 0)

I
—

(4.11) L*(A;,\) = {
—min (0, [A — a)® — b7]), i

where, as before, 4; represents the action of acceﬁging the hypothesis H}, ¢ =
0, 1. The graph of L* is shown in Fig. 1. For any decision function 3(z) = Prob
{A;| X = 2z}, the risk is

R(®) = EL* (4o, A) — E{8(X)[L* (4o, A) — L* (4,1, A)]}
(4.12) = EL* (4, A) — E{8(X)[(A — a)’ — b7}
= EL* (4o, A) — E{§(X)[E(A’ | X) — 2aE(A| X) + o — b]).
Hence the Bayes decision function 6} (z) minimizing R(3) is given by
l, EW|X=2)—-2EWA|X=2 >0 —d,

’

(4.13) &) ={

0, otherwise.

Now if the a priori probability measure is not known we may still be able, under
certain circumstances, to find empirical Bayes estimators ¢4"(z) and ¢ (z)
based on prior independent observations, such that as n — o,

(4.14) e(x) > E(A| X = z), in probability,
and
(4.15) eP(x) > E(A’| X = z),  in probability,

for all z € S where S, as before, is assigned probability 1 under the distribution
of X. Then if we define the empirical Bayes decision function 8%(z) by

. L 02(2) — 200 (z) > 0 — d,
(4.16) on(z) =
0, otherwise,

L(A,\)
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we have (by the same argument as in Example 1),
(4.17) lim R(5%) = R(8}),

for any a priori probability measure such that EA® < « and (4.14) and (4.15)
hold.

The existence of empirical Bayes estimators satisfying (4.14) follows directly
(as in Example 1) from the results of the previous sections. We remark that if
we assume that Eh‘(X) < « in the cases treated in Secs. 2 and 3, then an em-
pirical Bayes estimator satisfying (4.15) can be obtained whenever the number of
components in the vector X; exceeds the number in X by at least 2 for all 4.
To see this we observe that

(4.18) E(h(X1r)h(X1,42) | X1” = 2) = B(A’| X = 2),
so that (in the notation of Sec. 2) if we let

419) o0 = | M 5 = M@K dh(Xod), @) > 0,
. (pn ) =

0, otherwise,
we can show (by arguments paralleling those of Sec. 2) that if Eh*(X) < « then
(4.20) lim EfpP(z) — BE(A* | X = 2)f =0

n->0

for all z £ S, which implies (4.15).

5. General remarks. The methods of this paper clearly may be modified to
apply to compound Bayes decision problems where the component problems
are of one of the types considered above and where the compound risk is the
average of the component risks. Robbins has conjectured in [3] that empirical
Bayes solutions of such compound problems will often lead to asymptotically
subminimax solutions for the corresponding compound decision problems where
no a priori probability measure is assumed to exist. We may surmise therefore
that suitable modifications of the techniques given here are applicable to such
problems.
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