ON THE IDENTIFIABILITY PROBLEM FOR FUNCTIONS!
OF FINITE MARKOV CHAINS

By Davip BrackweLL AND LaMBERT K0OPMANS
Unaversity of California, Berkeley

1. Summary. Let M = | m;; | be a 4 X 4 irreducible aperiodic Markov
matrix such that hy #£ hy, hy 5% hy, where h; = my + mu. Let @, x5, ---
be a stationary Markov process with transition matrix M, and let y, = 0 when

Zn = lor2,y, = 1 when z, = 3 or 4. For any finite sequence s = (e1, €, -,
€,) of 0’s and 1’s, let p(s) = Pri{y1 = &1, - -, Yo = &}. If
1 p°(00) = p(0)p(000) and p°(01) = p(1)p(010),

the joint distribution of ¥, %a, - - - is uniquely determined by the eight proba-
bilities »(0), p(00), p(000), p(010), p(0000), »(0010), p(0100), p(0110), so that
two matrices M determine the same joint distribution of y1, y2, - - - whenever
the eight probabilities listed agree, provided (1) is satisfied. The method con-
sists in showing that the function p satisfies the recurrence relation

(2) p(s’ € 0, 0) = p(s’ & 0)a(e, 8) + p(s, e)b(e, 6)

forall sand e = 0 or 1, 6 = 0 or 1, where a(e, 6), b(e, 8) are (easily computed)
functions of M, and noting that, if (1) is satisfied, a(e, 8) and b(e, 8) are deter-
mined by the eight probabilities listed. The class of doubly stochastic matrices
yielding the same joint distribution for y;, ya, - - - is described somewhat more
explicitly, and the case of a larger number of states is considered briefly.

2. Introduction. Suppose a certain process is known to be a stationary
Markov process with N states, say 1, 2, - -+ , N, and unknown transition matrix
M, supposed irreducible and aperiodic. To what extent can we identify M by
successive observations on the process, if by observation we are unable to dis-
tinguish between certain states of the process? More precisely, if {X,} is a sta-
tionary Markov process with states 1, 2, --- , N and N X N irreducible aperi-
odic transition matrix M, and y, = ¢(X,), call two such M’s equivalent (for
the given ¢) if they determine the same joint distribution of y;, 32, - - - . Call
a finite set of functions fi, - -+, fi , each defined on the set of all N X N irre-
ducible aperiodic Markov matrices, a complete set of invariants if M, and M, are
equivalent if and only if f;(M;) = f:(M,) for7 = 1, - -- , k. Our problem is that
of finding a minimal complete set of invariants, i.e., a complete set of which no
proper subset is complete. We do not solve this problem, even in special cases,
but almost solve it in the two special cases (a) ¢ has only two values, one of which
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is assumed at only a single state and (b) N = 4, ¢ has two values, each assumed
on two states. By almost solving the problem, we mean the following. Call a
set of functions fi, --- , f» a complete set of invariants relative to a set X of
matrices if (1) X is a union of equivalence classes, (2) f:(M,) = fi(M,) implies
M, is equivalent to M, , (3) if M, and M, are equivalent and in X, f;(M,)=
fi(M,). Thus a complete set of invariants relative to X fails to be a complete set
only because two matrices M;, M, not in X may be equivalent even though
(M) = f(M.). In the two special cases above, we find a complete set of in-
variants relative to a set X containing most matrices.

For case (a) the solution, following the methods of Feller [1], is straightforward.
Say ¢ assumes the value 0 on state 1, the value 1 on all other states. The joint
distribution of 4:, ¥z, - - - determines and is determined by the distribution of
return times to state 1, i.e., by the sequence of numbers

a, = Pr{z,a =1, zj# 1for2<j=<n|a =1},

which determines and is determined by its generating function A;(f) = 27 aat”.
Define

Ai(t):EPr {ZTnp = 1, é:].¢1f0r2 éjén]xl=z’}t”.
1
Then the functions A;,7 = 1, --- , N satisfy the system
N
A = t[mﬂ + z mi,-Aj(t)], i=1,---,N.
: =2

Cramer’s rule yields

A:1(t) = 1 — (det(I — tM) / det(J — tMy)),

where I, J are the N X N and (N — 1) X (N — 1) identity matrices and I,
is obtained from M by deleting the first row and column. Thus two matrices are
equivalent whenever they determine the same polynomials P(¢) = det(I — (M)
and Q(t) = det(J — tM;) and, if for a given M these polynomials have no
common roots, a second M is equivalent if and only if it has the same P and Q.
Thus, on the class X of matrices for which P and @ have no common roots, the
coefficients of P and Q are a complete set of invariants. That two matrices not in
X may be equivalent even though the polynomials P, @ differ is shown by the
example

3 ¢ 3—x
M=}y :—vy|
1 1

2 2 g — 7

All choices of z, y, 2, 0 < z, y, 2 < 1/2 lead to equivalent M’s, while P, @ do
depend on z, y, 2.

3. The case (2, 2). Suppose N = 4 and that ¢ assumes two values, each on
two states. Say o¢(1) = ¢(2) = 0; ¢(3) = ¢(4) = 1. Let h; = ma + ma,
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i=1,---,4; we assume hy 5 hy, hy ¥ hy. For any finite sequence s = (e,
«-+, &) of 0’s and 1’s, let p(s) = Pr{y, -+, y») = s}. We shall prove
TuroreM 1. The function p satisfies :

p(s, € 8, 0) = p(s, ¢ 0)a(e, 8) + p(s, €)b(e, )
forall sand e = 0 or 1,8 = 0 or 1, where
a(0,8) = (Pr{(y2, y5) = (5,0) |21 = 1} — Pr{(se, 93) = (5, 0) [ = = 2})/

(hy — ha),

a(1,8) = (Pr{(y2, ys) = (5,0) |21 = 3} — Pr{(ye, ys) = (3,0) |z = 4})/
(hs — ha),

b(0,8) = (M Pr{(yz, ys) = (5,0) | 21 = 2} — ho Pr{(yz, %) = (5,0) | x1 = 1}) /
(b — ha),

b(1,8) = (ks Pr{(yz,ys) = (3,0) | 2 = 4} — he Pr{(yz,ys) = (5,0) | =1 = 3}) /
(hs — hy).

Proor. For any sand any ¢ = 1, -+, 4, let q(s, 3) = Pr{(y1, --+, yn) = 5,
Zny1 = 1}. Then

(3) P(s; €, 67 0) = Z Q(sv i)mii h’j .

Fix ¢ and denote by i* the state different from ¢ for which ¢(z) = ¢(¢*). Then
(4) p(sy €, 0) - q(s) z)ht = hi"(p(s’ 6) - q(sy Z))v

since each side is Pr{(y:, -+, ¥s) = 8, Tupx = ¥, Ynye = 0}. Solving (4) for
¢(s, ©) and substituting in (3) expresses p(s, ¢, &, 0) as a linear combination of
p(s, € 0), p(s, €) whose coefficients are functions of M, ¢, 6. These coefficients are
the quantities denoted by a(e, 8), b(e, 8) in (2).

CoroLLARY 1. The distribution of i1, y» , - - - s determined by p(0), p(00) and
the functions a(e, ), b(e, 8).

Proor. We have p(1) = 1 — p(0) and, since the {y.} process is stationary,
p(10) = p(01) = p(0) — p(00), so that p(11) = 1 — 2p(0) + p(00). Thus
p(s) is determined if the length of s does not exceed 2. (2) determines p(s, 0)
in terms of p for shorter sequences and a(e, 8), b(e, 8), and p(s, 1) = p(s) — p(s,
0), so that, by induction, p is determined for all s.

COROLLARY 2. On the set X of matrices for which p’(00) % p(0)p(000) and
p'(01) = p(1)p(010), the cight functions p(0), p(00), p(0, ¢ 0), p(0, ¢ §, 0),
where e = 0 or 1,8 = 0 or 1 are a complete set of invariants.

Proor. Letting s be empty and the sequence 0 in (2) yields

p(e, 8,0) = p(e, 0)ale, 8) + p(e)b(e, 6)
p(0, ¢, 8,0) = p(0, ¢ 0)a(e, 3) + p(0, €)b(e, 8).
Thus if p(e, 0)p(0, €) % p(e)p(0, ¢, 0) for e = 0 or 1, the functions a(e, 8), b(e, 8)
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are determined by p(s) for s of length not exceeding 4, so that the latter set is a
complete set of invariants on X by Corollary 1. Since {y.} is stationary, p(s)
for all s of length not exceeding four is determined by the eight probabilities de-
seribed in the corollary, so that this set is complete on X.

Thus, since there are twelve parameters in a 4 X 4 Markov matrix and an
equivalence class is defined by eight restrictions, there is in general a four-
parameter set of matrices equivalent to a given matrix. An explicit parametric
representation of the equivalence classes has not been found.

For the case of doubly stochastic matrices, in which there are nine parameters
it turns out that an equivalence class is determined by seven restrictions, so that,
in general, there is a two-parameter set of doubly stochastic matrices equivalent.
to a given doubly stochastic matrix. Moreover an explicit representation can
be given, as follows: For any 4 X 4 doubly stochastic matrix for which h; = hs ,
hs # hs, there is a unique set of numbers ¢, a, 4, b, B, d, D, z, y for which the
matrix has the form (U, U:, U;, U,), where the column vectors are given by

c+a+z+ (d/x) ¢ —a+z— (d/z)
U=a—a—x+(d/:c) U — c+a—z— (d/x)
i e —y— @) +by ) TP -0 —y+ @/x) —by/x) |
3 —o+y— (d/x) — bly/x) 3 —o+y—(d/x) —by/x)

— o —2z+ (D/y) — Bx/y)

3 —o—x— (D/y) + Blx/y)
—o+z+ (D/y) + B@/y)

}—o+2— (D/y) — Blx/y)

QNN

Us= 44+ y+ Dy e R V)
o—A—y+ Dy o+ A —y— (D/y)

It is a tedious but straightforward matter to check that p(0) (= %), p(00) (= o)
and the functions a(e, 8), b(e, ) determine and are determined by o, a, 4, b, B,
d, D, and that the restrictions p(e, 0)p(0, ¢) 5= p(e)p(0e0) assert d = 0, D = 0.
Thus any choice of z, y for which all elements remain nonnegative produces a
doubly stochastic matrix equivalent to the original, and every such matrix may
be obtained for some z, ¥.

4. A large complete set of invariants. For any N X N irreducible aperiodic
M and any ¢, let R be the range of ¢ and let S be the set of all finite sequences
s=(r, -,m),k=0,1,2,---, r; ¢ R. For each s the function p,(M) =
Pr{(y1, -+, yx) = 8}, as a function of M, is invariant, that is, p,(M1) = p,(M,)
if M, and M, are equivalent.

THEOREM 2. There exists a positive integer J, depending only on N and ¢, such
that the set of functions p, for s not exceeding J in length is a complete set of in-

variants, that is, the joint distribution of 11 , Y, - - - 1s determined by the joint dis-
tribution of Y1, -+, Ys -
Proor. Forany s = (r1, ---, ), k = 2, we have
ps(M) = Z A7'1 Mayig «*c Mig_yiy

$(i)=rp e ed (p)=rk
MM (ry, r) M (ra, 72) -+ M(re_y. 708,
A = ()\1’ ,)\N)’



IDENTIFIABILITY PROBLEM 1015

where \; = Pr{z; = ¢}, M(r, ') is the matrix obtained from M by replacing
m;; by 0 unless ¢(7) = r, ¢(j) = 7', and 6 is the N X 1 column vector with each
element unity. Write M(s) = M(r1, ro)M(re, 73), -+ , M (123, 7). Let F be a
second N X N irreducible aperiodie Markov matrix. Then p,(M) = p.(F) if
and only if AM(s)6 = uF(s)s, where u is the stationary distribution for F. We
‘must find a J such that AM(s)6 = uF(s)é for all s of length not exceeding J
implies equality for all s. Let A (s) be the 2N X 2N matrix with M (s) in the upper
left, F(s) in the lower right, and zeros elsewhere, so that AM(s) = uF(s)d may
be written ad(s)d = 0, where « = (A, —u) and d is the 2N X 1 column vector
whose elements are unity. If we consider the class of 2N X 2N matrices as a
linear space of 4N* dimensions, the set of matrices A(s) spans a subspace L of
dimension J — 1 < 4N?. It remains to show only that the set of matrices 4 (s)
for the length of s not exceeding J already spans L, for if so then any A(s) is a
linear combination of these, and a4 (s)d = 0 whenever the length of sis < J
implies aA(s)d = 0 for all s. Let L, denote the linear space spanned by the
matrices A(s) for which the length of s does not exceed k. If Ly, = L then
Lyy2 = Lyia, for say s = (r, s’) where r ¢ R and s’ has length k¥ 4+ 1. Then
A(s) = A(r, r")A(s’), where 7’ is the initial element of s’. Now by hypothesis
A(s') = D ier a(t)A(t), where T is the set of sequences of length < k, so that
A(s) = Dwer a(t)A(r, r)A(t). Unless + is the initial element of ¢, A(r, ')A () =
0, so that A(s) = D a(t)A(r, t) where the sum is over those ¢ ¢ T whose initial
element is 7'. Thus A(s) € Lyys. We have Loc Iy € --- C L, C ---, with
equality for sufficiently large n. If equality first occurs at &, that is, Ly, = L4,
we have L, = L. The dimension of L is at least k — 1,sothat J — 1 =2k — 1
*and L, = L, completing the proof.

The J obtained in the theorem, namely J = 4N® 4 1 is extremely crude.
It can be improved somewhat by a more careful bound on the dimension of L.
For instance, since all A(s) have zeros in the lower right and upper left places,
the actual dimension of L is at most 2N2, so that J = 2N? + 1 will suffice.
However, if ¢ is the identity function, L may actually have dimension 2N
while J = 2 will suffice, so that, if we are to find the smallest J, a different ap-
proach is required.
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