APPLICATION OF A MEASURE OF INFORMATION TO THE DESIGN
AND COMPARISON OF REGRESSION EXPERIMENTS

By M. StoNE
British Medical Research Council Applied Psychology Unit

1. Introduction and Summary. A normal regression experiment can be repre-
sented by

k
(1.1) Yi=2 X6+ m G=1,---,n)
J-
where {n:/t = 1, - - - , n} is a set of normally distributed random variables with
zero means and non-singular dispersion matrix C, § = (6, - - - , 6;) is the param-

eter-vector of interest and X = (X;;) is a known » X k matrix which will be
called the allocation matrix. The rows of X will be called the allocation vectors.
We denote the experiment by §(X, C). We assume that C is known; generally it
will be a function of X, C(X). The particular realisation of ¥ will be denoted y.
The matrix F = X’C"'X is the Fisher-information-matrix of &(X, C).

When F is non-singular, one answer to the question ‘“What information does
y give about 6?” is to quote F', the dispersion matrix of the maximum-likeli-
hood-estimates of 8. A strong argument in favour of this is that F~* is independ-
ent of both 6 and y. The fact that it is independent of 6 means that the answer
is not ‘“local”’; the fact that it is independent of y leads to simplicity. This
approach is taken by Box and Hunter [1] in their work on rotatable designs.
However, we must accept the fact that many experimenters wish to have a one-
dimensional answer to the question i.e. we must associate with §(X, C) a single
number which we call the “information”. For instance Elfving [5] has developed
the use of trace F—'. In this paper we adopt the measure of information intro-
duced by Lindley [7]. In Section 2 we generalise Lindley’s treatment of the
regression situation to include the singular case, explain the uses of the measure
and compare it with that of Elfving. Section 3 deals with the analogue of Elfving’s
main theorem. Theorems 4.1 and 4.2 of Section 4 provide links with the tradi-
tional variance approach. In Section 5 we derive the asymptotic form of the
measure as the n of (1.1) increases and show that this form can be derived also
from Neyman-Pearsonian theory. In Section 6 the influence of nuisance param-
eters is discussed and an analogue of a theorem of Chernoff [2] is established.

2. The information measure is defined in the Bayesian framework. Generally, if
before experimentation we express our knowledge of @ by the prior distribution
p(8) and, after the experiment defined by the set of probability density functions
p(y/0), we obtain a posterior distribution p(8/y), then the gain of information is
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56 M. STONE

defined as the functional
(2.1) Al = Ip(8/y) — Ip(6)

where Ip(w) = [ p(u) log p(u) du.
Lemma 2.1. If, before &(X, C), 6 is normally distributed with mean u and non-
singular dispersion mairiz A then

(2.2) Al = log|I + AF|.

Proor.

Il

Ip(9) f p(6) log [(2m) ™ | 4 [P exp {—3(6 — w)’A7(6 — w)}] do

—4log (20| 411 =4 [p0)6 — W46 — ) ao

ll

—3logl(2r)*| Al —3 Z Z A4,

T=] j=1

—}log[(2m)" | A |} —3k

Il

Also
#(6/y) = p(y/6)p(6)/p(y)

< exp [—3(y — X60)'C'(y — X6)—3(6 — u)’A'(0 — w)].
Therefore p(6/y) is normal with dispersion matrix

XC'X+ AN = (F 4+ 4
Hence

Ip(6/y) = —}log [(2m)*/ |F + A7"|] — 3k
and
Al = 3log (|F+A7"||A]|)=4%log|I+ AF|.

Among the class of regression experiments for which it is reasonable to take a
normal prior distribution for 6 with dispersion matrix A, the expression for AT
just derived proves useful in three ways:

Use 1. If we decide to experiment until the gain of information reaches a cer-
tain level then the fact that AI is independent of y allows us to state in advance

whether a particular experiment will give us the required gain. Among experi-
" ments which do, we may choose the one which is most economical in some sense.
This is the case of fixed-sample-size-experimentation.

‘Use 2. Two experiments can be compared in the following sense:

“Any result of &(X, , Cy) will give AI; — AI, more information than any result
of §(X;, (2)”. We may note that we are not obliged to use the average gain of
information (as defined by Lindley [7]) to compare &(X;, C;) and &(X,, C)
although the result of doing so would be the same.



INFORMATION AND REGRESSION EXPERIMENTS 57

Use 3. If we have a choice of performing any experiment from a given class,
we may choose the §(X, C) which maximises AI. AI possesses two advantages
over the measure trace F':

(i) If ¢ = M9 is a non-singular linear transformation then AI is the same
whether we consider information about 6 or about ¢. For

tlog|I +AF|=3log[|M||I+ AF||M"|]
=3%log| I+ (MAM'Y(XM'YCH(XM™)|.

But MAM’ is the prior dispersion matrix for ¢ and, under the transformation,
&(X, C) — (XM, C) so that (2.3) is the A for ¢.

(ii) AI can be used even when not all the 6; are estimable i.e. when F is singu-
lar, whereas in this case trace F' becomes infinite. For |I + AF| =
|[A||AT'+F|,A s posxtlve-deﬁmte and, although F is singular, it remains
positive-semi-definite. Hence f A7 4 F | and therefore | I 4+ AF | are non-zero.

(23)

8. In connection with Use 3 we proceed to show that a theorem proved by
Elfving using trace F* still holds if we adopt AI. The theorem is concerned with
the following problem: “Given g possible allocation vectors z(1), - - - , z(g) which
are linearly independent, we are to make n independent observations where n
is large and each observation can be made at any of the allocation vectors. How
are the observations to be allocated to maximise AI?”. To answer this we need
a lemma.

Lemma 3.1. If F(ng, -+, n,) s the Fisher-infornmtion-matrix‘ of the experi-
ment consisting of n; observations at z(z). (¢ = 1, - - - 3 g) with the errors (n) uncon-
related and if we replace n; in this matriz by np; , p; = 0, >~ pi = 1, to obtain the
matriz F¥np, , -+ - , np,) then in general | I + AF* | is maximum when no more
than 3k(k + 1) of the pi’s are non-zero.

Proor. We have assumed that the non-diagonal elements of C(X) are zero.
There is no further loss of generality in assuming that C(X) = I for we can always
write A; z(Z) for z(s) so that this is so. We find that the (r, s)th element of
Flny, -+, ng) i8 2% ni 2,(2)z.(2). Then

Fl, = Z np; 2:(2) (7).

=1

There are two possibilities:

(a) If there exists an ¢ such that | I + AF*|is maximum when p; = 1 then
since 1 < k(k + 1) the lemma holds.

(b) If | I + AF*|is maximum at p = p(m) when more than one pi(m) is
non-zero, we proceed as follows.

9 | — 9 14t 4
ap..|I+AFl IAIapilA + F*|
nzi(@)  nz(@)ze(d)
—A| X |A® + F5 A + Fn
{ . .
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for 2 = 1, --., g after row-by-row differentiation. Expanding each of these
determinants about the row which has been differentiated we have

.%II'*'AF*'=nlA|x'(’i)Q[p]x(i) G=1,---,9)

where Q[p] = adj (A" 4 F*). Now D p; = 1 so that, applying the method of
undetermined multipliers to variations of the p.’s for 4’s for which p;(m) = 0,
we see that there exists a X such that

9 *) -
{ap»‘ I I+ AF I}p(m) A

for 7 such that p;(m) £ 0. Hence for such ¢
3.1) /() Qlp(m)x(z) = N where N =A/n|A].

Now 2/Q[p(m)]x = N\’ is the equation of a central quadric. In general not more
than 3k(k + 1) of the given allocation vectors can lie on a central quadric and
hence the lemma is established. To make the lemma fully rigorous, we would
need to consider the possibility that more than 1k(k + 1) of the vectors do lie on
a central quadric. We omit this consideration since it is rather tedious.

The lemma relates directly to the problem stated. From (2.2)

Al = 3 log |I + AF(ny, -+, mo)| = % log |[I + AF*[npy, -- -, np,|

evaluated at p; = ni/n. So that if we do the experiment consisting of [np:(m)]
observations at z(z) (+ = 1, - - -, g), which involves using at most 1k(k -+ 1) of
z(1), -- -, z(g), for n large we will be making n — f observations in all where
f = g. The allocation indicated will provide (asymptotically) the maximum
Al. Thus:

TureoreM 3.1. To achieve maximum Al for the above problem it is not necessary to
use more than 3k(k + 1) of the given allocation vectors.

For n not large the theorem is not necessarily true. Although it does not
specify p(m), it is nevertheless useful in providing a rule for rejecting some ex-
periments for using too many allocation vectors. Generally the calculation of
p(m) is not feasible. However when k = 2 and the elements of (AF*[np(m)])™
are small, we may proceed to obtain p(m) approximately. By Theorem 3.1 only
three allocation vectors need be used. Consider them as the only vectors given:
z(1), z(2), z(3). Approximately

Qo] = < > np;2a(j) —2_ np; xx(j)xz(j)>
P\ mps () 2 np;i(5)
and hence

2 (D)QIplz()/n = 21() [2 pizi(N] — 22:()2:(0) [22 pj 2 (5)72(5)]

+ 22() [22 p;2i()] = Z.; piE; (i =1,2,3)
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where E;; = [1:1(5)z2(j) — 2(5)2:()F. We note that E;; > 0 when ¢ % j since
the vectors z(¢) are supposed independent. Then, if pi(m) = 0 (Z = 1, 2, 3),
equation (3.1) gives

0 Ep Ei\ [pi(m) A"

Eyn 0 Exul|p(m)]|=|N

Ey En 0 ’pa(m) A"
where M = \N/n = \/n’|A|. Using Y pi(m) = 1 we get

3
(3.2) pi(m) = Ep(Ei; + Ea — Ej) 2:1 Ejx(Eij + Ea — Ejn)

fors =1,2,3;(, k) = (1,2,3) — (2). Also

3

(3.3) N’ = 2E3 E13 Ers Zl Eyx(Ei; + Eua — Ep).

Hence for ps(m) > 0 (¢ = 1, 2, 3) either

(3.4) Ei;+ Es > Ej (¢=1,23)
or

(3.5) Eij+ Ea < Ej (¢=1,2,3).

The possibility of (3.5) can be readily excluded. We see that (3.3) and (3.5) imply
A < 0 but since Q is positive-definite 0 < z(2)’Qx(z) = N = nA” or A > 0,
which is a contradiction. Therefore only (3.4) is consistent with py(m) > 0
(¢ = 1, 2, 3). Equation (3.4) is not always satisfied by three given vectors. For
example if z(2) lies between z(1) and z(3) (in their two-dimensional representa-
tion) and

l2(2)| < min (l2(1)], [&@))), By = 26) A s() = 4 4

where A;; = “area between z(z) and z(j)”. Clearly Ays > A + As ; therefore
A%a > A%z + A:a ;therefore E13 > E]z + E23 .

However if (3.4) is satisfied the p(m) given by (3.2) is that which approxi-
mately maximises AI. Also since @ is positive-definite 2'Qz = \’ is an ellipse, so
that we need consider only triples of allocation vectors which lie on central
ellipses.

We now evaluate the aymptotic maximum of Al:

(a) When (3.4) holds

max Al = } log |I + AF*[np(m)]| = } log | A | + % log [F*[np(m)]|.
Now |F*[np]| is a homogeneous polynomial of degree two in p; (¢ = 1, 2, 3).

Therefore

| F*inpl | = 32 p ;p— | F*np |.
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But, for the p(m) of (3.2),

9 A
D s ) _ M
(ap-l bl s A
so that

| F*[np(m)]| = $V/| A| = n*EnEysEw/2. B (Bi + Ea — Ep).
Hence
(3.6) max AI=2logn + log|A| + 3 log [ExErs Ew/> Ea(Ei+ Ea — Ej)).

(b) When (3.4) is not satisfied, one of the vectors must have its associated p:
zero. Suppose ps(m) = 0. Then the equations (3.1) lead to px(m)Ewr = \'/n and
pi(m)E = N/n so that pi(m) = p(m) = % and N/n = 3 Ep or X =
17| A| Ey . Hence

a7 max Al =21 log |4| + } log |[F*| = % log |[A| + % log (3 M/|A|)
) == log n + % log lAl + % log (E12/4).

In conclusion for the case k¥ = 2 we state the experimental rule as follows:
“Given g allocation vectors select those triples which obey (3.4) and calculate

E23E13E12/Z Ejk(Eii + Eg — Ejk)-

Also select those pairs which are not members of triples obeying (3.4) and cal-
culate E;;/4. Make the observations at the pair or triple which gives the greatest
number, with n/2 at each vector for a pair and np.(m) at z(¢) ¢z = 1, 2, 3) for a
triple where p(m) is given by (3.2).”

Examreie 1. k = 2;2z(1) = (1, 1); 2(2) = (0, 1); z(3) = (1, 0). Here Ey, =
E\; = Ey ; therefore (3.4) is satisfied and, by (3.2), pi(m) = 1/3 (z = 1, 2, 3).

ExampLE 2. k general. Suppose the given allocation vectors lie on the line
z = (1, x,---,2""). This is the case of polynomial regression. z'Qz = \’ is a
polynomial of degree 2k — 2 in x. Therefore in general at most 2k — 2 of the
vectors lie on a central quadric and therefore need be used.

In his discussion Elfving considers in detail the case k¥ = 2. His solution, i.e.

the “best allocation”, is rather complicated when three vectors are used. For just
two vectors he obtains

plm) = |z(2)| / (|=(1)| + |=(2)])
and
pe(m) = |z(1)| / (l=(1)| + |2(2)])

w.hich clearly conflicts with p;(m) = p.(m) = } using AI. The reason for the
difference becomes clear in the case z(1) = (¢;, 0), (2) = (0, cz) for which

npyc 0
F*[np] = ( 2> .
0 NPz Ca
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The different answers arise because, effectively, we minimise the product of the
variances of the maximum-likelihood-estimates of 6, and 6, while Elfving mini-
mises their sum.

4. In this section we consider pairs of experiments §(X;, C1), 8(X,, C;) and
prove some theorems relating to the cases when §; is always to be preferred to
& . Write AI;(A) = 3log|I + AF:| (z = 1, 2).

THEOREM 4.1. A necessary and sufficient condition that AI,(A) = AI(A) for
all positive-definite A is that F; — F; be posttive-semi-definite.

Proor. Sufficiency. We use the fact that if L and M are positive-definite and
L — M is positive-semi-definite then |L| = |M|. (Proved by diagonalising
Land M)PutL = A7 + Fiand M = A" + F, ; then if F; — F, is positive-
semi-definite |A™" + Fy| = |A™" 4 F.| which gives AI;(4) = AI(A).

Necessity. AI(A) = AI)(A) for all positive-definite A implies that
|A™ + Fy| = |A™ + F for all positive-definite A™". Now F; and F, are positive-
semi-definite so that there exists a non-singular P such that P’'F,P and P'F,P are
diagonal.

d(2)
4.1) P'F,P = . z=12)
di(7)

di(1) di(2)
P'AT'P + . P'AT'P + .
di(1) dr(2)

where A7, and hence P’AT'P, is arbitrary positive-definite. Taking P’A™'P
diagonal with all diagonal elements large except the 'th we deduce d,(1) =
d.(2). Therefore from equations (4.1)

(dl(l) — di(2)

Therefore

2

P'(F] - Fz)P = . >
di(1) — di(2)

is positive-semi-definite. Therefore F'; — F, is positive-semi-definite.

We now give simpler proofs of theorems due to Ehrenfeld [4].

TaeorReEM 4.2. If vi(t) s the variance of the maximum-likelihood estimate of
t'0 from &; and if F1 — F, is positive-semi-definite then vi(t) < va(2) for all t for
which t'6 is estimable from both & and &, .

Proor. We know that v; = nFin and va = 52Fans where g, and n. are any
solutions of

(42) F]T]l = t, F’zﬂg = {.
We have n1(F; — Fa)m = 0 or
(4.3) v — mFam =0
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while
(m — m)'Fo(m — m) = mFam — 2neFam + naFams
= 0.
From (4.2) n:Fam = mFym = v, therefore
(4.4) mFam — 20, + v 2 0.

Adding (4.3) and (4.4) we obtain v; < v,.

TrEOREM 4.3. Given g allocation vectors z(1), -+ - , z(g) and their convex hull
€= {1 nzG)/ 2 Ai=1,N\2=0},ifF(z, -+ , 2.) 18 the Fisher-information-
matrix of the experiment consisting of n independent observations at x,, - -+ , Tn
(with unit error variance) where x; € @ then we may take less than n + g + 1 ob-
servations at the vertices of C so that their Fisher-information-matriz, Fy , is such
that Fy — F(2y, - -+ , ) 18 postlive-semi-definite.

PROOF. Suppose z; = 29w Mij2(j). For each ¢ we have

9 g g g
Zl riz(2 () — @izi = 2; Niz(f)2(§) — Z; ; N ha 2(5) (k)
g J= Je=1 ko
and for any ¢

g ['] .
4 [,z; Nsz(a'(5) — x.‘xé]t = 2:1 Nit'z(G)2' (Dt — Vaizit
- o

g g 2
=2\ [t’:c(j) -2\ t’:c(j)]
Jm=1 J=1
= 0.
Hence %y Nigx(7)2'(j) — za: is positive-semi-definite for 7 = 1, ---
Therefore

2 Za: Niz(5)a' () — Z::l z:%;

ta=l el
is positive-semi-definite. Therefore
g n

Zl ([Zl x"i:l + 1) x(j)x’(j) - F(xly et 1xﬂ)

J= -
is positive-semi-definite where [a] is the integral part of a. We can now identify .
Fy = Y% ([2oni] + 1) z(5)2'(§) for it is the Fisher-information-matrix of
the experiment in which [ 7= A:;] + 1 independent observations are made at
z(j) ( = 1, ---, g) with error variances unity and also

g n
}_‘i([zlx,-j]+1) <n+g
= i

6. From Section 4 we see that the only case in which the ordering of two
~ experiments by the criterion AI(A) is the same for all A is when F; — F, is
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positive-semi-definite. Clearly since F; — F; may be neither positive- nor nega-
tive-semi-definite, not all pairs of experiments can be compared in this clear-cut
manner. However when A and F are non-singular so is AF and we may write
\I + AF| = |A] |F| I + (AF)7'| and ’

AI(A) = 3 log |A] + % log |F| + 4 log |I + (AF)7Y|.
If the elements of (AF)™" are small we have
AI(A) = 3 log |A| + % log |F| and ALL(A) — AI(A) = % log (|Fy| / |Fe)).

So we obtain the criterion |F|. The conditions under which it is valid are when,
roughly speaking, either

(i) all the diagonal elements of A are large representing large prior uncertainity
for all the parameters or

(ii) all the diagonal elements of F are large which is usually so if the n of (1.1)
is large.

We now introduce a criterion based on the Neyman-Pearson theory of tests and
show that a particular case of it leads to the |F| criterion. Lehmann has given
[6] a proof that for the experiment (1.1) the uniformly-most-powerful invariant
test of the hypothesis Hy:8 = 0 is provided by the usual F-test based on

¥ Fo/k

S =X - X0/ — B

where § are the maximum-likelihood estimates of 6. Taking as critical region
F > %, denote by P;(8) the probability of error of the second kind under the
alternative hypothesis H:0. A criterion for design can be stated as follows:
“Take a probability density function for 8, p(6), and choose the experiment to
minimise [ p(6)P;(6) d6.” The choice of p(6) is arbitrary butin a situation where
we are initially very uncertain about 6 it would be sensible to take p(6) to be
normal with mean 0 and diagonal dispersion matrix with variances all equal to £
and consider what happens as E — . This we now do and state the theorem:

TueoreM 5.1. If p(8/E) is the probability density function just described then
choosing the experiment to minimise [ p(8/E)P1x(6) dO is equivalent to choosing it to
mazimise |F|. ,

Proor. Tang has shown [8] that Py;(6) depends solely on the function A =
1 ¢'F6. In fact

Pru(0) = Z% Ci)\‘e—)‘/'i!

where the ¢; are functions of 7, §o , k, n but are independent of X and C and also
¢; — 0 as ¢ — o« thus making the series uniformly convergentin0 = X < .

[ p@/B)Pu(0) do = @xEY* [ exp (~30E0Pu(e) ds
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and

lim [ exp (—30'E~'6)P1y(6) do = f P1(0) do.

E->o

Therefore

[ 20/BPu® it ~ oy [ Puto) ap = xmy™ [ (3 eevir) o

=0
= 2zE)* 2:)0 ci f Ne™ do/i
since the series is uniformly convergent in 0 < A < ». Now
[N a0 = o [ @Fo)* exp (—30'Fe) ao

Y ] A
- 2(_2%]_; % exp (—30'F9)(8'F6)° db.

Now under the probability density function (2x)*|F|t exp (— 1 ¢'F0), ¢'F6 is
distributed as chi-square with k degrees of freedom. Hence

[ @0 | F I exp (—30F0)@Fo) do = 4G, B)
say where g(7, k) is a function of 7 and k only. Therefore
f p(0/E)Prs(6) db ~ E*(X G, k)/it 2°) | F|™ « | F|™.
Hence minimising [ p(/E)P1:(6) d6 is equivalent to maximising |F|.

We give now an example of the use of the |F| criterion, which has been treated
by Tocher [9] from another viewpoint. If C = I then F = X’X. Suppose the

allocation vectors x; = (Xu, -+, Xua) (¢ = 1, -+, n) can be varied subject to
the restriction Y 1y X%, = a,. Then:

THEOREM 5.2. If D 21 Xii=a; (=1, -+, k) whereay, - - - , ai are positive
constants then |F| is maximum when z, , - - - , z, are chosen so that F,, = 0, r > s,
.e. when the design s orthogonal.

Proor.

Fra = E XirXia

fom]
Therefore, by a well-known property of positive-definite matrices
[Fls (X)X - X)) =aa- - a.

But when F,, = 0,7 5 s, |F| = a1as - - - a; . Therefore |F| is maximum when the
design is orthogonal.
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6. We now consider the modifications in the |F| criterion imposed by the
presence of nuisance-parameters, ¢, which enter linearly into the expressions for
the expectations of our random variables, Y, just as the parameters of interest,
0, do.

Let there be ¢ nuisance parameters and suppose that Y is now normal with
mean X0 + Z¢ and dispersion matrix I. For simplicity take the case where

Fi = X'X X'Z
17 \Zx Z'Z

is non-singular. Then 6 and ¢ are estimable by the maximum-likelihood estimates

6 and . Write
e (0) o= ().

p(6/w) = @m0 Ry} exp [-3(6 — w)Fi(6 — o)].
Suppose that the prior distribution for w is
p(w) = @) D[ exp [~}(w — @)D 7w — )]

S

(A4 and B are the prior dispersion matrices for 8 and ¢ respectively.) By Bayes’
Theorem we find that p(w/®) is normal with information matrix (F, + D).
To find the information about 8 we must integrate out ¢ in (a) p(w) and (b)
p(w/&) to obtain the marginal distributions of 6. We find:

(a) p(8) is normal with dispersion matrix A

(b) p(8/&) is normal with dispersion matrix L where L is the leading k£ X &
diagonal sub-matrix of (F; + D). Then

Ip(8) = —3%log [(2m)¥ |A]] — 3k

Then

where

and
Ip(8/6) = —3% log [(2m)* L[] —3k
and
(6.1) AI = Ip(6/6) — Ip(8) = —3%log |L| + % log |A].

If the elements of (DF;) ™" are small
(F, + D)™ = Fi'(I + (DF)™) ™ = Fi.
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Write
— Q
(6.2) Fr' = (7, ;)
where @ is the k X k dispersion matrix of § in p(¢/w). Then L = @ and
(6.3) Al = —%log |@| + 1 log |4].

The conditions under which the elements of (DF;)™" are small are when, roughly
speaking, either

(i) all the diagonal elements of D are large corresponding to large prior
ignorance of all the parameters or

(ii) all the diagonal elements of F; are large corresponding to a “‘strong’ ex-
periment.
So, by (6.3), we see that under the conditions stated maximising A is equivalent
to minimising |G|

A. Wald [10] developed the use of |@| which he called the “generalised vari-
ance’’ but his justification of it was pragmatical rather than logical.

In most problems it is usually a simple matter to calculate F; from the alloca-
tion vectors. Then by Jacobi’s Theorem we obtain |@] = |Z'Z] / |F.

ExampLE 1. A simple 2° factorial experiment without interaction with the base
level (both factors absent) as the nuisance parameter. k = 2; ¢ = 1.

No m N2 n3
X = 0 0 1.---1 0 01 1
0 0 0---0 1 11 1
A 1)
Suppose n = ny + n; + ng + nz = 4m. Then
m + ns ng m + ns
F = ng e+ ng me+ mg

m+ ng me+ ng n
@] = n/|F\| = n/(nmans + nonang + nonng + nonans).

For minimum |@|, n; = m (¢ = 0, 1, 2, 3).
ExampLE 2. The addition of an interaction term 6; to Example 1.

T m Ng ng

Suppose n = 4m. Then
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nm + ms n3 ng m + ng
ng ne + N ng ne + ns
Fy =
ns ng n3 ng
m+ n ne+ ng ng n

|@| = n/nonmans .

For minimum |@|, n; = m (¢ = 0, 1, 2, 3).
ExampLE 3. k treatments and a control [3]; ¢ = 1.

Mo n Uz N
0---0 1---1 0---0 0---0
X = 0.--0 Q0---0 1---1 0---0
0 0 0---0 0---0 1-...1
Z' = (Leoevvnernneennnennneunaenieeenans 1)
Suppose n is divisible by k& + 1. Then
m m
0
F, =
0 Ne Nk
nl oo e nk n

IG'I =n/|F1| = n/neny -+ M

which is minimised when n; = n/(k +1) (¢ = 0,1, - -+ , k).

The calculation of |@| = |2’Z| / |Fi|, though simple in the examples given, may
be complicated. Then it may be possible to use a method we now elaborate.

DEFINITION. An experiment involving nuisance-parameters is ‘“‘part-orthog-
onal” if vy = 0. [See (6.2).]

The customary definition of “orthogonal” requires that all non-diagonal
elements of F1* should be zero. However, if v = 0, we could achieve this con-
dition by two separate orthogonal transformations of 6 and ¢. From an in-
formational point of view these are irrelevant.

By Wegner’s Theorem |F1'| < |@| |8 with equality when ¥ = 0. But by
Jacobi’s Theorem |X’X| = |8| / |F1'|. Hence |@| = 1/|X’X| with equality when
v = 0. From this we derive the working principle: “Find the design which
maximises | X’X]|; if this is a part-orthogonal design (experiment) then it is the
design which minimises |@|.”

The allocation problem of Section 3 remains important in the presence of
nuisance parameters. We prove a theorem which generalises Thorem 3.1. It is
analogous to one due to Chernoff [2]. Now, the allocation vectors are the rows of
the n X (k + ¢) matrix (XZ); denote them by u. Given g possible allocation
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N £70))
vectors u(z) = (z (%)
about 0 in the experiment consisting of n; observations at u(z) (¢ = 1, -+, ¢)
with the errors (n) uncorrelated with unit variance.

> Z=1,-.--,¢) denote by AI(n;, - - - n,) the information

THEOREM 6.1." When n is large, AI(n, , - - , n,) is in general maximised when
no more than 3k(k 4 1 4 2q) of the allocation vectors are used. (It is not necessary
that F; be non-singular.)

Proor. By (6.1), AI(ny, + -+ ,m,) = —%log |L(n., --- ,n,)| + % log |A| where
L(ny, --- , m,) is the leading k¥ X k diagonal sub-matrix of (F; + D)™ with
Fy = Fy(m, -+, n,) and [Fil,, = 2% nau.()u.(2). Suppose

Dt = (P/ g)
where P is k X k. Then by Jacobi’s Theorem
|L(ma, -+, mg)| = |Z2'Z + R| / |{F1 + D—Il,
Replace n; by np;, ps 2 0, 25 ps = 1:
L(n., - -+, ng) = Linp]
Fy — Fi[np]

_ (Flnpl Glnpl
Fy [np] = (G’[np] H [np])

where

say
Z'Z — Hnp)
|Linp)| = |Hlnp] + R|/ |Filnp] + D7

We show that |L[np]| is minimised when no more than 34(k + 1 + 2g) of the
P:’s are non-zero:

(a) If |L[np]| is minimum at p = p(m) where p;(m) = 1 then, since 1 <
1k(k + 1 + 2q), the statement holds.

(b) If |L[np]| is minimum at p = p(m) when more than one p;(m) 0, = we
proceed as follows.
iloglL[nzo] | = ———1—————6-!Hlnp]+Rl
ap; | Hinp] + R | 9p:

1 d 1
~ [Pl ¥ o | 1 el + D7

But
Hinpl,. = g np: 2,2 6)

Filnple = 2 npi :(5)u.(3)

=1

1 The author is indebted to a referee for suggesting this theorem.
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and by row-by-row differentiation of the determinants we find

a% | Hinpl + R | = n'G) adj (Hlnp] + R)2()

a; | Filnpl + D' | = nu’(3) adj (Filnpl + D™Hu(h).
Therefore
64) (% log| Llnp] | = n [/ G) (Hnp) + R)'2() — o' () (Filnp] + D7) "u(z)]
= —nw' (1) Qlnplu(?)
where
—1y—1 0 0

= (' [np) + D7) (g = (Glnpl + ) (#TTop + R)“)

Therefore the rank of Q[np] is k. But > ¢ p; = 1, therefore by the method of
undetermined multipliers applied to variations of the p.s for #’s for which
pi(m) # 0, we see that for such ¢ there exists a A such that

d
— 1 L = A
(C"Pz‘ og | Linp] I)p(m)

or, by (6.4), v (2)Q[np(m)] u(f) = —\/n. Hence those allocation vectors which
are used to minimise |L[np]| must lie on a central quadric of rank k.
Such a quadric is determined by (k + ¢) + (k+¢— 1)+ -+ + (¢ + 1) =
$k(k + 1 4 29) constants implying that in general no more than 3k(k + 1 + 2¢)
of the vectors can have their associated p;(m)’s non-zero. Now

Al(ny, -+ ,my) = —3 (log |L[np]|)p.‘=n.'/n + 3 log IAI

Therefore, when 7 is large, we can say that in general AI(ny, - -, n,) may be
maximised when no more than $k(k + 1 + 2¢) of the n; are non-zero and the
theorem is proved.
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