A CENTRAL LIMIT THEOREM FOR SUMS OF INTERCHANGEABLE
RANDOM VARIABLES!

By H. Cuernorr aND H. TEICHER

Stanford University and Purdue University

1. Summary. A collection of random variables is defined to be interchangeable
if every finite subcollection has a joint distribution which is a symmetric func-
tion of its arguments.

Double sequences of random variables X, , &k = 1, 2, -, k. (— «),
n = 1, 2, --. , interchangeable (as opposed to independent) within rows, are
considered. For each n, Xu, -+, Xnx, may (a) have a non-random sum, or
(b) be embeddable in an infinite sequence of interchangeable random variables,
or (c) neither. In case (a), a theorem is obtained providing conditions under
which the partial sums have a limiting normal distribution. Applications to such
well-known examples as ranks and percentiles are exhibited. Case (b) is treated
elsewhere while case (¢) remains open.

2. Terminology, notation and preliminaries. If X, is a sequence of r.v.’s con-
verging in probability (in measure) to a r.v. X, that is,

mP{| X, — X|>¢ =0, alle>0,

P P
we abbreviate this by writing X, — X. This, in turn, implies g(X,) — ¢g(X) for
any continuous function g(x). If the corresponding c.d.f.’s Fx, (x) — Fx(z) at
all continuity points of the latter (in the sense of convergence of real numbers),

L
we say X, converges in law (or distribution) to X and write X, — X. We shall

L
use frequently without ado the facts that if X, 7 X and c. is a sequence of

L
positive constants such that ¢, — ¢, then ¢, X, 7 cX[3].

The notation P{A | B} will be used to designate the probability of an event
A, given the occurrence of the event B, i.e., the conditional probability of A4
given B.

We shall be interested in and deal exclusively with r.v.’s whose joint c.d.f.
is a symmetric function of its arguments. The same will then be true of the joint
Fourier transform or characteristic function. This characteristic may also be
expressed by stating that the joint distribution of X;, .-+, X; is invariant
under permutations of the subscripts of the X’s. Such random variables seem to
have been introduced by de Finetti (cf. [4]). They have been termed “sym-
metrically dependent” by E. Sparre Anderson who also has studied some of
their properties in a series of papers [1], [2]. By a quirk of terminology not in-
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INTERCHANGEABLE RANDOM VARIABLES 119

frequent in mathematics, independent identically distributed r.v.’s are then
subsumed under the category ‘symmetric dependence.” On the grounds of
brevity and connotation of the characteristic involved, we propose the sobriquet
“interchangeable random variables” to denote any finite set of r.v.’s whosé joint
c.d.f. is symmetric.

In the case of an infinite sequence of r.v.’s, every finite subset of which has
this property, Loeve speaks of ‘“‘exchangeable r.v.’s.”” However, the terminology
of “interchangeability” of r.v.’s will be extended to include this case as well.

. It is immediately evident that the r.v.’s, say X, , Xi,, ---, Xi,, of any
finite subcollection of a collection of interchangeable r.v.’s (i.r.v.’s) are them-
selves interchangeable and have a joint c.d.f. depending on r but not the permu-
tation (41, ---, 4,). In particular, the marginal c.d.f.’s Fi(z) = Fx;(z) =
P{X,; < z} are identical forj = 1,2, --- , k.

It is worth noting at the outset that it is, in general, not possible, to embed
a given finite set of i.r.v.’s in an infinite set of i.r.v.’s (or even in a larger finite
set). For example, if P{X; = 1, X, = 0} = 3 = P{X; = 0, X, = 1} one cannot
even adjoin a third r.v. so as to preserve interchangeability.

We commence with some elementary observations on the nature of ir.v.’s.
Two of these will be cast in the form of lemmas.

Suppose (as we shall throughout) that the i.r.v.’s under consideration have
finite second ordermoments EX,X ; = [Z, [Z zydFx, x,(x,y),%,7 = 1,2, - -+ , k.
It is of course sufficient for this that when m = 2, EXT = [ 2" dFi(2) < .

Take p;; = 1,72 = 1, - -+, k and define the (common) correlation coefficient be-
tween X; and X; by
p = pu - COV (X,',Xj) - EX;X,' - (EX,)(EXJ)
N N VEX; — EX)’E(X; — EX,)?

_EX X, — (EX)*
E(X, — EXy)? ’

Then, the positive semi-definiteness of the correlation matrix

i j.

lp--p

pl--p
R = {p;} =

e 1

constrains p to be at least —[1/(k — 1)], where k is the number of i.r.v.’s. For
if J is the k X k matrix consisting entirely of ones and I is the identity matrix
of order £,

Rl = |pJ + (1 — p)| = [kp + (1 — p)I1 — o 2 0.

Thus, p = —[1/(k — 1)]. Consequently, the correlation between any pair of an
infinite collection of interchangeable r.v.’s cannot be negative.
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The following simple lemmas which we present without proof are useful. Let
X and Y designate the vectors (X;, X3, --+ , Xi)and (Y1, Ys, ---, Vi),

Lemma 1. If X, Xa, -+, X\ are inlerchangeable r.v.’s and ¥ = Y(X) is
defined by Y; = ®[X;,9(X)],7 = 1,2, --- , k, where ® and g are Borel measurable

Junctions, the latter being symmetric in its k arguments, then Yy, Yy, -+, ¥}
are tnterchangeable.

Lemma 2. If Y = (Y1, Y2, .-+, Y1) is a random permutation of the inter-
changeable r.v.’s X1, X2, - - -, X, then Y has the same distribution as X.

3. Background and Framework. The term “Central Limit Theorem” is a loose
designation for one of an agglomeration of theorems dealing with limiting nor-
mality of distributions of sums of random variables—in the classical treatment—
independent random variables.

" The early results of De Moivre and Laplace have been succeeded by ever
more powerful theorems set in an increasingly general framework. Recent works
[5], [6] commence with a double sequence of rowwise independent r.v.’s (i.e., the
r.v.’s within each row are independent)

Xu, X, o+, Xuy
X21’X227"';X2k2
Xn]erﬂ; 7anc,,

(where k, — «) and investigate the limiting distributions, i.e., c.d.f.’s of the
row sums, say S, = 2 sy X . To render the problem more meaningful the
r.v.’s are required to be “infinitesimal” (or asymptotically constant), i.e.,
lim max Pf{|X,.:;| > ¢ =0, all ¢> 0.
n>0 1<i<k,

A famous theorem of Khintchine asserts that the class of limiting distribution
of such sums S, coincides with the class of infinitely divisible laws [5]. A neces-
sary and sufficient condition that the limiting distribution (assuming one exists)
of sums of row-wise independent infinitesimal r.v.’s be normal is well known,

namely, maxicick, | Xni| £ 0. (This actually implies infinitesimality here).
For purposes of comparison with Theorem 1 of the next section we state the
following result of Raikov (cf. [5]):

fZuw,k=1,---,k,are infinitesimal rowwise independent r.v.’s with zero
means @nd finite variances o with D _t%; oax = 1, a necessary and sufficient

condition that the c.d.f. of D k=; Z.. converges to the normal c.d.f. with mean

P
0 and variance 1 is that Z’;‘,".; Z: — 1.

Attempts have been made to relax the requirement of independence with
varying degrees of success. Perhaps a natural and useful generalization is to
double sequences of interchangeable random variables.

In this direction, let X,;,7 = 1, --- , k, comprise a (finite) set of i.r.v.’s for
everyn = 1,2, .- .
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If we stipulate that lim,.. P{|Xu| > € = 0, all ¢ > 0, the question of the
nature of the class C* of all limiting distributions of row sums may again be posed.
Clearly, C* includes all stable distributions but contains others as well. This
follows from a result of von Mises [7] who showed that the distribution of the
number S,,, of unoccupied cells in a random casting of r, objects into n cells
approaches that of the Poisson when n, r, — < in a manner such that the ex-
pected number of vacancies is constant. If the expected proportion of vacancies
converges to a constant, then Irving Weiss [9] has shown that the limiting dis-
tribution, suitably normalized, is normal. But S,,, = 2_i=1 Xn: where the X,
are i.r.v.’s assuming the values one or zero (according as the ¢th cell is empty or
not). Therefore, the Poisson distribution and in fact all infinitely divisible dis-
tributions belong to C*.

In this paper, we consider only the case of limiting normal distributions and
treat the first of the following two situations:

(a) Foreachn = 1,2, ... theirv.)s X;;,7 = 1, 2, -+ | k, have a non-

random sum.

(b) For eachn = 1,2, --- , the irv’s X,;,7 = 1, .-+, k, are embeddable

in an infinite sequence of i.r.v.’s.?
These cases are mutually exclusive since if D~ X, = C,, the covariance of
any pair of ir.v.’s equals —[1/(k, — 1)] multiplied by the common variance.
But then their correlation is negative, which is precluded (under case b) by a
prior remark.

4. IL.R.V.’s whose sum is non-random. For each n = 1, 2,.--, let
X, bk = 1, 2,--+, kuo(— o) be irv.’s with finite variance o =
o;zl = F(X :., - E’X:.l)2 and satisfying the linear constraint

kn
(1’) EX:” = Cn.

=1

Naturally, under such a proviso we must investigate partial rather than com-

plete row sums.
1 Ca
Xyn' = 0[ (X:H, - k >,

If we define
the X,: are, by Lemma 1, i.r.v.’s satisfying the relationships
kn
(l) 2X0i=01 n=1:2""’
and
(i) EXh:i=o%,=1i=1,2, - - ,k,andalln =1,2, .-,
2 The theorems obtained for the case of infinite sequences of i.r.v.’s overlap results of

Professors Blum and Rosenblatt of Indiana University and will appear in a joint
publication.
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We suppose, therefore, without loss of generality, that for each
n=12:.-, {Xﬂk}yk =1,-- ;kn(’_) °°)

are rowwise ir.v.’s satisfying (i) and (i) and possessing the joint c.d.f.
Fu(xi, %2, -+, 2,). We have then '

TaEOREM 1. For eachn = 1,2, - - -, let {X,;} be interchangeable random vari-
ables satisfying (i) and (ii). If

| Xni| P
1 —
W eV
kn P
@) Isvx, 2,
k, =1

and ma < k, is a sequence of positive integers such that lim,., mu/ks = o, 0 <
a < 1, then

. 1 mn 1 z y2 )
l‘fﬁp{\/m,,,;X"" < x} T V2 - a) L oxp (" a-a)%

Proor. For any set of real numbers ., , if max< ik, [Znil/V/ ks = 0(1) and
lim»-»oo (l/kn) ’1‘" 233.,' = 1, then

It follows directly that if the x,; are r.v.’s and the analogous conditions are true

in “probability’” the conclusion holds “in probability.” That is, (1) and (2)

imply

(5) max =
1515k, Z Xgn ;

t=1

| Xl P
-——————-—»0.

//
Next,let Y1, - -+ , Yo, be a randomly selected permutation of Xp1, ««+ , Xog,-
Then even when it is stipulated that X,; = fixed real number .,
1=1,2 .-+, ks, the quantity

~1/2 mnp

kn
U, = (Zl Xfu') Z Yo
= o iml

is a -random variable.
Suppose that for some c.d.f. G(u) and arbitrary ¢ > 0, there exists 6. > 0
and integral Ni(e) (all independent of %a; , - -+ , Znx,) such that

x .
max '—“k:'—l- < &,
1Siskn 2
"/ ani
1
implies

(6) IP{Us < tlXni = Zni, i =1, , ka) — Q)| < ¢



INTERCHANGEABLE RANDOM VARIABLES 123

for all n > Ni(¢) and continuity points u of G(u). By (5), there exists Na(e)
such that for all n > Na(e), say

Xni -
) e > P | max -'l—k"‘—l— > 8| = P{A,}.

> X5

1

1<i<ky

Then, from (6) and (7) for arbitrary ¢ > 0 and n > max[N1(e), N2(e)] and con-
tinuity points w of G(u),

I!P{U,, <u} — G|

(8) [Rkn[P{Uﬂ <ule' = xm')'i = 1) "'rkn} _G(u)] an(x11 "'7xk,‘)

< [ 1PV < ulXuri =1, -k} = G@) | dFu+ [ dFa S 2.
An . An

For simplicity in writing, let @ be an r.v. with c.d.f. G(u); then for A > 0,
Q» = (1/)) Q is an r.v. with distribution G(Au). Under the proviso (6), (8) shows
that

Z Yni L

U, = _r_lkn__ 2Q.
A/ 2 X
1
On the other hand, according to (2),
L&, B 1

Consequently, (see, e.g., [3]),

1 & N 1 &= L 1
L Sy =p v L x5 —=Q =0
\/mn ,szl My kn ;Xm \/; Q Q\/'

But by Lemma 2, ) ¥, and 37 X.: have the same distribution, and thus,
under the proviso (6),
1

© —= ﬁ X Qua.

It remains to verify (6) for G(u) the c.d.f. of @' = No,aa-a), where N, .2 repre-
sents a normal random variable with mean y and variance o*. To do so, it suffices
to prove that

kn -1/2 my L
(10) U, = (Z xfu) E Y.i—™ Q = Noatt-o) »

=1 i=1

providing Y1, Yz, -+ + , Y, is a random permutation of the fixed real numbers
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Zuiy Tng, *** 5 Tnk,, Where
L 2 —1/2
(11) max (Z x,.,-) | Zn| = 0(1)
1<k=<kn \i=1

and Y i . = 0. A theorem of Noether [8] states that the distribution of
kn )
Ln = Z dni Yin’
=1

converges to the normal distribution (when normalized by its mean and standard
deviation) if the d.; are fixed real numbers such that

7. Z (dnz - an)a
D,, = ks = 5 = 0(1) fors = 3,4, ---
E" Z; (dru - n) ]

and

kn
Z (xn'i - a-fn)a
Apy = = =5 = o(1), fors = 3,4, -

(% - 2]

withd, = 1/k, Z;_l dn;and &, = l/k,.zlf';l Toi = 0.Letd,; = 1forl =2 = m,

and O form, + 1 < ¢ < k,. Then D, , = 0(1) for s = 3, 4, --- . Furthermore,
from (11),
Yozh  max |zl
A, R o S <§l§i'——;:27§ = o(1) fors = 3,4, ---.

¥n 2= [ kn
E < E)
i=1 =1

Thus Noether’s theorem applies to L, = D_#% Y.; whose mean and variance
we shall show to be given by u, = 0 and.

k.
2 _ = 2 mn(kn _ mn)
(12) o = (z x) Malle = 1),

i=1

Then we shall have L,/ay L 0.1 and the desired result

Un = 'IL M — Ny Ja(l—a).
i On " ko(kn — 1)

We now conclude by evaluating p» and o, .

& 2 < 2
E(Ym') = Z xna/kn = O, E(Ynt) = Zl xna/kn )
a=1 a=

E(Ym' Yn:) = (Zb Tna xnb)/kn(kn - 1) = - 2 xfm/kn(kn - 1); 1 # j‘
ay a=
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Hence

”n=E(ZnYn1)=0

=1
and
m, 2 k,
2 ) % o \(Me _ ma(m, — 1)
n = E Ym‘ = ni s i )
’ @ ) (Z% ’ )(k Fon(lin — 1))
which matches (12), concluding the proof.
COROLLARY 1. For each positive integer n = 1,2, -+ - | let {Xp5},¢ = 1,2, -+- ,

ka(— ) be i.ruv.’s satisfying (i) and (ii). If m, < k, is a sequence of positive
integers with limy.o Mp/ks = a,0 < a < 1 and

(3) E[X4] = o(ks), Cov(X%i;, X%;) = o(1),

then the conclusion of the theorem holds.
Proor. For any o > 0,

| Xoni } { [IXm-l
”{@1’;\/@” =PVl Ve >

Xa knB | Xt
= k,.P{LQ—ki"l > n} = —*—,;lz;"rl—l' = o(1)
and
kn 2
e B[ ¥t -]
i 2 < !
- knE(Xil - 1)2 + kn(kn - 1) COV (XE»I, Xgﬂ)
= R = o(1).
n M
COROLLARY 2. For eachn = 1,2, -+, let {Xni}, 6 = 1,2, -+, kn(— ) be

irw’s with 3 g Xni = Cp and D% (Xad)® = D2 > 0. If
| X;u - Cn/kn l P

X DL = Gy O

then the conclusion of the theorem holds for(1/N/mz) D_1" Xa: , where

X;i - Cn/kn
[(1/k)(D5 — Co/ka)] "
Proor. Condition (2) is certainly satisfied since 1/k, ¥ 3" X% = 1.
COROLLARY 3. For eachn = 1,2, «+- ,let {Xni}, s =1, - -+ , kn(— ) bedi.r.v.’s
with EXm = 0, EX5y = 1 and X, = 1/ky 23" X . If the {Xn:} satisfy (1),
(2), and

(4) E(X,.lXuz) = 0(1),

Xm' =
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then

1 mn _ 1 z 2

i - - —— - Yy
lim P {\/m,, 2 (X = X < ”} V2l — @) f.,, ‘fo( 21 — a)> &y
Proor. Let

/& X — X -
Y. = n At T An = g (X — X
kn — 14/1 — EXmiXne ( )

Then, applymg Lemma 1 with g(X ) = X, it follows that the {¥,:} are i.r.v.’s.
Further, Z._l Y,: = 0 and EY:, = 1. Since

[ Yo =< 20 max | X,
= m Isishn ni |y

0 < max
. 1<i<kn

P

(1) and (4) imply
ma, | Vo] P 0
x —7=—= —0.
1siske Vn

Next, for every ¢ > 0,

kn 2
(ZX-)
= - k. — 1) EXuX,
}=—k_21¢-2_—=(k"e2)1+( T = o)

{ 3 Xu| >
n =1

That is, X. L 0. Thus,

-1 kn
E vi= Do [in,- - k"Xi]—’i 1

k. =1 T = EXuXa) Lim
A direct application of the theorem to the {¥,;} shows that
k” 1 Z (XM - NO l—ay

(o — 1) (I — EXm X00) \/—; =

which, in view of (4), 1mphes that

- L
E (Xm, - X”) - NO,l—a-
mn =1
COROLLARY 4. For eachn = 1,2, +-+ , let {Xni}, 2 = 1, -+, ka, be t.rv.’s
with EXm = 0, EX%, = 1. If m,is a sequence of positive integers such that

lim, m,/kn = o, 0 < a < 1, and the {Xai} satisfy

1 1
i + o(k7")

n —

4) Cov (X, Xp) = %

and either (3) or (1) and (2), then

\/— Z Xm NO.l—a-

te=1



INTERCHANGEABLE RANDOM VARIABLES 127

Proor. Since, as shown in the proof of Corollary 1, (3) implies (1) and (2),
it suffices to suppose that the latter obtain. But (4’) clearly implies (4) whence,
according to Corollary 3,

- L
\/_ Z Xm V man - NO,l—a .

=1

However, for positive arbitrary positive,

kp 2
P{lvVm.X.| > ¢ = 72702 E(Z X,”-)

j==]

-1
=k[1+(k ){k,.—l

o0

k;‘)}]

[

- P L
employing (4'). Thus, v/m, X, — 0 and 1/v/m, > i Xni — Noj-ea .

In this instance, not only does X, L 0, but even 1/4/%, Z'ﬁ:l Xai it 0, which
is perhaps more than might be desired. Note that (4’) automatically prevails
if the X,; sum to C, ; in fact, Cov(X, , Xus) = —[1/(kn — 1)] in this case.

Define Z,; = X,;/Vk, . If (i) is replaced by (iii), EX.: = 0, and (ii) still
obtains, then EZ,; = 0, Z'ﬁll 0'3"‘ = 1. Conditions (1) and (2) become

P
1) max |Z,;|—0
15 45kn
and
kn P
2" E an‘ —1

=1
Then, in view of theorems cited in Section 3, the conditions (2) implies (1’) (and
correspondingly (2) implies (1)) for infinitesimal row-wise independent r.v.’s,
satisfying (ii) and (iii).

Of course, condition (i) precludes independence. Nonetheless, it should be
verified for interchangeable r.v.’s satisfying (i) and (ii) that conditions (1) and
(2) do not overlap. This may be seen from the following examples:

ExampLE 1. Let (Xp1, Xna, +*+ , Xn2n) be a random permutation of

(vn,.— /n,0,0, ---,0).

Then D i%1 Xai = 0,1/2n D %2 X5 = 1, but maxi<i<zn |X,..|/\/2n = 1/4/2.
ExampLE2. Let X = (Xp1, Xpg, -+, Xnan) = (0,0, - -+ , 0) with probability
1 — p, — 1, and otherwise let X be a random permutation of
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Then Z"}Z, Xa = 0, E(X%:) = 1, and the X,; are i.r.v.’s. Now

| Xni] _ | Xm]| P
max — == = =

1zizen V20 V'2n 0.

But 1/2n D _in X%, = 0 with probability 1 — », — 1 and hence converges to
zero in probability.

5. Illustrations.

Exampr 1. Quantiles. Let k, n be positive integers and Uy, Us, +++, Ugar
independent r.v.’s each uniformly distributed on (0, 1). Take U; to be the jth
smallest of (Ui, Uz, +++y Ukna), 7 = 1, 2,++-, kn — 1. That is,
Uf = Uf <, .-, £ Ui, are the order statistics from a uniform or rectangu-
lar distribution. Designate the successive differences Ui — Uiy by Vi, ¢ =
1,2, -+, kn, where Us = 0, Usn = 1.

It is well known that Vi, V2, - -+, Vi, are interchangeable random variables

adding up to one. In fact, any kn — 1 of them have a joint density
For, 00, 0 0ty visa, o0, 0m) = (kn — 1)1 for 30, £ 1,0, 20,
=0, otherwise.

A routine but tedious calculation or a non-routine exciting application of the
Poisson stochastic process yields

-1
E’[VI]=(Im_rl+r) ’ r=1,2 -,
2 _ 4kn — 1)!
AV = G o
‘ _ (kn — 1)!
E[Vl V2] - m)
2 _ 2(kn — 1)!
E[ViVy] = TnF T
Further, Vi, -+, Vi, are i.r.v.’s and likewise Xn, -+ , Xn g, , Where b, = kn

and
: 1
V (n — D(kn + 1)

Moreover, Y i Xa: = 0 and 0%, = 1,2 =1, -+, kn. The prior array of ex-
pected values furnishes the estimates:

EX%: = 0YE [V1 - i:r = 0(Y0 (n_1.4> = o(1)

ni

kn
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and

COV (XE.] , X:z)

= 0(n*) Cov [(Vl - %) ( B )]

= 0(”4) COV [V% 'Ic— Vl, V2 - ]

= 0(n) {[E(w vhH - & E’(V2 )+ o BV Vz)] [E(V) - —E(h)]}

= 0(mHo(n™) = O(n_z).
If, now, m, = n, it follows from Corollary 1 to Theorem 1 that

1 kn(U, — 1/k) _ 1 sy
v V= D+ 00 VR

has a limiting normal distribution with mean zero and variance 1 — 1/k. The
same statement then applies to k/n(U, — 1/k).

Thus, the sample quantile U, of order 1/% in a sample of kn — 1 from a rec-
tangular distribution is asymptotically normal with expected value 1/k and
variance (k — 1)/k’n.

Clearly, an analogous statement holds with 1/% replaced by any real number
¢ in (0, 1). This conclusion extends to other distributions than the rectangular,
e.g., if the c¢.d.f. F(z) has a continuous non-zero derivative at the unique solution
i of F(z) — 1/k. These facts are, of course, well known.

Note, in addition, that

EX X2 = O@DE[(Vy — 1/kn)(Vy — 1/kn)]

9 1 21 -1
= 0(n) [k———nmn T " kndn T W]
= 0(m)0(n™%) = o(1).

Thus, if (for specificity) & = 2, an application of Corollary 3 yields the con-
clusion that

lvm St ] Vil a1

is normally distributed in the limit with mean zero and variance % where X,
denotes the sample median. This appears to be new but hardly of overwhelming
interest. A comparable result may bedemonstrated in the case of a random casting
of r, objects into n cells referred to in Section 3.
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ExampLE 2. Ranks. Let R, , - - - , Ry, be a random permutation of the integers
@1, 2,.-+, k). Define :

bo 4 1
R, — =

1/ =1

12
Then, (Ry, +++, R:,) and (Xp1, *++ , Xn.1,) each comprise a set of i.r.v.’s. More-
over,

X =

kn kn
ZX”‘ =0, EX:C =1,
f=1 fe=1

and

-2

ey | Kol VT2 1 f3—1)_,,
1535k Vin VEn VR =1 VY GFD

A direct application of Corollary 2 of Theorem 1 yields the limiting normality
(mean 0, variance 1 — a) of

ka+1
My Rc' 2

o '/kf.'— 1’
12

where lim,., M4/kn = @,0 < a < 1, a familiar result.
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