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Hence comparing off-diagonal elements, we get

[N
Ny = _v"ﬂ

where A;; is the numbér of times the pair of treatments 7, j occur together .in the

blocks. Since \;;’s are all equal the design is Balanced Incomplete Block Design

(BIBD) [2]. This result was proved in an alternative form by W. A. Thompson
[3].
3. Concluding remarks. But these do not exclude the possibilities of the exist-

ence of balanced designs with different block sizes and the same number of repli-
cations. As an example consider the design whose incidence matrix is

1110111000]
N=|1 101100110
101101010 1)
0111001011J

=(6,6,6,6); k=(3333222222).

Here it can be verified that every elementary contrast is estimated with a
variance equal to 3¢°/7, but the design is not a Balanced Incomplete Block
Design.

It can also be seen that the example given above is obtained by adjoining two
BIBD’s with the same number of treatments. Such designs can be constructed
from two BIBD’s with the same number of treatments. Investigations on these
lines are being carried out.

Acknowledgement. The author wishes to express hisindebtedness to Professor
M. C. Chakrabarti for suggesting this problem and for his help and guidance in
preparing this note.
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THE SPACING OF OBSERVATIONS IN POLYNOMIAL REGRESSION

By P. G. Gusest
University of Sydney, Australia

1. Introduction and summary. De la Garza ([1], [2]) has considered the esti-
mation of a polynomial of degree p from 7 observations in a given range of the
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independent variable x. This range may conveniently be taken to be from 41
to —1. He showed that for any arbitrary distribution of the points of observa-
tion there was a distribution of the n observations at only p 4 1 points for which
the variances (determined by the matrix X7 W X) were the same. He then
considered how these p + 1 points should be distributed so that the maximum
variance of the fitted value in the range of interpolation should be as small as
possible. In the present note general formulae will be obtained for the distribu-
tion of the points of observation and for the variances of the fitted values in the
minimax variance case, and the variances will be compared with those for the
. uniform spacing case.!

2. Spacing for minimax variance. The fitted value is given by

W us(e) = 35 L@,
where L;(z) is the Lagrangian coefficient corresponding to the point of observa-
tion z; and %; is the mean of the observed values at this point. The variance
of the fitted value is var u,(z) = zp: L; (z) var 3;.
At a point of observation ’Eo
Li(x) = 85

and

var up(x;) = varg;.

The largest value of this variance will be as small as possible when the n ob-
servations are equally divided among the p + 1 points. When this is done

(2) var u,(z;) = (p + 1)o’/n
and
2.1) var uy(r) = j_z::) L (z)(p + 1)d*/n.

Since this is a polynomial of degree 2p, the minimax variance conditions are
obtained when the maxima of var u,(x) are at the p — 1 internal points z; , and
the end points 2o and z, are +1 and —1; for then var u,(x) never exceeds

(p + 1o’/n
in the range +1 to —1. The minimax variance conditions are thus
®) Liz) =0, j=1top— L

1 K. Smith, in an earlier discussion, has given details of curves up to the sixth degree
(Biometrika 12 (1918), pp. 1-85).
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Now, if
@ F@) = @ - =),
then
_ F(z)
L = e
and so

F(z) = {(x — 2,)Li (x) + Li()}F'(x;),
and (3) is equivalent to
(5) F’(z;) =0, j=1ltop — 1.

The function F(z) will be of the form a(z* — 1)¢,_1(z), where the polynomial
¢p—1(x) of degree p — 1 is determined by the p — 1 equations (5). The poly-
nomial which satisfies these equations is readily shown to be the derivative
P%(x) of the Legendre polynomial. For if

(6) F(z) = a(z® — 1)Py(x),
then

F@) = a 2 (@ — DP,@) = eplp + DP;)

and
F"(x) = ap(p + 1)Pp(z),

and so F”(z) vanishes at the internal points F(z) = 0.
The points of observation for minimax variance are then to be located at

+1, —1, and the roots of Pp(zx) = 0.
Since the internal points of observation are points of maximum variance,
the variance will be given by an equation of the form

) var up(z) = {1 + 8(z* — DPF(@)}(p + 1)o*/n.

The minima of the variance curve then occur at points for which
2Py(x) + (2* — 1)Pj(a) = 0,

and this equation is equivalent to

8 2P3(z) = p(p + 1)Py(2).

From (2.1),

_ a(z® — 1)Py(z) 2 2
®© i = Bl ) @+ 0
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and so, on comparing the coefficients of 2*P,}(x) in (7) and (9),
8= 3 (oo + DP@)I ™
The Lobatto quadrature formula [3] with f(z) = 1 gives
[ 2= E 206+ VPE)" =2
Thus the explicit formula for the variance of the fitted value is

. :vz - 1 ’2 2
(10 var u,(z) = { 14 2@ F D Py (x) }(p + 1)o"/n.

In the region of extrapolation, when |z| is large
Py(z) = p{(2p)}/2°p!"}a",
and so
(11) var u,(x) = p{(2p)!/2°pl*} %2’ /n.

3. Uniform spacing. When the observations are spaced at equal intervals the
variance of the fitted value is
: ,3 ,,
var u,(z) = Z{ HOWDY T?(w.-)} o
j=0 =]

j=

where the T;(z) are the polynomials orthogonal over the » points of observa-
tion z; . When = is large these polynomials will approximate to multiples of the
Legendre polynomials P;(z) which are orthogonal over the continuous range

+1 to —1. Thus
Ti(x) ~ k;P;i(x)
and
1
Y Ttz ~ K [ Pi@) de = 2K/(2j + 1).
[} -1
The interval Az; between neighboring observations is 2/n, and so
X Tixs) ~ nk3/(2j + 1)
and
. D
(12) var u,(z) ~ z% (27 + 1)Pi(z)d*/n.
=

The maxima and minima of variance are at points given by

g@H4me®=Q
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which from the recurrence relations for Legendre polynomials is
D
2 Pi(@){Pi(@) — Pia@)} =0,
j‘=
or
’
P, (2)Pp4a(2) = 0.

The points of maximum variance are then the roots of P,(z) = 0 and the points
of minimum variance the roots of P,;(z) = 0. It is interesting to observe that
the points of observation in the minimax variance method are points of maxi-
mum variance in the uniform spacing method. These points are also the points

used in the Lobatto quadrature formula.
The Christoffel-Darboux identity [3] for the sum in equation (12) leads to

the alternative form
(12.1) var uy(x) ~ {Pp(@)Pp11(x) — Py(2)Ppi(z)}(p + 1)a*/n.
By use of the recurrence relations for the Legendre polynomials this can be put

in the form

(122)  var u,(2) ~{(p + P () — ;—7_'—:—11 P?(x)} (p + 1)d*/n.

At the end-points +1 and —1, P%(z) is unity and

var up(£1) ~ (p + 1)%¢*/n.
At the centre of the range the variance can be obtained by substituting the

values of P,(0) and Py(0) in (12.2). It is found that

# var I.IP(X)
\ --8

]
!
!
1
|
]
]
]
]
!
|
1
!
!
CuUBIC ,'

\\ QUADRATIC

o8 06 O4 o0-2 0-2 04 06 08
1 Lixt 1 1

F1a. 1. The solid curve shows the variance of the fitted value for the minimax variance
method and the dotted curve the variance for the uniform spacing method. The unit for

the variance scale is o%/n.
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2¢+1)2g—1) - 1}'2 2/,

(13) var u,(0) N{ 54!

where ¢ is $p when p is even and 1(p — 1) when p is odd. In the region of ex-
trapolation, when | z | is large (12.2) gives

var uy(x) = (2p + 1){(2p)!/2"p"}’x"e /n.

The deviations from these formulae when 7 is not large have been discussed
and tabulated [4].

4. Comparison of the two methods. In the central part of the range the uni-
form spacing method gives a smaller variance than the minimax variance
method. An asymptotic expansion of (13) using Stirling’s factorial approxima-
tion shows that the ratio of the variances is roughly 2/x. This ratio increases
steadily with |z |, and at the ends of the range the variance for the uniform
spacing method exceeds that for the minimax variance method by a factor
p + 1, while in the region of extrapolation this factor approaches 2 4+ p~*. The
crossover points for the two variance curves occur at =4-0.58 for the quadratic
and +0.72 for the cubic. Thus over most of the region of interpolation the
advantage lies with the uniform spacing method, but at the extremes of the
region of interpolation and in the region of extrapolation the advantage lies
decidedly with the minimax variance method.

Fig. 1 shows the shape of the two variance curves in the region of interpola-
tion for the second and third degree polynomials. Since the curves are symmetri-
cal about the origin of z, only half of each curve is drawn.
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CONDITIONS THAT A STOCHASTIC PROCESS BE ERGODIC!

By EMANUEL PARZEN

Stanford University
In his work on statistical inference on stochastic processes, Grenander has
pointed out ([2], p. 257) that “the concept of metric transitivity seems to. be
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