SAMPLING VARIANCES OF ESTIMATES OF COMPONENTS
OF VARIANCE

By S. R. SEARLE
New Zealand Dairy Board, Wellington, N. Z.!

1. Outline. In earlier work (4) matrix methods have been developed for ob-
taining the sampling variances of estimates of components of variance. These
rely on the fact that if y = x'Fx is a function of variables x, having a multi-
normal distribution with variance-covariance matrix V, then the variance of y
is given by
1) var (y) = 2 tr (VF)".

The use of the method was demonstrated by obtaining for the case of a 1-way
classification with unequal numbers in the sub-classes, the sampling variances
of the estimates of variance components, as summarized in (1); it was then ex-
tended to the sampling variances of estimates of components of covariance.

The present paper makes further use of this matrix technique to obtain the
sampling variances of estimates of components of variance from data in a 2-
way classification having unequal sub-class numbers. The model assumed is
Eisenhart’s Model II, [2], and the method of estimating the components is
taken to be Henderson’s Method 1, [3].

2. Model and analysis of variance. The observations x,; are taken as having

the linear model
Tip = p + Ai + Bj + (AB)ij.+ e,

withk =1---n;,i=1---a,andj = 1---b. uisa general.mean, 4, and
B; are main effects, (AB);; is an interaction and e;; is residual error. Under the
assumptions of the model, all terms (except p) are taken as being normally
distributed, with zero means, and variances o, , o4 , g2 , and o, which we will
write as a, 8, v and e respectively.

For a sample of N observations in N’ cells of this 2-way classification an
analysis of variance can be written as

Term d-f Sums of Square
Between 4 €lasses. ............... a—1 T. — Ty =8,
Between Bclasses................ b—1 Ty — Ty =8
Interaction A X B............... N —a—-b+1 T —Ta — Ts + Tr = Sav
Residua,l..._..— ..................... N-N To — Ta = S»
Total.....o.oereeeeaeeeeeenn. N-1 To — Ty

where the T’s are uncorrected sums of squares. With n;, = ; ni;, and n.;
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= > . n;, and using customary notation for means,

=2 =2
To=2n.&., Tv=2n;%5,
i J

Ta =2, 2 nyiy , Tr=N& , andT,= ;Z‘,Zk)xﬁ,,,
v g J
We may note in passing that not all the expressions in the “sums of squares’”
column are in fact sums of squares, notably the interaction term. It would be
more correct to label this column “quadratic forms” but the terminology
“sums of squares” has historical precedence and will be retained.

Henderson’s first method [3] for estimating the components of variance is to
equate each of the first four lines in the above analysis to its expected value.
Denoting the resulting estimates of «, 8, v, and e as &, 8, 4, and ¢, the equations
for obtaining them are

(T, — T, =8, =N — k)a+ (ke — k)8
+ (ke — k)9 + (@ — 1)é
Ty — T, =8 = (kn — k)a+ (N — k)B
@) A + (bu — k)9 + (0 — 1)

Tar — Ta—To+ Ty = Sa = (b1 — k)& + (k2 — ki2)B
4+ (N — ki — ka + ks)¥

\ + N —a—b+ 1) |
@) To —Ta =8, = (N — N')

where the k’s are functions of the n;;’s, namely

8. Variances required. In the analysis of variance S, has a x2-distribution
with N — N’ degrees of freedom. Hence, from Eq. (3) the variance of ¢ is

g2
€ N_Nl

Using (3), Egs. (2) give &, 8, and 4 as linear functions of S,, Sy, S, and &
But S, , and hence ¢, is distributed independently of S,, S;, and S . Hence
the variances and covariances of &, 8, and 4 can be obtained as linear func-
tions of o} and the variances and covariances of S, , S; , and Sa . By the nature
of the S’s it is easier to consider the variances and covariances of T, , T5, T ,
and T; . ‘
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Writing P for the matrix of coefficients of &, 3, and 4 in Eqgs. (2) these equa-
tions can be written as

1 0 0 -1 :f, & a—1
0 1 0 -1 T" =P8 ]|+¢ b—1 ,
-1 -1 1 1 T:" 4 N —a—b+1

which we may write as
Ht = Pv + ém.
Since ¢ is indeperident of the terms in Ht, the variance-covariance matrix of

&, B, and 4, var (vv'), can be expressed in terms of the variance-covariance
matrix of the T"s, var (tt'), as

4) var (vw') = P7Y[H var (tt")H’ + mm's}|P"
and
cov (&v) = —P'mo:.

The unknown term in these expressions is var (tt’) the variance-covariance
matrix of Ty, Ts, Tas , and Ty , which we now proceed to obtain, term by term.

4. Matrix definitions and expressions. Let U be a matrix having a one for
every element, its order being denoted by subscripts, thus:—

U-matrix Order
(all elements 1)
Usjm i X Mg
Uij. Nij X M.
Ui Nij X Nij
U.. ni. X N,
Ux N XN

Define W-matrices in terms of the U’s:
1
Wi = P Ui,
w.=Lu,
n;. -

WJ = 1—"];; U,j' and WN = % UN .

Then C-matrices are defined, of order N X N, whose only non-zero sub-
matrices are W’s along the diagonal:

C, has W;i=1---a) in the diagonal,

Cy has Wi(j=1---b) in the diagonal,
Cw has Wy t=1---a,7=1---b), inthe diagonal.
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Finally we define D-matrices, the same as C-matrices only having U-matrices
instead of W-matrices in their diagonals.

Let x’ be the row vector of the N x;3’s, arrayed in order, ¥ = 1 --- n;,
within j-classes, within each ¢-class; i.e.,

/
X' = (- Liing; 121 *°° Tigngy * " Tabr * * ° xabn.,b)-

Then if w’ is the vector of the z’s arrayed in k-order within 7-classes within each
j-class, w’ will be a transform of x’, w = x’R’, say, where R is an orthogonal
elementary operational matrix of order N, of identity matrices I.
The T’s can now be expressed in terms of these vectors and matrices:
T, = x'Cux,
T, = wCw = x’R'Cy,Rx = x'Bx, say.
Ta = X'Cax = W Ciw,
T, = x'Uyx.
In Cy the W;; in the diagonal are in j-order within ¢-order; in Cj, they are in

1-order within j-order.
V, the variance-covariance matrix of the z;;’s appropriate to x’ can be written

as

V=J+4+K,
where
J = aD,+ (B 4+ ¥)Da + €,
and
0 Kip Kiz- - K
K — K:2l O
Ka 0

with Ko, ¢ # 7/, 4,7 = 1. a, of order n;. X n;. has all elements zero ex-
cept those in b rectangular matrices SU,;,#»;,§ = 1 -+ b. These b matrices lie
““ corner to corner’’ across K;;» thus:

’
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For example the ¥ matrix for a sample of 7 observations with ny; = 1, n;, = 2,
N1 = 3 and ngp = 1 would be
P+ﬁ+7+e a a B 8 8
@ atB+y+te at+Btwy : : :
a at+B+y at+Bty+te
B8 atB+yt+e atBfty atBty @
at+B+y atftrte atBfty @
at+p+y at+B+y at+B+v+te a
\ p B a a a atBtyte

This is the variance-covariance matrix appropriate to x: that for w will be
RVR'.

6. Variances and covariances. T, , T, T'ss , and Ty have now been expressed
in the form x’Fx, and the variance-covariance matrix has also been obtained.
The sampling variances of the T”s will be found from (1), by evaluatlng

2 trace (VF)? for each of them.
5.1. var (T,) = 2 tr (VC,)~

VC, can be expressed as

PhPu"'Pla
(Ve = Pf‘-. ,
Pal Pua

where P;; is a column of matrices z;;U;j,:., (7 = 1 -+ b) with

= (1/n:.)(nia + 18 + niy + €.

Similarly P;; is a column of matrices w;;U;j,:r., (j = 1 -+« b), with

wirj = (nyj/ng)B.

VC. has here been partitioned into P-matrices, which themselves have been
partitioned into sub-matrices of the U-type. Trace (VC,)* will therefore depend
on two properties of these U matrices, that

(5) UiipeUpgire = 1pqUsgirs
and

tr (Usij) = nij
Hence
(6) tr (UijipaUpq.is) = Miifipg -
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Using these results we have
tr (VC.)* = 22 E tr (Piww Pyrs)

= Z‘: tr (P3) + 22 2 tr (Pw Pird)

i i

= Z ; i B Dy MigTyg + D D4 D MigWing Dy My W
2

i j
On substituting for z;; and w;; this gives
}var (To) = 20 2 nyslne.c + nyb + nygy + o/nf’
2

(Z NiiMirs)”
G g

+ > > 8.

T i Ni. Nr,
5.2. : var (Ts) = 2 tr (VCu)’
V and C, are such that their product can be written as
VCw =L + K,
where K is asin V, and

L = aDs+ (8 + ¥)Day + €Cas .
Hence,

@ VCas = V + (Cas — I).
Since V and C, are symmetric, VCy is also, and hence squaring (7) gives
(VCw)' = V* + €(Ca — ).
Hence,
ivar (Ta) = tr V2 + €(tr Ca — tr )

=;;n,-,~[(a+ﬂ+~/+e)2+(m,~—1)(a+ﬂ+7)’

+ (i, — ni)o® + (n; = n)f + € [Z; },: NijNij El?, -N :l )
which reduces to
} var (Ta) = ; ;na [nisla + B+ 7 + ¢/ni)* + (ns. — ni)o + (5 — ;)87
5.3. var (Ty) = 2 tr (VW)

Similar to the form of the P-matrices in 5.2, VWy can be expressed as a column
of matrices y;;Usjx, (G =1---a,7 = 1---b), where

Ysj = (nea + niB + niy + €¢)/N.
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Hence,
tr (VWy)? = Z.: AT.: Nij Yis Z; ,Z NijYis 5
giving

3 var (Ty) = [Z 2- ni(nia + n;B+ nygy + (/N

6.4. In general, for any two square matrices of the same order, A and B say,
it can be shown that tr (4 + B)’ = tr 4> 4+ tr B* + 2 tr AB. If then, 4 and
b are two function of the same set of variables such that var (4) = 2 tr A% and
var (b) = 2 tr B, it follows at once that

(8) cov (4b) = 2 tr AB = 2 tr BA.

This result will be used for obtaining the covariances among T, , T, T , and
T;.

b.5. cov (To, Tap) = 2 tr (VCo)(VCa).
In 5.1 VC, has been partitioned into P;’s and P’s. If VCy , expressed as
L 4+ K in 5.2 is partitioned in the same manner, into L;;’s and K;;.’s, then

1cov (Te, Tw) = 2 Z (inner product of I’th row of P;; and I th column of L;;)
i =l

+ 2 > > (inner product of I’th row of P;; and I th column of K;s)

T it =1
and after substitution this reduces to
$eov (Ta, Tar) = 22 2 nis(ni.a + 0B + nyy + €°/na,
o +p 2; ’Z ni(n.; — nig)/ns. .
5.6. 1 cov (Ta, Ty) = tr (VWx)(VCa).
Using 5.1 and 5.4, and Eq. (6), this can be expressed as
Yeov (Ta, Ty) = 22 A]V_: M43 Yig (; N i + ; ‘Z#:‘ TirjWis).

i

which on substitution for the 2’s, ’s and w’s, reduces to

3cov (Ta, Ty) = E Z% (ni.a + 148 + nyy + ¢
Zn.jnij ana
“\nia+ 8- + v -2 + €.

ng. n;,

b.7. % cov (T,,b, Tj‘) = tr (VWN)(VC,.J;)
= 2. 2. nyyss [Y terms in 4j’th column of V + ¢(Cay — I)]
1 J

= Z Z nig(ni. e + niB + niy + €*/N.
T g
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6.8. In Eq. (8) it is required that 4 and b be functions of the same set of vari-
ables; therefore, in terms of paragraph 4, the covariance of T, and T must be
expressed as

cov (T., Th) = 2 tr (VC,)(VB).

This covariance is a little more cumbersome to evaluate than previous ones;
the method used is essentially a generalization of earlier paragraphs.

B is the same form as V, (4.5) but with matrices (1/n;)U;; in the diagonal
j=1---b,forz =1---a, and with K,;-matrices having terms

(U/ng)Usjir -

Now partition V into matrices (V);j..: of order n;; X m, there being four
different forms of this matrix according as k and I are equal or not equal to ¢
and j respectively, namely:

(Mijeis = (@ + B+ 7)Usj + l;

(Vi = alUsje for I # j;
(V)iswi = BUijui for k = I;
(V)ij;kl = 0.U;;x: a zero matrix, for k % 7, 1 % j.

B can be partitioned similarly for k 5 7 and I = j:
1
(B)ij:ij = p Ui,
(B)ir:s5 = 0.Us,4,
1
(B)ij:is = Py Ukiii s

(B)it:si = 0.Ur,i5-
Consider now the identity
(9 (VB)pg:tu = ; ; Vog:10Bro:tu,
whose right-hand side can be expanded as
(Vg u(B) tuz e + j; (MagiraB)ruien
l + a; (Mg:6(B)tg: s + IZ#Z‘ ,,;, (V) pq:10(B) g2
or as |
(V) 20:04(B) pg:eu + f; (V)pq:fq(B)fgu..

+ é}l (V) pa:90(B) pg: 1 + f§; 0% (Msa:16(Bsg:tu «

These expressions are true for any values of the subscripts.
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Applying this identity to the partitioned forms of V and B given above, and
using the principle of (5) in 5.1 gives

(VB)sj:i5 = nijfla + B+ ¥)/n.jUsi + ¢/n;Us; + B k; ;Ll— Usjei Ui, ii
i N.j

= (nijo + n,8 + niy + &/n;U; = b;; Uy, say.
Similarly, for r = ¢, and s # j,
ij
n.;j
(VB)rj:ij = iz + ni8 + nijy + €/n;Usjsi = bij Usjii,

(VB)i:ij = @ —2 Uy ij = bi;Ua,i, say,
(VB)rs:i = a:—rj Us,ij = brs Upeij -

Likewise:
(VCa)ij:ij = (i, + niiB + nijy + &/n:. Usj = ai5Uy;, say,
(VCwijie = Mi.a + niiB + nijy + &/n: Uijio = i Usja,

Nyj ’
(VCa).'j:rj = n—: Uijri = 0rjUijri, say,

(VCa)ij:rs =g %':J‘ Uij,r: = a;j Uij,ra .

Now

It

tr (VC,.)(VB)
B ; 2 tr (VCo- VB)ijiss

'= ; JZ [tr zr: ¥ (VCa)ij:rc(VB)n:ﬁL

Applying the identity (9) and results (5) and (6) again, and using the forms
of the elements of the sub-matrices of VC, and VB given above, gives

1 cov (Ta, Th)
= Z‘: Z ni{ngaiby + .; N aisbis + r; i Qribe 4 D 2 Tra i}

J rai 8547

1 cov (T.Ts)

On substituting for the ’s and b’s, this reduces to

s

2
Leov (T, To) = 20 2. 7—:1%? (ni.c + n;B + niv +.6%
J t. 10,

5.9. We have now found some of the variances and covariances of T., T5,
T and T, . These and those which follow from them by symmetry, are sum-
marized in the following table.
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VARIANCES AND COVARIANCES OF UNCORRECTED
SUMS OF SQUARES

var (T,)
(Zﬁz‘:‘nw)z
=2 Z [E ni; (ni.a + ngB + ngy + /n '+ 2 2 4—v @
i J DI 1) N, Nyr,
var (T5)

ii'%i M N

(E NijNigr)”
=2 {‘JA: [Z‘: nifnije + n B + ngy + /mF + 22> az}
var (Tw)
=2 Z ; nifni(e + B + v + ¢/ny)’ + (i, — nida’ + (n; — nyy)8’]
var (Ty)
= Z[Z ; ni(ni.a + n 38 + niyv + ¢/NI*
cov (T,, Ts)

;

=2;,Z L)

ng.N.j

(ni.a + n ;B + niy + €°

cov (T,, Ta)
= 2{2 ’E nij(ni. @+ niB + niyy + ©*/ni, +6° Z ; ni(n.; — ng)/ne}

cov (Ta, Ty)

Nii Z n,;Nsj Z nz.-,-
=2ZZ—N’—’(n«.a+n.jﬂ+nsn—Fe) ns,a-+ B -2 e + e
i g n;. n;,

cov (Tb, Tws)

= 2{> 2 nylnya + n8 + nyy + &*/n; + o .Z ; nf’f(ﬁe. — ny)/n}

cov (Ty, Ty)

N ' E ;. Nij 2
=22 2 F et nsf+ngy+ o ot +Bn;+yt—+e
i n.j (C¥]
cov (Ta, Ty)
=22 2 niy(ni.a + niB + nyy + &°/N
13 J .
The expressions in the above table are those of the elements of the matrix
var (tt') of Eq. (4). These elements are quadratic functions of the variance
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components «, 8, v, and €, with coefficients being sums of functions of the n;’s.
The other terms in (4) are not such as would simplify var (vv’) if the elements
of var (tt’) as now known were inserted into (4), and therefore, as in any nu-
merical case after calculating the expressions in the table these steps will be
quite straightforward, it seems convenient to leave the results in their present
form.

6. Balanced Data. It is easily shown that the formulae developed in the last
paragraph reduce to the well-known results for balanced data when all the
n;; are put equal to n. For example, consider the variance of S,. From the
Analysis of Variance table, the expected value of S, is given by

E(S.) = (a — 1)(bna + ny + ¢).
Then
var (T,) = 2[a(bna + nB + ny + € + ala — 1)n’87,
var (Ty) = 2(bne + anB + ny + ¢)’,
cov (T., Ty) = 2(bna + anB + ny + €)*.
Hence,

var (Sa) = var (Te — Ty)
= 2(a — 1)(bna + ny + ¢’*
= 2[E(8a)l'/(a — 1) .
and with M, = S,/(a — 1), this gives the familiar result for meé,n squares
var (M,) = 2[E(M)*/(a — 1).

Results similar to this can be obtained for M and M, , the mean squares for
B-effects and interaction. .

7. Conclusion. Matrix methods have been developed for finding the sampling
variances of estimates of components of variance. In earlier work (4) these were
used for data in a 1-way classification, and this paper has extended them to
data for a 2-way classification, with unequal numbers of observations in the sub-
classes. The estimates of the components of variance for main effects and interac-
tion are expressed as linear functions of the corrected sums of squares and the
estimate of the error variance component. By expressing the corrected sums of
squares as functions of the uncorrected sums of squares, the variance-covariance
matrix of the estimates of the components of variance has been expressed as a
function of that for the uncorrected sums of squares, (Eq. 4). Expressions have
then been found for the elements of this, the variance-covariance matrix of the
uncorrected sums of squares. It has been checked that when the data are as-
sumed balanced, i.e., all n;; equal to n, these expressions reduce to the appro-
priate forms for variances of mean squares then having independent x-dis-

I
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tributions. Estimates with any optimum properties have not been obtained,
and it would seem that the only feasible estimation procedure in a practical
case would be that of replacing the variance components in these formulae by
their estimates. _

It is hoped that these methods can next be extended to data in a 3-way classi-
fication with unequal subclass numbers, still based on Eisenhart’s Model II
and using Henderson’s Method I for estimation.
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