APPLICATION OF A MEASURE OF INFORMATION TO THE DESIGN AND COMPARISON OF REGRESSION EXPERIMENTS

By M. STONE

British Medical Research Council Applied Psychology Unit

1. Introduction and Summary. A normal regression experiment can be represented by

(1.1)
$$Y_{i} = \sum_{j=1}^{k} X_{ij} \theta_{j} + \eta_{i} \qquad (i = 1, \dots, n)$$

where $\{\eta_i/i=1,\cdots,n\}$ is a set of normally distributed random variables with zero means and non-singular dispersion matrix C, $\theta=(\theta_1,\cdots,\theta_k)$ is the parameter-vector of interest and $X=(X_{ij})$ is a known $n\times k$ matrix which will be called the allocation matrix. The rows of X will be called the allocation vectors. We denote the experiment by $\mathcal{E}(X,C)$. We assume that C is known; generally it will be a function of X, C(X). The particular realisation of Y will be denoted y. The matrix $F=X'C^{-1}X$ is the Fisher-information-matrix of $\mathcal{E}(X,C)$.

When F is non-singular, one answer to the question "What information does y give about θ ?" is to quote F^{-1} , the dispersion matrix of the maximum-likelihood-estimates of θ . A strong argument in favour of this is that F^{-1} is independent of both θ and y. The fact that it is independent of θ means that the answer is not "local"; the fact that it is independent of y leads to simplicity. This approach is taken by Box and Hunter [1] in their work on rotatable designs. However, we must accept the fact that many experimenters wish to have a onedimensional answer to the question i.e. we must associate with $\mathcal{E}(X, C)$ a single number which we call the "information". For instance Elfving [5] has developed the use of trace F^{-1} . In this paper we adopt the measure of information introduced by Lindley [7]. In Section 2 we generalise Lindley's treatment of the regression situation to include the singular case, explain the uses of the measure and compare it with that of Elfving. Section 3 deals with the analogue of Elfving's main theorem. Theorems 4.1 and 4.2 of Section 4 provide links with the traditional variance approach. In Section 5 we derive the asymptotic form of the measure as the n of (1.1) increases and show that this form can be derived also from Neyman-Pearsonian theory. In Section 6 the influence of nuisance parameters is discussed and an analogue of a theorem of Chernoff [2] is established.

2. The information measure is defined in the Bayesian framework. Generally, if before experimentation we express our knowledge of θ by the prior distribution $p(\theta)$ and, after the experiment defined by the set of probability density functions $p(y/\theta)$, we obtain a posterior distribution $p(\theta/y)$, then the gain of information is

Received November 4, 1957; revised March 15, 1958.

56 M. STONE

defined as the functional

(2.1)
$$\Delta I = Ip(\theta/y) - Ip(\theta)$$

where $Ip(u) = \int p(u) \log p(u) du$.

Lemma 2.1. If, before $\mathcal{E}(X, C)$, θ is normally distributed with mean μ and non-singular dispersion matrix A then

$$\Delta I = \frac{1}{2} \log |I + AF|.$$

PROOF.

$$Ip(\theta) = \int p(\theta) \log \left[(2\pi)^{-\frac{1}{2}k} \mid A \mid^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2}(\theta - \mu)'A^{-1}(\theta - \mu) \right\} \right] d\theta$$

$$= -\frac{1}{2} \log \left[(2\pi)^k \mid A \mid \right] - \frac{1}{2} \int p(\theta)(\theta - \mu)'A^{-1}(\theta - \mu) d\theta$$

$$= -\frac{1}{2} \log \left[(2\pi)^k \mid A \mid \right] - \frac{1}{2} \sum_{i=1}^k \sum_{j=1}^k A^{ij} A_{ij}$$

$$= -\frac{1}{2} \log \left[(2\pi)^k \mid A \mid \right] - \frac{1}{2}k.$$

Also

$$p(\theta/y) = \dot{p}(y/\theta)p(\theta)/p(y)$$

$$\propto \exp \left[-\frac{1}{2} (y - X\theta)' C^{-1} (y - X\theta) - \frac{1}{2} (\theta - \mu)' A^{-1} (\theta - \mu) \right].$$

Therefore $p(\theta/y)$ is normal with dispersion matrix

$$(X'C^{-1}X + A^{-1})^{-1} = (F + A^{-1})^{-1}.$$

Hence

$$Ip(\theta/y) = -\frac{1}{2} \log \left[(2\pi)^k / |F + A^{-1}| \right] - \frac{1}{2}k$$

and

$$\Delta I = \frac{1}{2} \log (|F + A^{-1}| |A|) = \frac{1}{2} \log |I + AF|.$$

Among the class of regression experiments for which it is reasonable to take a normal prior distribution for θ with dispersion matrix A, the expression for ΔI just derived proves useful in three ways:

Use 1. If we decide to experiment until the gain of information reaches a certain level then the fact that ΔI is independent of y allows us to state in advance whether a particular experiment will give us the required gain. Among experiments which do, we may choose the one which is most economical in some sense. This is the case of fixed-sample-size-experimentation.

Use 2. Two experiments can be compared in the following sense:

"Any result of $\mathcal{E}(X_1, C_1)$ will give $\Delta I_1 - \Delta I_2$ more information than any result of $\mathcal{E}(X_2, C_2)$ ". We may note that we are not obliged to use the average gain of information (as defined by Lindley [7]) to compare $\mathcal{E}(X_1, C_1)$ and $\mathcal{E}(X_2, C_2)$ although the result of doing so would be the same.

- Use 3. If we have a choice of performing any experiment from a given class, we may choose the $\mathcal{E}(X, C)$ which maximises ΔI . ΔI possesses two advantages over the measure trace F^{-1} :
- (i) If $\phi = M\theta$ is a non-singular linear transformation then ΔI is the same whether we consider information about θ or about ϕ . For

(2.3)
$$\frac{\frac{1}{2} \log |I + AF| = \frac{1}{2} \log [|M| |I + AF| |M^{-1}|] }{= \frac{1}{2} \log |I + (MAM')(XM^{-1})'C^{-1}(XM^{-1})|}.$$

But MAM' is the prior dispersion matrix for ϕ and, under the transformation, $\mathcal{E}(X, C) \to \mathcal{E}(XM^{-1}, C)$ so that (2.3) is the ΔI for ϕ .

- (ii) ΔI can be used even when not all the θ_i are estimable i.e. when F is singular, whereas in this case trace F^{-1} becomes infinite. For $|I + AF| = |A| |A^{-1} + F|$, A^{-1} is positive-definite and, although F is singular, it remains positive-semi-definite. Hence $|A^{-1} + F|$ and therefore |I + AF| are non-zero.
- 3. In connection with Use 3 we proceed to show that a theorem proved by Elfving using trace F^{-1} still holds if we adopt ΔI . The theorem is concerned with the following problem: "Given g possible allocation vectors $x(1), \dots, x(g)$ which are linearly independent, we are to make n independent observations where n is large and each observation can be made at any of the allocation vectors. How are the observations to be allocated to maximise ΔI ?". To answer this we need a lemma.

LEMMA 3.1. If $F(n_1, \dots, n_g)$ is the Fisher-information-matrix of the experiment consisting of n_i observations at x(i) $(i = 1, \dots, g)$ with the errors (η) uncorrelated and if we replace n_i in this matrix by np_i , $p_i \ge 0$, $\sum p_i = 1$, to obtain the matrix $F^*[np_1, \dots, np_g]$ then in general $|I + AF^*|$ is maximum when no more than $\frac{1}{2}k(k+1)$ of the p_i 's are non-zero.

PROOF. We have assumed that the non-diagonal elements of C(X) are zero. There is no further loss of generality in assuming that C(X) = I for we can always write $\lambda_i x(i)$ for x(i) so that this is so. We find that the (r, s)th element of $F(n_1, \dots, n_g)$ is $\sum_{i=1}^g n_i x_i(i) x_s(i)$. Then

$$F_{rs}^* = \sum_{i=1}^{g} n p_i x_r(i) x_s(i).$$

There are two possibilities:

- (a) If there exists an *i* such that $|I + AF^*|$ is maximum when $p_i = 1$ then since $1 \le \frac{1}{2}k(k+1)$ the lemma holds.
- (b) If $|I + AF^*|$ is maximum at p = p(m) when more than one $p_i(m)$ is non-zero, we proceed as follows.

$$\frac{\partial}{\partial p_{i}} | I + AF^{*} | = | A | \frac{\partial}{\partial p_{i}} | A^{-1} + F^{*} |$$

$$= | A | \sum_{i=1}^{n} \begin{vmatrix} nx_{1}^{2}(i) & nx_{1}(i)x_{2}(i) & \cdots \\ A^{21} + F_{21}^{*} & A^{22} + F_{22}^{*} & \cdots \\ \vdots & \vdots & \vdots \end{vmatrix}$$

58 M. STONE

for $i = 1, \dots, g$ after row-by-row differentiation. Expanding each of these determinants about the row which has been differentiated we have

$$\frac{\partial}{\partial p_i} |I + AF^*| = n |A| x'(i)Q[p]x(i) \qquad (i = 1, \dots, g)$$

where $Q[p] = \text{adj } (A^{-1} + F^*)$. Now $\sum p_i = 1$ so that, applying the method of undetermined multipliers to variations of the p_i 's for i's for which $p_i(m) \neq 0$, we see that there exists a λ such that

$$\left\{\frac{\partial}{\partial p_i}\big|\,I\,+\,AF^*\big|\right\}_{p(m)}=\lambda$$

for i such that $p_i(m) \neq 0$. Hence for such i

(3.1)
$$x'(i) Q[p(m)]x(i) = \lambda' \text{ where } \lambda' = \lambda/n \mid A \mid .$$

Now $x'Q[p(m)]x = \lambda'$ is the equation of a central quadric. In general not more than $\frac{1}{2}k(k+1)$ of the given allocation vectors can lie on a central quadric and hence the lemma is established. To make the lemma fully rigorous, we would need to consider the possibility that more than $\frac{1}{2}k(k+1)$ of the vectors do lie on a central quadric. We omit this consideration since it is rather tedious.

The lemma relates directly to the problem stated. From (2.2)

$$\Delta I = \frac{1}{2} \log |I + AF(n_1, \dots, n_g)| = \frac{1}{2} \log |I + AF^*[np_1, \dots, np_g]|$$

evaluated at $p_i = n_i/n$. So that if we do the experiment consisting of $[np_i(m)]$ observations at x(i) $(i = 1, \dots, g)$, which involves using at most $\frac{1}{2}k(k+1)$ of $x(1), \dots, x(g)$, for n large we will be making n-f observations in all where $f \leq g$. The allocation indicated will provide (asymptotically) the maximum ΔI . Thus:

THEOREM 3.1. To achieve maximum ΔI for the above problem it is not necessary to use more than $\frac{1}{2}k(k+1)$ of the given allocation vectors.

For n not large the theorem is not necessarily true. Although it does not specify p(m), it is nevertheless useful in providing a rule for rejecting some experiments for using too many allocation vectors. Generally the calculation of p(m) is not feasible. However when k=2 and the elements of $(AF^*[np(m)])^{-1}$ are small, we may proceed to obtain p(m) approximately. By Theorem 3.1 only three allocation vectors need be used. Consider them as the only vectors given: x(1), x(2), x(3). Approximately

$$Q[p] = \begin{pmatrix} \sum np_j x_2^2(j) & -\sum np_j x_1(j)x_2(j) \\ -\sum np_j x_2(j)x_1(j) & \sum np_j x_1^2(j) \end{pmatrix}$$

and hence

$$x'(i)Q[p]x(i)/n = x_1^2(i) \left[\sum p_j x_2^2(j) \right] - 2x_1(i)x_2(i) \left[\sum p_j x_1(j)x_2(j) \right]$$

$$+ x_2^2(i) \left[\sum p_j x_1^2(j) \right] = \sum_{i=1}^3 p_j E_{ij} \quad (i = 1, 2, 3)$$

where $E_{ij} = [x_1(i)x_2(j) - x_2(i)x_1(j)]^2$. We note that $E_{ij} > 0$ when $i \neq j$ since the vectors x(i) are supposed independent. Then, if $p_i(m) \neq 0$ (i = 1, 2, 3), equation (3.1) gives

$$egin{pmatrix} 0 & E_{12} & E_{13} \ E_{21} & 0 & E_{23} \ E_{31} & E_{32} & 0 \end{pmatrix} egin{pmatrix} p_1(m) \ p_2(m) \ p_3(m) \end{pmatrix} = egin{pmatrix} \lambda'' \ \lambda'' \end{pmatrix}$$

where $\lambda'' = \lambda'/n = \lambda/n^2|A|$. Using $\sum p_i(m) = 1$ we get

$$(3.2) p_i(m) = E_{jk}(E_{ij} + E_{ik} - E_{jk}) / \sum_{i=1}^3 E_{jk}(E_{ij} + E_{ik} - E_{jk})$$

for i = 1, 2, 3; (j, k) = (1, 2, 3) - (i). Also

(3.3)
$$\lambda'' = 2E_{23}E_{13}E_{12} / \sum_{i=1}^{3} E_{jk}(E_{ij} + E_{ik} - E_{jk}).$$

Hence for $p_i(m) > 0$ (i = 1, 2, 3) either

$$(3.4) E_{ij} + E_{ik} > E_{jk} (i = 1, 2, 3)$$

 \mathbf{or}

$$(3.5) E_{ij} + E_{ik} < E_{jk} (i = 1, 2, 3).$$

The possibility of (3.5) can be readily excluded. We see that (3.3) and (3.5) imply $\lambda'' < 0$ but since Q is positive-definite $0 < x(i)'Qx(i) = \lambda' = n\lambda''$ or $\lambda'' > 0$, which is a contradiction. Therefore only (3.4) is consistent with $p_i(m) > 0$ (i = 1, 2, 3). Equation (3.4) is not always satisfied by three given vectors. For example if x(2) lies between x(1) and x(3) (in their two-dimensional representation) and

$$|x(2)| < \min(|x(1)|, |x(3)|), \qquad E_{ij} = |x(i) \wedge x(j)|^2 = 4 A_{ij}^2$$

where A_{ij} = "area between x(i) and x(j)". Clearly $A_{13} > A_{12} + A_{23}$; therefore $A_{13}^2 > A_{12}^2 + A_{23}^2$; therefore $E_{13} > E_{12} + E_{23}$.

However if (3.4) is satisfied the p(m) given by (3.2) is that which approximately maximises ΔI . Also since Q is positive-definite $x'Qx = \lambda'$ is an ellipse, so that we need consider only triples of allocation vectors which lie on central ellipses.

We now evaluate the aymptotic maximum of ΔI :

(a) When (3.4) holds

$$\max \Delta I = \frac{1}{2} \log |I + AF^*[np(m)]| \cong \frac{1}{2} \log |A| + \frac{1}{2} \log |F^*[np(m)]|.$$

Now $|F^*[np]|$ is a homogeneous polynomial of degree two in p_i (i = 1, 2, 3). Therefore

$$|F^*[np]| = \frac{1}{2} \sum p_i \frac{\partial}{\partial p_i} |F^*[np]|.$$

But, for the p(m) of (3.2),

$$\left(\frac{\partial}{\partial p_i} \mid F^*[np] \mid \right)_{p(m)} = \frac{\lambda}{\mid A \mid}$$

so that

$$|F^*[np(m)]| = \frac{1}{2}\lambda/|A| = n^2E_{23}E_{13}E_{12}/\sum E_{jk}(E_{ij} + E_{ik} - E_{jk}).$$

Hence

$$(3.6) \quad \max \Delta I \cong \log n + \frac{1}{2} \log |A| + \frac{1}{2} \log \left[E_{23} E_{13} E_{12} / \sum E_{jk} (E_{ij} + E_{ik} - E_{jk}) \right].$$

(b) When (3.4) is not satisfied, one of the vectors must have its associated p_i zero. Suppose $p_3(m)=0$. Then the equations (3.1) lead to $p_2(m)E_{12}=\lambda'/n$ and $p_1(m)E_{12}=\lambda'/n$ so that $p_1(m)=p_2(m)=\frac{1}{2}$ and $\lambda'/n=\frac{1}{2}$ E_{12} or $\lambda=\frac{1}{2}$ $n^2|A|E_{12}$. Hence

(3.7)
$$\max \Delta I \cong \frac{1}{2} \log |A| + \frac{1}{2} \log |F^*| = \frac{1}{2} \log |A| + \frac{1}{2} \log (\frac{1}{2} \lambda/|A|) \\ = \log n + \frac{1}{2} \log |A| + \frac{1}{2} \log (E_{12}/4).$$

In conclusion for the case k=2 we state the experimental rule as follows: "Given g allocation vectors select those triples which obey (3.4) and calculate

$$E_{23}E_{13}E_{12}/\sum E_{jk}(E_{ij}+E_{ik}-E_{jk}).$$

Also select those pairs which are not members of triples obeying (3.4) and calculate $E_{12}/4$. Make the observations at the pair or triple which gives the greatest number, with n/2 at each vector for a pair and $np_i(m)$ at x(i) (i = 1, 2, 3) for a triple where p(m) is given by (3.2)."

EXAMPLE 1. k = 2; x(1) = (1, 1); x(2) = (0, 1); x(3) = (1, 0). Here $E_{12} = E_{13} = E_{23}$; therefore (3.4) is satisfied and, by (3.2), $p_i(m) = 1/3$ (i = 1, 2, 3).

EXAMPLE 2. k general. Suppose the given allocation vectors lie on the line $x = (1, x, \dots, x^{k-1})$. This is the case of polynomial regression. $x'Qx = \lambda'$ is a polynomial of degree 2k - 2 in x. Therefore in general at most 2k - 2 of the vectors lie on a central quadric and therefore need be used.

In his discussion Elfving considers in detail the case k=2. His solution, i.e. the "best allocation", is rather complicated when three vectors are used. For just two vectors he obtains

$$p_1(m) = |x(2)| / (|x(1)| + |x(2)|)$$

and

$$p_2(m) = |x(1)| / (|x(1)| + |x(2)|)$$

which clearly conflicts with $p_1(m) = p_2(m) = \frac{1}{2}$ using ΔI . The reason for the difference becomes clear in the case $x(1) = (c_1, 0), x(2) = (0, c_2)$ for which

$$F^*[np] = \begin{pmatrix} np_1c_1^2 & 0 \\ 0 & np_2c_2^2 \end{pmatrix}.$$

The different answers arise because, effectively, we minimise the product of the variances of the maximum-likelihood-estimates of θ_1 and θ_2 while Elfving minimises their sum.

4. In this section we consider pairs of experiments $\mathcal{E}(X_1, C_1)$, $\mathcal{E}(X_2, C_2)$ and prove some theorems relating to the cases when \mathcal{E}_1 is always to be preferred to \mathcal{E}_2 . Write $\Delta I_i(A) = \frac{1}{2} \log |I + AF_i|$ (i = 1, 2).

THEOREM 4.1. A necessary and sufficient condition that $\Delta I_1(A) \geq \Delta I_2(A)$ for all positive-definite A is that $F_1 - F_2$ be positive-semi-definite.

PROOF. Sufficiency. We use the fact that if L and M are positive-definite and L-M is positive-semi-definite then $|L| \ge |M|$. (Proved by diagonalising L and M.) Put $L = A^{-1} + F_1$ and $M = A^{-1} + F_2$; then if $F_1 - F_2$ is positive-semi-definite $|A^{-1} + F_1| \ge |A^{-1} + F_2|$ which gives $\Delta I_1(A) \ge \Delta I_2(A)$.

Necessity. $\Delta I_1(A) \geq \Delta I_2(A)$ for all positive-definite A implies that $|A^{-1} + F_1| \geq |A^{-1} + F_2|$ for all positive-definite A^{-1} . Now F_1 and F_2 are positive-semi-definite so that there exists a non-singular P such that $P'F_1P$ and $P'F_2P$ are diagonal.

(4.1)
$$P'F_1P = \begin{pmatrix} d_1(i) & & \\ & \ddots & \\ & & d_k(i) \end{pmatrix} \qquad (i = 1, 2)$$

Therefore

$$\left| P'A^{-1}P + \begin{pmatrix} d_1(1) & & \\ & \ddots & \\ & & d_k(1) \end{pmatrix} \right| \ge \left| P'A^{-1}P + \begin{pmatrix} d_1(2) & & \\ & \ddots & \\ & & d_k(2) \end{pmatrix} \right|$$

where A^{-1} , and hence $P'A^{-1}P$, is arbitrary positive-definite. Taking $P'A^{-1}P$ diagonal with all diagonal elements large except the r'th we deduce $d_r(1) \ge d_r(2)$. Therefore from equations (4.1)

$$P'(F_1 - F_2)P = \begin{pmatrix} d_1(1) - d_1(2) & & \\ & \ddots & \\ & & d_k(1) - d_k(2) \end{pmatrix}$$

is positive-semi-definite. Therefore $F_1 - F_2$ is positive-semi-definite.

We now give simpler proofs of theorems due to Ehrenfeld [4].

Theorem 4.2. If $v_i(t)$ is the variance of the maximum-likelihood estimate of $t'\theta$ from \mathcal{E}_i and if $F_1 - F_2$ is positive-semi-definite then $v_1(t) \leq v_2(t)$ for all t for which $t'\theta$ is estimable from both \mathcal{E}_1 and \mathcal{E}_2 .

Proof. We know that $v_1 = \eta_1' F_1 \eta_1$ and $v_2 = \eta_2' F_2 \eta_2$ where η_1 and η_2 are any solutions of

$$(4.2) F_1 \eta_1 = t, F_2 \eta_2 = t.$$

We have $\eta_1'(F_1 - F_2)\eta_1 \ge 0$ or

$$(4.3) v_1 - \eta_1' F_2 \eta_1 \ge 0$$

while

$$(\eta_1 - \eta_2)' F_2(\eta_1 - \eta_2) = \eta_1' F_2 \eta_1 - 2\eta_2' F_2 \eta_1 + \eta_2' F_2 \eta_2$$

$$\geq 0.$$

From (4.2) $\eta_2' F_2 \eta_1 = \eta_1' F_1 \eta_1 = v_1$ therefore

$$\eta_1' F_2 \eta_1 - 2v_1 + v_2 \ge 0.$$

Adding (4.3) and (4.4) we obtain $v_1 \leq v_2$.

THEOREM 4.3. Given g allocation vectors $x(1), \dots, x(g)$ and their convex hull $\mathfrak{C} = \{\sum \lambda_i x(i) / \sum \lambda_i = 1, \lambda_i \geq 0\}, if F(x_1, \dots, x_n) \text{ is the Fisher-information-}$ matrix of the experiment consisting of n independent observations at x_1, \dots, x_n (with unit error variance) where $x, \varepsilon \in$ then we may take less than n + q + 1 observations at the vertices of C so that their Fisher-information-matrix, F_{ν} , is such that $F_{\nu} - F(x_1, \dots, x_n)$ is positive-semi-definite. Proof. Suppose $x_i = \sum_{j=1}^{g} \lambda_{i,j} x_j$. For each i we have

$$\sum_{j=1}^{g} \lambda_{ij} x(j) x'(j) - x_i x'_i = \sum_{j=1}^{g} \lambda_{ij} x(j) x'(j) - \sum_{j=1}^{g} \sum_{k=1}^{g} \lambda_{ij} \lambda_{ik} x(j) x'(k)$$

and for any t

$$t'\left[\sum_{j=1}^{g} \lambda_{ij} x(j) x'(j) - x_i x_i'\right] t = \sum_{j=1}^{g} \lambda_{ij} t' x(j) x'(j) t - t' x_i x_i' t$$

$$= \sum_{j=1}^{g} \lambda_{ij} \left[t' x(j) - \sum_{j=1}^{g} \lambda_{ij} t' x(j)\right]^2$$

$$\geq 0.$$

Hence $\sum_{j=1}^{n} \lambda_{ij} x(j) x'(j) - x_i x'_i$ is positive-semi-definite for $i = 1, \dots, n$. Therefore

$$\sum_{i=1}^{n} \sum_{j=1}^{q} \lambda_{ij} x(j) x'(j) - \sum_{i=1}^{n} x_{i} x'_{i}$$

is positive-semi-definite. Therefore

$$\sum_{j=1}^{q} \left(\left[\sum_{i=1}^{n} \lambda_{ij} \right] + 1 \right) x(j) x'(j) - F(x_1, \dots, x_n)$$

is positive-semi-definite where [a] is the integral part of a. We can now identify $F_{\nu} = \sum_{j=1}^{n} \left(\left[\sum_{i=1}^{n} \lambda_{ij} \right] + 1 \right) x(j)x'(j)$ for it is the Fisher-information-matrix of the experiment in which $\left[\sum_{i=1}^{n} \lambda_{i,i}\right] + 1$ independent observations are made at x(j) $(j = 1, \dots, g)$ with error variances unity and also

$$\sum_{j=1}^{g} \left(\left[\sum_{i=1}^{n} \lambda_{ij} \right] + 1 \right) \leq n + g.$$

5. From Section 4 we see that the only case in which the ordering of two experiments by the criterion $\Delta I(A)$ is the same for all A is when $F_1 - F_2$ is positive-semi-definite. Clearly since $F_1 - F_2$ may be neither positive- nor negative-semi-definite, not all pairs of experiments can be compared in this clear-cut manner. However when A and F are non-singular so is AF and we may write $|I + AF| = |A| |F| |I + (AF)^{-1}|$ and

$$\Delta I(A) = \frac{1}{2} \log |A| + \frac{1}{2} \log |F| + \frac{1}{2} \log |I| + (AF)^{-1}|.$$

If the elements of $(AF)^{-1}$ are small we have

$$\Delta I(A) \cong \frac{1}{2} \log |A| + \frac{1}{2} \log |F| \text{ and } \Delta I_1(A) - \Delta I_2(A) \cong \frac{1}{2} \log (|F_1| / |F_2|).$$

So we obtain the criterion |F|. The conditions under which it is valid are when, roughly speaking, either

- (i) all the diagonal elements of A are large representing large prior uncertainity for all the parameters or
- (ii) all the diagonal elements of F are large which is usually so if the n of (1.1) is large.

We now introduce a criterion based on the Neyman-Pearson theory of tests and show that a particular case of it leads to the |F| criterion. Lehmann has given [6] a proof that for the experiment (1.1) the uniformly-most-powerful invariant test of the hypothesis $H_0: \theta = 0$ is provided by the usual \mathfrak{F} -test based on

$$\mathfrak{F} = \frac{\hat{\theta}' F \hat{\theta}/k}{(y - X \hat{\theta}) C^{-1} (y - X \hat{\theta})/(n - k)}$$

where $\hat{\theta}$ are the maximum-likelihood estimates of θ . Taking as critical region $\mathfrak{F} > \mathfrak{F}_0$, denote by $P_{II}(\theta)$ the probability of error of the second kind under the alternative hypothesis $H:\theta$. A criterion for design can be stated as follows: "Take a probability density function for θ , $p(\theta)$, and choose the experiment to minimise $\int p(\theta)P_{II}(\theta) d\theta$." The choice of $p(\theta)$ is arbitrary but in a situation where we are initially very uncertain about θ it would be sensible to take $p(\theta)$ to be normal with mean 0 and diagonal dispersion matrix with variances all equal to E and consider what happens as $E \to \infty$. This we now do and state the theorem:

THEOREM 5.1. If $p(\theta/E)$ is the probability density function just described then choosing the experiment to minimise $\int p(\theta/E)P_{II}(\theta) d\theta$ is equivalent to choosing it to maximise |F|.

PROOF. Tang has shown [8] that $P_{II}(\theta)$ depends solely on the function $\lambda = \frac{1}{2} \theta' F \theta$. In fact

$$P_{II}(\theta) = \sum_{i=0}^{\infty} c_i \lambda^i e^{-\lambda} / i!$$

where the c_i are functions of i, \mathfrak{F}_0 , k, n but are independent of X and C and also $c_i \to 0$ as $i \to \infty$ thus making the series uniformly convergent in $0 \le \lambda < \infty$.

$$\int p(\theta/E)P_{II}(\theta) d\theta = (2\pi E)^{-\frac{1}{2}k} \int \exp\left(-\frac{1}{2}\theta' E^{-1}\theta\right)P_{II}(\theta) d\theta$$

and

$$\lim_{{\tt B}\to\infty}\int\exp\;(-{\textstyle\frac{1}{2}}\theta' E^{-1}\theta)P_{\rm II}(\theta)\;d\theta \,=\,\int\,P_{\rm II}(\theta)\;d\theta.$$

Therefore

$$\int p(\theta/E)P_{II}(\theta) d\theta \sim (2\pi E)^{-\frac{1}{2}k} \int P_{II}(\theta) d\theta = (2\pi E)^{-\frac{1}{2}k} \int \left(\sum_{i=0}^{\infty} c_i \lambda^i e^{-\lambda}/i!\right) d\theta$$
$$= (2\pi E)^{-\frac{1}{2}k} \sum_{i=0}^{\infty} c_i \int \lambda^i e^{-\lambda} d\theta/i!$$

since the series is uniformly convergent in $0 \le \lambda < \infty$. Now

$$\int \lambda^{i} e^{-\lambda} d\theta = 2^{-i} \int (\theta' F \theta)^{i} \exp \left(-\frac{1}{2} \theta' F \theta\right) d\theta$$

$$= \frac{(2\pi)^{\frac{1}{2}k}}{2^{i} |F|^{\frac{1}{2}}} \int \frac{|F|^{\frac{1}{2}}}{(2\pi)^{\frac{1}{2}k}} \exp \left(-\frac{1}{2} \theta' F \theta\right) (\theta' F \theta)^{i} d\theta.$$

Now under the probability density function $(2\pi)^{-\frac{1}{2}k}|F|^{\frac{1}{2}}\exp{(-\frac{1}{2}\theta'F\theta)}$, $\theta'F\theta$ is distributed as chi-square with k degrees of freedom. Hence

$$\int (2\pi)^{-\frac{1}{2}k} |F|^{\frac{1}{2}} \exp \left(-\frac{1}{2}\theta' F \theta\right) (\theta' F \theta)^{\frac{1}{2}} d\theta = g(i, k)$$

say where g(i, k) is a function of i and k only. Therefore

$$\int p(\theta/E)P_{II}(\theta) d\theta \sim E^{-\frac{1}{2}k} \left(\sum c_i g(i,k)/i! \ 2^i\right) |F|^{-\frac{1}{2}} \propto |F|^{-\frac{1}{2}}.$$

Hence minimising $\int p(\theta/E)P_{II}(\theta) d\theta$ is equivalent to maximising |F|.

We give now an example of the use of the |F| criterion, which has been treated by Tocher [9] from another viewpoint. If C=I then F=X'X. Suppose the allocation vectors $x_i=(X_{i1},\cdots,X_{ik})$ $(i=1,\cdots,n)$ can be varied subject to the restriction $\sum_{i=1}^{n} X_{ij}^2 = a_j$. Then:

Theorem 5.2. If $\sum_{i=1}^{n} X_{ij}^2 = a_j$ $(j=1,\cdots,k)$ where a_1,\cdots,a_k are positive

THEOREM 5.2. If $\sum_{i=1}^{n} X_{i,j}^{z} = a_{j}$ $(j = 1, \dots, k)$ where a_{1}, \dots, a_{k} are positive constants then |F| is maximum when x_{1}, \dots, x_{n} are chosen so that $F_{rs} = 0, r \neq s$, i.e. when the design is orthogonal.

Proof.

$$F_{rs} = \sum_{i=1}^{n} X_{ir} X_{is}$$

Therefore, by a well-known property of positive-definite matrices

$$|F| \leq (\sum X_{i1}^2) (\sum X_{i2}^2) \cdots (\sum X_{ik}^2) = a_1 a_2 \cdots a_k$$

But when $F_{rs} = 0$, $r \neq s$, $|F| = a_1 a_2 \cdots a_k$. Therefore |F| is maximum when the design is orthogonal.

6. We now consider the modifications in the |F| criterion imposed by the presence of nuisance-parameters, ϕ , which enter linearly into the expressions for the expectations of our random variables, Y, just as the parameters of interest, θ , do.

Let there be q nuisance parameters and suppose that Y is now normal with mean $X\theta + Z\phi$ and dispersion matrix I. For simplicity take the case where

$$F_1 = \begin{pmatrix} X'X & X'Z \\ Z'X & Z'Z \end{pmatrix}$$

is non-singular. Then θ and ϕ are estimable by the maximum-likelihood estimates $\hat{\theta}$ and $\hat{\phi}$. Write

$$\omega = \begin{pmatrix} \theta \\ \phi \end{pmatrix}$$
 and $\hat{\omega} = \begin{pmatrix} \hat{\theta} \\ \hat{\phi} \end{pmatrix}$.

Then

$$p(\hat{\omega}/\omega) = (2\pi)^{-\frac{1}{2}(k+q)} |F_1|^{\frac{1}{2}} \exp \left[-\frac{1}{2}(\hat{\omega} - \omega)'F_1(\hat{\omega} - \omega)\right].$$

Suppose that the prior distribution for ω is

$$p(\omega) = (2\pi)^{-\frac{1}{2}(k+q)} |D|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}(\omega - \omega_0)D^{-1}(\omega - \omega_0)\right]$$

where

$$D = \begin{pmatrix} A & E \\ E' & B \end{pmatrix}$$

(A and B are the prior dispersion matrices for θ and ϕ respectively.) By Bayes' Theorem we find that $p(\omega/\hat{\omega})$ is normal with information matrix $(F_1 + D^{-1})$. To find the information about θ we must integrate out ϕ in (a) $p(\omega)$ and (b) $p(\omega/\hat{\omega})$ to obtain the marginal distributions of θ . We find:

- (a) $p(\theta)$ is normal with dispersion matrix A
- (b) $p(\theta/\hat{\omega})$ is normal with dispersion matrix L where L is the leading $k \times k$ diagonal sub-matrix of $(F_1 + D^{-1})^{-1}$. Then

$$Ip(\theta) = -\frac{1}{2} \log \left[(2\pi)^{\frac{1}{2}k} |A| \right] - \frac{1}{2}k$$

and

$$Ip(\theta/\hat{\omega}) = -\frac{1}{2} \log \left[(2\pi)^{\frac{1}{2}k} |L| \right] - \frac{1}{2}k$$

and

(6.1)
$$\Delta I = Ip(\theta/\hat{\omega}) - Ip(\theta) = -\frac{1}{2} \log |L| + \frac{1}{2} \log |A|.$$

If the elements of $(DF_1)^{-1}$ are small

$$(F_1 + D^{-1})^{-1} = F_1^{-1}(I + (DF_1)^{-1})^{-1} \cong F_1^{-1}.$$

Write

(6.2)
$$F_1^{-1} = \begin{pmatrix} \alpha & \gamma \\ \gamma' & \beta \end{pmatrix}$$

where α is the $k \times k$ dispersion matrix of $\hat{\theta}$ in $p(\hat{\omega}/\omega)$. Then $L \cong \alpha$ and

(6.3)
$$\Delta I = -\frac{1}{2} \log |\alpha| + \frac{1}{2} \log |A|.$$

The conditions under which the elements of $(DF_1)^{-1}$ are small are when, roughly speaking, either

- (i) all the diagonal elements of D are large corresponding to large prior ignorance of all the parameters or
- (ii) all the diagonal elements of F_1 are large corresponding to a "strong" experiment.

So, by (6.3), we see that under the conditions stated maximising ΔI is equivalent to minimising $|\alpha|$.

A. Wald [10] developed the use of $|\alpha|$ which he called the "generalised variance" but his justification of it was pragmatical rather than logical.

In most problems it is usually a simple matter to calculate F_1 from the allocation vectors. Then by Jacobi's Theorem we obtain $|\alpha| = |Z'Z| / |F_1|$.

Example 1. A simple 2^2 factorial experiment without interaction with the base level (both factors absent) as the nuisance parameter. k = 2; q = 1.

Suppose $n = n_0 + n_1 + n_2 + n_3 = 4m$. Then

$$F_1 = \begin{pmatrix} n_1 + n_3 & n_3 & n_1 + n_3 \\ n_3 & n_2 + n_3 & n_2 + n_3 \\ n_1 + n_3 & n_2 + n_3 & n \end{pmatrix}$$

$$|\alpha| = n/|F_1| = n/(n_1n_2n_3 + n_0n_2n_3 + n_0n_1n_3 + n_0n_1n_2).$$

For minimum $|\alpha|$, $n_i = m$ (i = 0, 1, 2, 3).

Example 2. The addition of an interaction term θ_3 to Example 1.

Suppose n = 4m. Then

$$F_1 = egin{pmatrix} n_1 + n_3 & n_3 & n_1 + n_3 \ n_3 & n_2 + n_3 & n_3 & n_2 + n_3 \ n_3 & n_3 & n_3 & n_3 \ n_1 + n_3 & n_2 + n_3 & n_3 & n \ \end{pmatrix} \ egin{pmatrix} |lpha| = n/n_0 n_1 n_2 n_3 \ . \end{bmatrix}$$

For minimum |a|, $n_i = m$ (i = 0, 1, 2, 3).

Example 3. k treatments and a control [3]; q = 1.

Suppose n is divisible by k + 1. Then

$$F_1 = egin{pmatrix} n_1 & & & n_1 \ & \ddots & 0 & dots \ 0 & & n_k & n_k \ n_1 & \cdots & n_k & n \end{pmatrix}$$

$$|\alpha| = n/|F_1| = n/n_0n_1 \cdots n_k$$

which is minimised when $n_i = n/(k+1)$ $(i = 0, 1, \dots, k)$.

The calculation of $|a| = |Z'Z| / |F_1|$, though simple in the examples given, may be complicated. Then it may be possible to use a method we now elaborate.

Definition. An experiment involving nuisance-parameters is "part-orthogonal" if $\gamma = 0$. [See (6.2).]

The customary definition of "orthogonal" requires that all non-diagonal elements of F_1^{-1} should be zero. However, if $\gamma = 0$, we could achieve this condition by two separate orthogonal transformations of θ and ϕ . From an informational point of view these are irrelevant.

By Wegner's Theorem $|F_1^{-1}| \leq |\alpha| |\beta|$ with equality when $\gamma = 0$. But by Jacobi's Theorem $|X'X| = |\beta| / |F_1^{-1}|$. Hence $|\alpha| \geq 1/|X'X|$ with equality when $\gamma = 0$. From this we derive the working principle: "Find the design which maximises |X'X|; if this is a part-orthogonal design (experiment) then it is the design which minimises $|\alpha|$."

The allocation problem of Section 3 remains important in the presence of nuisance parameters. We prove a theorem which generalises Thorem 3.1. It is analogous to one due to Chernoff [2]. Now, the allocation vectors are the rows of the $n \times (k+q)$ matrix (XZ); denote them by u. Given g possible allocation

68 m. stone

vectors $u(i) = \begin{pmatrix} x(i) \\ z(i) \end{pmatrix}$ $(i = 1, \dots, g)$ denote by $\Delta I(n_1, \dots n_g)$ the information about θ in the experiment consisting of n_i observations at u(i) $(i = 1, \dots, g)$ with the errors (η) uncorrelated with unit variance.

THEOREM 6.1. When n is large, $\Delta I(n_1, \dots, n_g)$ is in general maximised when no more than $\frac{1}{2}k(k+1+2q)$ of the allocation vectors are used. (It is not necessary that F_1 be non-singular.)

PROOF. By (6.1), $\Delta I(n_1, \dots, n_q) = -\frac{1}{2} \log |L(n_1, \dots, n_q)| + \frac{1}{2} \log |A|$ where $L(n_1, \dots, n_q)$ is the leading $k \times k$ diagonal sub-matrix of $(F_1 + D^{-1})^{-1}$ with $F_1 = F_1(n_1, \dots, n_q)$ and $[F_1]_{rs} = \sum_{i=1}^q n_i u_r(i) u_s(i)$. Suppose

$$D^{-1} = \begin{pmatrix} P & S \\ S' & R \end{pmatrix}$$

where P is $k \times k$. Then by Jacobi's Theorem

$$|L(n_1, \dots, n_g)| = |Z'Z + R| / |F_1 + D^{-1}|.$$

Replace n_i by np_i , $p_i \ge 0$, $\sum p_i = 1$:

$$L(n_1, \dots, n_q) \rightarrow L[np]$$

$$F_1 \rightarrow F_1[np]$$

where

$$F_1[np] = egin{pmatrix} F[np] & G[np] \ G'[np] & H[np] \end{pmatrix}$$

say

$$Z'Z \to H[np] \ |L[np]| = |H[np] + R| / |F_1[np]| + D^{-1}|$$

We show that |L[np]| is minimised when no more than $\frac{1}{2}k(k+1+2q)$ of the p_i 's are non-zero:

- (a) If |L[np]| is minimum at p = p(m) where $p_i(m) = 1$ then, since $1 \le \frac{1}{2}k(k+1+2q)$, the statement holds.
- (b) If |L[np]| is minimum at p = p(m) when more than one $p_i(m)$ 0, \neq we proceed as follows.

$$\begin{split} \frac{\partial}{\partial p_i} \log \mid L[np] \mid &= \frac{1}{\mid H[np] + R \mid} \frac{\partial}{\partial p_i} \mid H[np] + R \mid \\ &- \frac{1}{\mid F_1 [np] + D^{-1} \mid} \frac{\partial}{\partial p_i} \mid F_1 [np] + D^{-1} \mid. \end{split}$$

But

$$H[np]_{rs} = \sum_{i=1}^{g} np_i z_r(i)z_s(i)$$

$$F_1[np]_{rs} = \sum_{i=1}^{g} np_i u_r(i)u_s(i)$$

¹ The author is indebted to a referee for suggesting this theorem.

and by row-by-row differentiation of the determinants we find

$$\frac{\partial}{\partial p_i} |H[np] + R| = nz'(i) \text{ adj } (H[np] + R)z(i)$$

$$\frac{\partial}{\partial p_i} |F_1[np] + D^{-1}| = nu'(i) \text{ adj } (F_1[np] + D^{-1})u(i).$$

Therefore

(6.4)
$$\frac{\partial}{\partial p_i} \log |L[np]| = n \left[z'(i) (H[np] + R)^{-1} z(i) - u'(i) (F_1[np] + D^{-1})^{-1} u(i) \right]$$
$$= -nu'(i) Q[np] u(i)$$

where

$$Q[np] = (F_1 [np] + D^{-1})^{-1} - \begin{pmatrix} 0 & 0 \\ 0 & (H[np] + R)^{-1} \end{pmatrix}$$
$$= (F_1 [np] + D^{-1})^{-1} \begin{pmatrix} I & -(G[np] + S)(H[np] + R)^{-1} \\ 0 & 0 \end{pmatrix}$$

Therefore the rank of Q[np] is k. But $\sum_{i=1}^{q} p_i = 1$, therefore by the method of undetermined multipliers applied to variations of the p_i 's for i's for which $p_i(m) \neq 0$, we see that for such i there exists a λ such that

$$\left(\frac{\partial}{\partial p_i}\log|L[np]|\right)_{n(m)} = \lambda$$

or, by (6.4), u'(i)Q[np(m)] $u(i) = -\lambda/n$. Hence those allocation vectors which are used to minimise |L[np]| must lie on a central quadric of rank k. Such a quadric is determined by $(k+q)+(k+q-1)+\cdots+(q+1)=\frac{1}{2}k(k+1+2q)$ constants implying that in general no more than $\frac{1}{2}k(k+1+2q)$ of the vectors can have their associated $p_i(m)$'s non-zero. Now

$$\Delta I(n_1, \dots, n_g) = -\frac{1}{2} (\log |L[np]|)_{p_i=n_i/n} + \frac{1}{2} \log |A|.$$

Therefore, when n is large, we can say that in general $\Delta I(n_1, \dots, n_q)$ may be maximised when no more than $\frac{1}{2}k(k+1+2q)$ of the n_i are non-zero and the theorem is proved.

REFERENCES

- [1] G. E. P. Box and J. S. Hunter, "Multifactor experimental designs for exploring response surfaces," Ann. Math. Stat., Vol. 28 (1957), pp. 195-241.
- [2] H. CHERNOFF, "Locally optimum designs for estimating parameters," Ann. Math. Stat., Vol. 24 (1953), pp. 586-602.
- [3] C. W. Dunnett, "Multiple comparison procedures for comparing several treatments with control," J. Amer. Stat. Assn., Vol. 50 (1955), pp. 1096-1121.
- [4] S. Ehrenfeld, "Complete class theorems in experimental designs," Third Berkeley Symposium, Vol. 1, pp. 57-67.
- [5] G. Elfving, "Optimum allocation in regression theory," Ann. Math. Stat., Vol. 23 (1952), pp. 255-262.

70

- [6] E. L. LEHMANN, "Lecture notes," University of California.
 [7] D. V. LINDLEY, "On a measure of the information provided by an experiment," Ann. Math. Stat., Vol. 27 (1956), pp. 986-1005.
- [8] P. C. TANG, "The power function of the analysis of variance," Stat. Res. Memoirs, Vol. 2, pp. 126-149.
- [9] K. D. Tocher, "A note on the design problem," Biometrika, Vol. 39 (1952), p. 189.
- [10] A. Wald, "On the efficient design of statistical investigations," Ann. Math. Stat., Vol. 14 (1943), pp. 134-140.