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1, Introduction and summary. Several authors have studied the discrete
stochastic process (z;) in which the 2’s are related by the stochastic difference
equation

(LD T = oy + Us, t=1,2---,T,

where the u’s are unobservable disturbances, independent and identically dis-
tributed with mean zero and variance ¢*, and « is an unknown parameter.

The statistical problem is to find some appropriate function of the z’s as an
estimator for a and examine its properties.

We may rewrite (1.1) as

(12) Xy = U "|" a1 + LR + a"lul + a'xo .

From (1.2) we see that the distribution of the successive ’s is not uniquely
determined by that of the u’s alone. The distribution of z, must also be specified.
Three distributions which have been proposed for z, are the following:

(A) z = a constant (with probability one),

(B) o is normally distributed with mean zero and variance ¢*/(1 — a?),

(C) o = Zr.
Distribution (B) is perhaps the most appealing from a physical point of view,
since if 29 has this distribution and if the ’s are normally distributed, then the
process is stationary (e.g., see Koopmans [4]). However, there are several analytic
difficulties which arise in the statistical treatment of this process. Distribution
(C), the so-called circular distribution, has been proposed as an approximation
to (B) and is much easier to analyze (e.g., see Dixon [2]). Distribution (A) has
~ been studied extensively by Mann and Wald [5]. An interesting feature of
distribution (A) is that o« may assume any finite value, while for distributions
(B) and (C) a must be between —1 and 1. From (1.2) we see that a process
satisfying (1.1) and (A) has
(1.3) var (z;) = o’(1 + o + -+ + 5¢D),
If |a| = 1, limey var (z;) = o and the process is said to be “explosive.”

Mann and Wald [5] considered only the case | @ | < 1. They showed that the
least squares estimator for « is the serial correlation coefficient’
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LIMITING DISTRIBUTIONS 1189

and that (for |a| < 1) this estimator is asymptotically normally distributed with
mean o and variance (1 — o°)/T. Rubin [6] showed that the estimator & is
consistent (i.e., plim & = «) for all a.

In this paper the asymptotic distribution of & will be studied under the as-
sumption that the u’sare normally distributed. For | a | > 1, it isshown that the
asymptotic distribution of « is the Cauchy distribution. For [« | = 1, a moment
generating function is found, the inversion of which will yield the asymptotic
distribution.

2. The distribution of & — a. From equation (1.1) and condition (A) the
joint distribution of

z = (:131,:132, ce 7x7’)
is easily found to be

n _ exp [(—1/26") X (v — axi)’]
(2-1) f(x) = (21‘.0.2)1'/2 .

The maximum likelihood estimator for « is then the least-squares estimator 4.
Since we shall be considering only the distribution of

4 = Z Ty fz-—l’
Z T
we may, without loss of generality, take ¢° = 1. For the time being we shall
also set o = 0.
We may now write (2.1) in matrix form as follows:

exp (—%x2'Px)

(2.2) f@) = —"‘W s

where P is the T X T matrix

144 —a 0 l 0
—a 14 —a 0

— 2 _
23) P= 0 a 1+ o a

—a 14 —aJ
0 —a 1

Since & is a consistent estimator for «, we shall consider the distribution of & — «
rather than that of « alone. We have

A T

a — a = ~ 2 b

th—l
2
TyXp — @ ) T
(2.4) = Z_,L'_}_{MZ__LV‘
Z L1

Az
z'Bzx’
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where A and B are the T X T matrices

22 -1 O
-1 22 -1
A=_%0—12a ,
-1 22 -1
1 00
010
B=001
010
0 0O

Let m(u, v) be the joint moment generating function of 2’Ax and z'Bz. We
have

m(u, v) = E (exp {z'Azu + 'Bxv})

©26) = (2n)” ™ f exp (v’ Azu + 2’Bxv — o' Px/2) dx

= (2r)" ™" f exp (—2'Dz/2) dz,

where D is the T X T matrix

p g0
X
@)  D=P-—24u—2B=|" 9P ,
¢ P
0 ¢ 1

p=14+ao —20+ 2mu, qg= —(a+ u).

By a well-known integration formula (Cramer [1], Eq. (11.12.2.), p. 120) we
have

(2.8) m(u,v) = @r)"™" f exp (— :El—zD—x> dx = (det D)%

If we now write det D = D(T), we note that expanding (2.7) by the elements of
the first column gives the difference equation

(2.9) D(T) = pD(T — 1) — ¢D(T — 2).
From the initial values D(1) = 1 and D(2) = p — ¢*, we obtain

(2.10) D(T) = : —splore

— 8 §—7T
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where r and s are roots of the equation z* — pz + ¢* = 0, that is
(2.11) r,s=(p£VpP — 49)/2.

The inversion of m(u, v) = D(T)™* seems out of the question for finite T. The
inversion of a certain limiting form of m(u, v) will be discussed in Section 4.

3. The standardizing function g(7'). Since & is consistent the limiting distri-
bution of & — a is the unitary distribution. The first problem then is to find some
function of T, say g(T), such that the limiting distribution of ¢(T) (& — «) is
non-degenerate. We note that the results of Mann and Wald (Eq. (1.4) above)
give g(T) = (T/{1 — o’})} for | «| < 1, since (T/{1 — 1) (& — a) has a
limiting normal distribution. The function g*(T) corresponds roughly to the
reciprocal of the asymptotic variance of (& — a), or in Fisher’s terminology the
“information’’ on « supplied by the sample.

The “information” on « may be obtained explicitly as follows. Let f be the
density function (2.1) with 2, = 0 and ¢® = 1. The “information,” say I(«), is
then defined as

Ie) = E (—‘f log f)

aa?
= E (X i)

CRY 1 1-d7 .
-2 (-2 i el
“ITZD e =1

If the 2’s had been independent random variables, then I(a) (& — «) would be
asymptotically N (0, 1) (Cramer [1], Eq.(33.3.4), p. 503). This, of course, is
not the case. This approach does, however, give an heuristic method for finding a
function g(T) such that g(T) (& — o) has a non-degenerate limiting distribution.
- We might now take g(T) = [I (a)]*; however, it will simplify the computations
to use slight modifications which are asymptotically equivalent to (I (a)]}. We

choose
_ T
41(T)—1/———1_a2 for |al < 1,
T
3.2 = for |al =1,
®2) V2 |
= laf” for |a| > 1
o —1 ’

In the next section it will be shown that g(T) (& — o) has a non-degenerate
distribution for all values of a. ‘
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4. The limiting distribution of g(T) (& — a). We shall first consider the joint
distribution of z’Az/g(T) and z'Bx/g*(T). Let M(U, V) be the joint moment
generating function of these two statistics. We then have

M(U, V) = Elexp «'A2U/g(T) + 2'BxV/¢*(T)]
= m[U/g(T), V/g"(T)],

where m(u, v) is the joint moment generating function (2.6).
From (2.10) and (2.11) with g = ¢(T), v = U/g and v = V/g’, we have

MU, V) = D(T)}

(4-2) =1—STT+1-_TST,

r—s 8§ —7r
r,s =3l 4o + 2aU/g — 2V/§ £ {(1 — &) — 4a(l — )U/g
— 41 — HUg" — 4 + &)V /g’ — 8aUV/g* + 4V?/g*}7).

(4.1)

(4.3)

For sufficiently large T and | a | % 1, we may factor (1 — o) out of theradical in
(4.3) and expand the remaining radical by the binomial theorem. We then have,
up to terms of order O(g™")

7,8 = 2[1+a + 2aU/g — 2V/g

(44) 2 21 + AV 2U? -
:t:{l —a — 2aU/g — T—Bg  d= a2)g2+ O(g 3)}]

Taking r with the plus sign and s with the minus sign we have

U + 2V

_ —3
r=1-— =g + 0(g™),
“5 U + 22°V
s = o + 2U/g + T a’; L+ 0.

Substituting the appropriate values of g(7') from (3.2), we have

2
r=1- U_+_2_‘_’+0(T‘*) for [a] < 1,
(4.6) o
s=a2+2a/‘/l—a2U+U+2aV+O(T_*).
T T
2 ‘ 2
r=14+U +20‘;)T(°‘ ~ D ogal™  for|al > 1,
4.7

2aU(a* — 1) _ (U* + 22V) (o — 1) + 0 al—sr).

I P [1' qzr

s=d +
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If |a| = 1, the expansion in (4.4) is not valid; however, from (4.3), we have

1+ ‘/?F“U+ 22"/—I7+ OT™  for|al =
(4.8)

s=14 \/ﬁaU 21/'\/—+ 0(T..2)

Substituting these results in (4.2), we have
lim M(U, V) = exp (V + U%/2) for|a| <1,
Q=0 =2V)™"  for|a| > 1,

“9) exp (V2a0) (cos 2V — \2/\5/0‘_;] sin 20/V >—i

for|a| =

The next problem is to obtain the limiting distribution of g(T)(¢ — a) from
lim M(U, V). Since g(T)(@ — a) = g¢(T)x’Ax/x'bX, the problem is one of
finding the distribution of the ratio of two random variables. One method of
solution has been proposed by Gurland [3]. Let X and ¥ be two random variables,
Prob (Y > 0) = 1. We wish to determine the distribution of Z = X/Y. Let
W =W, = X — 2Y. Then we have

Prob (Z < z) = Prob (X/Y < 2)
(4.10) = Prob (X — 2Y < 0)
= Prob (W, < 0).

If the distribution of W can be found, the distribution of Z will immediately
follow. Frequently the distribution of W can be found from that of X and ¥ by
means of moment generating functions. Let

(4.11) m(w) = E(exp{Ww}), m*(u,v) = E(exp{Xu + Y»}),
then
m(w) = E(exp{X — zY}w) = E(exp{Xw — Yzw}) = m*(w, — zw).

To apply this technique to the problem at hand, we set W = a2’'dz/g —
22'Bz/¢’. From (4.1), (4.2) and (4.9) we have

mw) = Mw, —zw),

lim m(w) = exp (—zw + w*/2)  for|a| < 1,
(4.12) =1+ 2w=uw)? forla|>1,
= {exp (V2aw) <cos v/ =z — \é_:zv sin 24/ —zw —zw)}_”2

for |a| =
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The inversion of lim m(w) is trivial for |« | < 1. The moment generating function
exp (—zw-+w’/2) is immediately recognized as that of a random variable
which is normally distributed with mean —z and variance 1. Hence we have

lim Prob (W < 0) = (2n)* [0 exp (—{t + 2}°/2) dt

(4.13) - @ | " exp (=/2) dt

= lim Prob {g(T)(& — @) < 2},

i.e., 9(T) (& — o) is asymptotically normal with mean 0 and variance 1.

For |a| > 1, the inverse of lim m(w) might be obtained directly in terms of
Bessel functions; however, it is more appealing from a statistical point of view to
proceed as follows. Let X and Y be independent chi-squared variables with one
degree of freedom. Then E(exp{Xw}) = E(exp{Yw}) = (1 — 2w)™* is their
common moment generating function. Now set B = aX — bY, the moment

generating function of R will be
4.14) mg(w) = E(exp{Rw}) = E(exp{aX — bY}w)
’ = ({1 — 2aw} {1 + 2bw})™".

In particular if we set

(4.15) 20=V1F22—2 26=+1F2+¢,
we have
(4.16) - me(w) = (1 + 22w — w)"? = lim m(w).

Hence, the limiting distribution of W, for | a| > 1, is the same as the distribution
of R = aX — bY. We then have

lim Prob (W < 0) = Prob (aX — bY < 0)
= Prob (X < bY/a)

(4.17) 1 [® ¥ exp (—z/2 — y/2)
-zl [ Vo B
= lim Prob {g(T)(& — @) < 2z} = say F(z).

The density function corresponding to F(2) is

50 =0 = L [" /&b exp (~by/2a ~ y/2) {d% “)} dy
_ 1 2 d@/a)
e “mV T @
T : (by (4.15)).

Trl¥2
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Hence the limiting distribution of g(T)(¢ — ), for |a| > 1, is the Cauchy
distribution.

We have been unable to invert lim m(w) when |a| = 1. In the next section
certain results concerning this limit and more general problems of this type will
be discussed.

If we now let 20 = ¢, a non-zero constant, the analysis proceeds much as before.
Let A, B, P, and D be the T X T matrices defined in (2.3), (2.5) and (2.7). We
then have, analogous to (2.1) and (2.4),

f@) = @n)"™" exp (v — o'c’/2 — ' Px/2),

(4.19) 4 g TAT + ot — oc
« z'Bx + ¢

The joint moment generating function of 2’Az + ¢z, — o’¢® and 2'Bz + ¢’ is

m(u,v) = E (exp {(@’Az + cx1 — ac®)u + (#'Bz + )v})

{exp( v — o — %—)} 2r)~""

(4.20) f exp ([u + alex; — x;lz)_x) dx
= exp (¢ — ¢ e — %) exp{w 4+ 5 2T 1) Dy,
lim m(U/g, V/g) = lim M(U, V)
- - tin{peny e (=551 - 252 )

where D(T) is as defined in (4.2) while D’(T — 1) is defined in a similar fashion
but with g = g(T").
For | a| < 1, it follows from (4.6) and (4.8) that, since g(T) and g(T — 1) are
of the same order,
lim D(T) = lim D'(T — 1)
and hence
(4.22) lim m(U/g, V/¢®) = lim M(U, V) = lim D(T)™"*.

We see that this limit is the same as that for o = 0 as given in (4.9) and hence
the limiting distribution of g(T)(@ — a) does not depend on the initial value
xofor|a| = 1.

For | «| > 1 we have, from (4.7),

lim D(T) = 1 — (U + 2V),

(4.23) lim DT — 1) = (i%zz—w ;
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and in place of (4.22) we have
22
. ~1/2 _ac _D'(T - l)])
lim D(T exp ( - [1 Dy

=1 -U -2V exp{(‘" 5 De (1 H (}'; EVzv)}'

This moment generating function may be inverted by the methods of Section 4
to give

_ ¢’ & e Y 1 _ S —1)
w2 10 = s S () e T

as the limiting distribution of g(T)(& — «). We note that for ¢ = 0, f(z) is the
Cauchy distribution as obtained in (4.18).

6. Final remarks. The results of Mann and Wald [5] show that the limiting
distribution of g(T)(& — ), for| a| < 1, isalso N(0, 1) if, rather than assuming
that the “errors” . are normally distributed, we merely assume that all of the
moments of the ’s are finite. This is another example of an invariance principle
which seems to hold quite generally for the limiting distributions of function of
random variables. Roughly speaking, there seems to be an unproved (and un-
stated) theorem that the limiting distribution of a function of a sequence of
independent random variables, with suitable restrictions on these random vari-
ables, depends only on the form of the function and is the same as the distribution
of a related functional on a stochastic process.

A general result of this form is Donsker’s Theorem [7] which gives the limiting
distribution of any function of sums of independent identically distributed
random variables with finite variances as the distribution of a corresponding
functional on the Wiener process. It is conjectured that this type of reasoning
will show that the results of Mann and Wald will still hold if the u’s are merely
assumed to have finite variances.

For « = 1, application of Donsker’s Theorem shows that the limiting distribu-
tion of g(T)(& — «) is the same as the distribution of the functional

lim M(U, V)
(424)

I

s )y
Glz(-)] = «[). i _ 'ixl(l) -3
fo () dt [o () dt

on the Wiener process, independent of the distribution of the u’s. This distribu-
tion will be considered in a future paper.
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