BAYES ACCEPTANCE SAMPLING PROCEDURES FOR LARGE LOTS!

By D. Gurnrig, Jr. aANpD M. V. Jonns, Jr.

Stanford University

1. Introduction and statement of the main results. A lot consisting of N items
may be characterized by N non-negative random variables X;,¢ = 1,2, - -+ , N,
where the value of X indicates the quality of the th item. In a typical case X;
might take on the values zero and one according to whether the ith item is non-
defective or defective. Alternatively, X; might be defined to be the number of
defects in the ¢th item so that the possible values of X; would be 0, 1, 2, - - - .
In still another formulation X; might be a continuous random variable related
to the deviation from standard of some characteristic of the item. We shall
assume that the random variables X;,7 = 1, 2, --- , N, are independent and
identically distributed with common distribution function F(z |\) depending
on a single parameter \.

The fixed size sampling inspection scheme to be considered consists of the
random selection of n items from the lot and the observation of the values of
the corresponding X’s. Thus, the sample may be described by the random
variables X;, X;, -+, X, . The two possible actions to be taken on the basis
of the sample are acceptance or rejection of the uninspected remainder of the
lot. The consequences of these alternative actions are appraised by the following

cost model where we let S = > sy X;forany k = 1,2, ---, N:
Action l Cost
(1.1) Acceptance a1(Sy — 8n) + a2:(N — n) + 818, + sn
Rejection ri(Sy — Su) + r2(N — n) + 88, + sem.
Thus, for¢ = n 4+ 1,n 4+ 2, --- , N, the contributions to the total cost due to
the acceptance or rejection of the sth item without inspection are given by
0, X; + az and r.X; + r; respectively. For ¢ = 1,2, - -- , n the cost of inspection

(and possibly replacement) of the ¢th item is given by s,X; + s, . If, for example,
an item is classified as defective or non-defective by X, then Sy and S, are the
number of defective items in the lot and in the sample respectively. Suppose
that the cost of accepting an item is a; if the item is defective and zero if the
item is non-defective, and that the cost of rejecting the uninspected remainder
of the lot is proportional to the number of items remaining in the lot. Then
a; = r; = 0. If, in addition, all items found to be defective in the sample are
replaced with good items, each at a cost of s; units, and s, represents the cost
of the time and labor required to inspect each item in the sample, then (1.1)
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becomes
Action I Cost
(1.1a) Acceptance a1 (Sy — S») + 180 + sm
Rejection r9(N — n) + 818, + s

The cost model (1.1) includes a wide variety of sampling inspection and ac-
ceptance sampling problems corresponding to various choices of the cost param-
eters and the family of distribution functions F(z | \). Similar formulations of
this problem have been given by several authors, notably [1], [2], and [3].

The authors of [1] and [2] have attempted to characterize optimal sample
sizes in terms of a minimax criterion. When the lot size is large this approach
seems to lead to sample sizes which are appropriate when the true state of nature
(value of ) has a high a prior: probability of being very close to the “indifference
state” where either acceptance or rejection leads to the same expected cost.
Such an a prior: assumption about the true state of nature will not generally be
reasonable, which suggests that the minimax criterion is not suitable for this
problem. 4

The purpose of this paper is to find explicit asymptotic characterizations for
large N of the decision procedures and sample sizes which are optimal in the Bayes
sense for various classes of a priori probability distributions defined over the
values of the parameter N. This problem is considered for certain families of
distribution functions F(z |\) of the exponential type having the property
that E(X|\) = \. This parametrization of distribution functions of the ex-
ponential type is convenient because (1) for this case the range of possible values
of X coincides with the range of \, and (2) any available a priori information
will usually be most easily expressed in terms of the expected quality of an
item, i.e., the value of the parameter .

The two principal reasons for investigating the Bayes solutions to this problem
are as follows: (1) In most practical situations the statistician will possess some
subjective a prior: information concerning the probable values of the parameter
\ and such information may often be reasonably summarized and made objec-
tive by the choice of a suitable a prior: distribution; (2) for statistical decision
problems of the type under consideration, the class of Bayes decision procedures
coincides with the admissible class so that all procedures discussed will have the
optimal property of admissibility (see, e.g., [4]).

Each family of distribution functions F(z | X) to be considered will be defined
in terms of a given measure p on the Borel sets of the positive real half-line as
follows: Let

z+e€ 1
a = inf{x:f dp > 0, all e>OJ,
(12) .
b = sup{x:f du >0, all e> O}.
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Let I, be the interval [a, b] if b < « and [a, ©) if b = . We assume that u
satisfies the conditions

A) I, is non-empty,
B) There exists a function w(X\) such that for each X € I,

f xea Nz d[l(fl?)
(a,00)

f ew Mz du(x)
[ai0)

We now define F(x|\N) by

(1.3)

= A\

(O, z = a,
f ew()\)t d}l.(t)
[a.2)

b
j{‘ ™ du(t)
a@,00)

|1, x> b.

(14) F(z|\) =4

The following theorems concerning such families are proved in Section 2.

TuarEorREM 2.1: The function w(\) given by (1.3B) is unique and dw(\)/d\
exists and 1s positive for N e I, .

TuroreM 2.2: If F(x|\) s defined by (1.4), then all moments of F(x|N\)
exist and all derivatives of w(N\) exist and are finite for N e I, .

THEOREM 2.3: The distribution function F(x | \) defined by (1.4) may be repre-
sented for a < x =< b and for N eI, by

A
(15)  F(z[\) = K(v) f[ exp {w()\)t ~ [ e du} du(d),
a,r) ¥
if and only if assumption (1.3B) 1s satisfied, wherevy € I, and K(v) is a normalizing

factor depending on the choice of v and determined so that F(b+ |\) = 1.
We may unambiguously define F(z | a) and, if b is finite, F (x| b+) by

(1.6) F(x|a) = im F(z |N),
N

and

(L.7) F(z|b+) = lxi;I;F(xl)\).

It is easily verified that the n-fold convolution of F(x | \) may be written
‘ A
(18) F™(z|\) = (K(‘y))"f exp {w()\)t - nf uw' (u) du} du™ (1),
(na,x) ¥

where 4™ is the n-fold convolution of u. We define the interval I.” = [na, nb]
ifb < » and I\ = [na, ©)ifb = «. Now since X;, Xz, -+, X» are assumed
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to be independent with common distribution function F(z |\), we see that the
sum S, is distributed according to (1.8). Furthermore, by applying the fac-
torization criterion for sufficiency to the joint distribution of X;, X,, ---, X,
(see, e.g., [5]) it is easily seen that S, is a sufficient statistic for the problem under
consideration so that we may confine our attention to decision procedures de-
pending only on the value of S, .

Some particular examples of families of distribution functions F(z | A) which
are of practical interest are as follows:

Example 1: If u is the counting measure on the integers zero and one, and
w\) = In A1 — A) for 0 < N < 1, then F(z | \) is the distribution function
of a Bernoulli random variable taking on the value one with probability N and
zero with probability 1 — A,

Ezxzample 2: If » is the counting measure on the non-negative integers,
du(z)/dv(z) = 1/z!, and w(N\) = In X for 0 < N < o, then F(z | N) is the dis-
tribution of a Poisson random variable with expected value \.

Example 3: If » is Lebesgue measure on the positive half-line, du(z)/dv(z) =
2"z""/T(n) for known 5 > 0, and w(\) = —n/\, then for each », F(x |\) is
a gamma distribution with E(X |\) = Nand Var (X |\) = N\*/x.

In order to discuss the properties of the Bayes sample size it will be necessary
to consider a further specialization of the class of distribution functions F(x | N).
To this end we let

1 A
1. =Zlnp—2
(1.9) w(N) kln Fa B
where k is a positive number and « and 8 are numbers such that either (i) & > 0
and 8 = 0, or (ii) @« > 0 and 8 = —a/b* where b* is a positive integer. Let
u(z) be a measure such that
1, z =0,

a1 ED atet ) (at (E-1)0)

(@) ,
()

where » 1s counting measure on 0, k, 2k, --- . For case (1} [, = @, =) nd
for case (i) I, = [0, b], where b = kb*. These definitions permit us to define
the class ¥, of distribution functions F(z | \) as follows:

(1.11) F, = The class distribution functions F(x | \) of the form (1.4) for
which the corresponding w(\) and w(z) are determined by
(1.9) and (1.10) respectively.

x:k’Qk,... 5

The class of distribution functions &, clearly contains the Bernoulli (¢ = £ = 1,
= —1) and Poisson (a« = k£ = 1, 8 = 0) examples discussed earlier That the
distribution functions in the class ¥; are well defined follows from
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THEOREM 2.4: If the function w(\) and the measure u(x) are defined by (1.9)
and (1.10), then condition (1.3B) s salisfied.

The form of the n-fold convolution F'™(z [N) of a distribution function
F(z | \) in the class F; is needed in the derivation of an asymptotic expansion
for the Bayes risk. The following theorem gives a formula for F™ (» [N).

TuroREM 2.5: If F(x|\) £ Ty, then for all integer values of m, F*™ (x| \) s
gwen by

0, m = 0,
) (n)(k A tm—l
(112) F®(km|n) = {1 = mr" (km) fo (ke + BO™

Y oadu
.exp{—n£ m—)- dt, m=12---,

where
1, z =0,

(1.13) P (g) = no(na + B)- - '(na + (% - 1) B)

, x=15k2k ---.
ol
3

In addition to the class & of discrete distributions we will consider the class
of continuous gamma type families defined by (1.4) with

(1.14) w(X) = —q/\,
and
) r < 0,
du(z) _ »
—1;——-— = ,”"Ixﬂ
dv(z) iTﬂ) ’ r 20,

where »(z) is Lebesgue measure on the positive half-line. The class 5, is defined by

(1.16) F, = the family of distribution functions F(z |\) of the form (1.4)
with w(\) and p(z) given by (1.14) and (1.15).

This definition leads to
TrEOREM 2.6: For any distribution function F(x | \) € 2, (2) condition (1.3B)
s satisfied, and (i7)

(n) _ (ﬂx)ml ? —nq—1 _ f’_?
(1.17) F™(z|\) = T h U exp{ u} du.

Returning now to the underlying decision problem, for any fixed n let 6(s,)
be a decision rule which is to be interpreted as the probability of acceptance of
the uninspected remainder of the lot when s, is the observed value of the sufficient
statistic S, . Regarding N as a random variable A by virtue of the assumed
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existence of an a priori probability distribution we observe that, given the value
N of A, Sy — 8, and S, are conditionally independently distributed according
to F¥ ™ (2 |\) and F™ (z|\) respectively so that

E{Sy — Su| Sa} = E{E{Sy — Su| A, Sa}Su}
(1.18) = E{(N — n)A| 84}
= (N — n)E{A ] S,}.
Hence, referring to (1.1) the risk incurred by using the rule § may be written as

R(8,n, N) = E{8(8s)[a:1(Sy — 8a) + a2(N — n)]}

+ B{[1 — 8(8)]ir1(Sy — S») + r2(N — n)]}
+ E{s18, + s}
(1.19) = E{6(8Su)lar — m)(Sy — 8.) + (a2 — r)(N — n)]}
4+ (smm + (N — n))E(A) + son + ro(N — n)
= (N — n)E{8(S.)[(ax — r)E(A|S,) + a2 — m3}
+ [sin + (N — n)]E(A) + som + r2(N — n).
From this it is clear that the essentially unique Bayes decision rule is given by

{1, E{A| 8. = sa} = ¢,

(1.20) 8*(s,) =

0, otherwise,

where ¢ = r, — as/ay — 71, provided ¢ < ¢ < b. To avoid trivial cases where
acceptance or rejection is determined without sampling we shall assume that a
< ¢ < b, which implies either (1) 71 < a; and r; > a2, or (2) r1 > a; and 7,
< az . Referring to (1.1) we see that for any given cost situation where (1)
holds we may find a corresponding second situation where (2) holds which
becomes identical with the first when the two actions are interchanged. Hence
in the sequel we shall assume without loss of generality that (2) holds.

Unfortunately, for many a prior: distributions and many families F(z [ \) of
interest the quantity E{A | S, = s,} cannot be expressed explicitly. The follow-
ing results which are proved in Section 3 give more explicit characterizations
of 6* for the case where 7 is large. These results are also needed for the deter-
mination of the Bayes sample size.

Let G(\) be the a prior: distribution function of the parameter \, i.e., G(\) =
P{A < A}. We assume that G(\) assigns probability one to the closed interval
[a, b]. We assume further that E(A) is finite and that G(\) does not assign prob-
ability one to any single point. Define the function ¢,(¢) for ¢ & I\ by

[v A exp{tw()\) —-n f)\ uew’ (u) du} dG(N\)
fow exp{tw()\) —-n f)‘ uw’ (u) du} dG(\) .

(1.21) en(t) =
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It is easily verified that ¢,.(¢) coincides with E{A | S, = #} for almost all values
of ¢ which are possible values of S, . From this definition we obtain

TuEOREM 3.1: The function ¢.(t) given by (1.21) s finite and strictly increasing
for teI™.

We now observe that exactly one of the following must hold:

i) en(nb) < ¢,
(1.22) ii) ga(na) > c,
iii) @n(ts) = c for a unique ¢, & I$”.

Hence the Bayes decision rule §*(S,) given by (1.20) is equivalently expressed by

1, if 8, = i(n),
(1.23) 8*(Sa) =
0, otherwise,
where
na — 1, en(nb) < e,
(1.24) t(n) = < nb, en(na) > ¢,

to , en(ts) = ¢, tne IV,

An asymptotic characterization of the function ¢(n) for a priors distributions
G(N) placing positive weight on both sides of ¢ is given by

THEOREM 3.2. If \p = sup (AN S ¢; GAA+) — GN — €) > 0all e > 0} and
M o= inf AN = ¢; GON + €) — G(\) > 0, all € > 0}, then

(1.25) Ao < lim inf@ < lim sup t(ni) =M.

Thus for the particular case where G(\) assigns positive weight to every interval
about ¢ we have Ay = \; and

(1.26) t(n) = cn + o(n).

In order to obtain a more precise asymptotic characterization of t(n) we
define two classes of a prior: distributions as follows:

(1.27) G1 = the class of all G(\) which are twice continuously differentiable
in some open interval about ¢ with G’(¢) > 0;

(1.28) G, = the class of all G(\) for which there exist numbers I and ug,
l¢ < ¢ < ug, which are assigned positive weight by G(\) and
are such that G(u¢) — G(c+) = 0and G(¢) — G(ls+) = 0.

The class of a prior: distributions assigning probability one to a finite set of
points is of course a subset of G; . We now have
Tueorem 3.3: If G(N) € G, then

_ w’(e) _ G"(c)
(1.29) t(n) = cn + WO~ TOT0 + o(1).
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THEOREM 3.4: If G)\) £ G2, &1 = G(le+) — G(ls), and &> = G(us+) — G(uq),
then
" uw'(u) du In él(_g__—__k;l

— e $2(ug — ©)
(1.30) tn) =n ;(ua) —oo ot — ety T o(1).

Although the classes G; and G, are not exhaustive we have characterized ¢(n) and
hence 6*(s,) sufficiently for most practical purposes as long as » is reasonably
large. We now turn our attention to the problem of determining the Bayes
sample size n* = n*(N) which minimizes the risk B(é* n, N), and seek an
asymptotic characterization of the Bayes sample size n*(N) for large N.

The parameter k appearing in (1.9) is essentially a scale parameter in the
sense that if X is a random variable distributed according to (1.9) with b = 1
and if \ is replaced by A*/k then £X has a distribution of the same form as (1.9)
with arbitrary k¥ and with \* playing the role of N\. A similar remark applys to
the parameter » appearing in (1.15). Hence the cases where k and 7 are arbitrary
may be obtained from the cases where £ = 1 and n = 1 by multiplying the
appropriate cost coefficients by k or n and making suitable changes of variables
in the a priori distribution functions. For the sake of simplicity the remaining
results are stated for the cases k = 1 and » = 1 only.

The asymptotic behavior of n*(N') is characterized by the following theorems,
which are proved in Section 4.

TaEOREM 4.1: If F(x |\) € §1 (with k = 1) and G(N) € G, then the Bayes risk
for fixed n and N s given by

R(*m,N) = a((si = m)E() + (s =)+ (n— ) [ "0 = 0) dGO)

13D+ NEW + ot (=) [ (= e)ddn)
LW —m) = ae)(;:‘ 8)G'() (N — o (1)
o n
and the Bayes sample size ts
N, A =0,
132 * N = — ’ 1/2
(152)  n*(N) N2 ((7‘2 az);ZA-i; Be)G (0))I + o(N'?), Ao > 0,

where
(133) Ag= (s1 —r)E(A) + 82 — o + (11 — @) _[ (A —¢) dG(N).

TueoreM 4.2: If F(z|N) e T (with k = 1), G(N) £ G2 and Ag s defined by
(1.33), then the Bayes sample size is given by
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N, A,

IIA

0,
(1.34) W) =y K
n ——2—lnlnN+0(1), dg > 0.
(The definition of K is lengthy and is contained in the proof in Section 4.)
TueoREM 4.3: If F(z |N) ¢ F (with 7 = 1), G(\) € G1 and Ag ts defined by
(1.33), then the Bayes sample stze ts given by

N, As 20,

135 HN) = = @) ()}
(135) n*(N) wor (= WG CENE ooy, ag> 0,

TuEOREM 4.4: If F(z |N) €T (with n = 1), G(\) € Gz and A is defined by
(1.33), then the Bayes sample size is given by

N, AG§O:

(136) n*(N) =
KN - Emmy+ow, A > 0.

In all cases where A¢ < 0 the proper procedure is to screen the lot completely
(i.e., take n*(N) = N). Theorems 4.1 and 4.3 show that if an a prior: proba-
bility density for the parameter N exists in the vicinity of the critical point c
and if this density is smooth and positive at ¢, then the optimal sample size
when Ag > 0 is approximately proportional to the square root of the lot size
N when N is large. For the cases covered by Theorems 4.2 and 4.4 where the
a priori probability that N lies within a certain neighborhood of ¢ is zero, the
optimal sample size when A¢ > 0 is approximately proportional to the logarithm
of N when N is large. It is clear from these results that the optimal rate of in-
crease for the sample size depends critically on the fine structure of the a prior
information about N in the vicinity of ¢. This is especially remarkable in view
of the fact that c is actually the “indifference’” value of N in the sense that if
\ = c then either acceptance or rejection of the lot leads to the same expected
cost.
Referring to (1.3) and (1.32) of Theorem 4.1 we may write

(137) R(*,n,N) = A¢n + BaN + Co(N — n) (% +o0 (%)) ,
andif A¢ >0

C 1/2
(1.38) ‘MW)=G% N 4+ o(NY?),

where Ag is given by (1.33), and By and Cg are coefficients depending on the
costs and the a prior: distribution G. It is easily verified that the term BN repre-
sents the “subminimal’’ risk which would result if the value N of A were known
exactly without sampling and the decision to accept or reject determined ac-
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cordingly. From (1.37) and (1.38) we obtain
(1.39) R(8*, n*(N), N) = BgN + 2(4¢C)"*N'* + o(N'?),

which shows that the amount by which the Bayes risk exceeds the subminimal
risk due to the uncertainty concerning the value of A is of smaller order in N
than the subminimal risk itself. Expression (1.39) is still valid if the sample size
is determined by taking only the first term in the asymptotic expansion for
n*(N) so that not much is lost by making this approximation if N is large.
Similar remarks may be made for the cases covered by Theorems 4.2, 4.3 and
4.4. For the cases covered by Theorems 4.2 and 4.4 the term added to the sub-
minimal risk in the expressions for R(6*, n*(N), N) is of order In N.

2. Theorems concerning the class of distribution functions F(z | \).

TueoreM 2.1: The function w(N\) given by (1.9) s unique and dw(N\)/d\ exists
and 1s posttive forN e I, .

Proor: By assumption (1.3) there exist numbers wo , w1 such that the ratio

f ze”” du(z)
[a,0)

[

is finite for wy < w < w; . Furthermore, p(w) is differentiable with respect to w and

(2.1) plw) =

(k]

’ . . w 2 4
(2.2) o(0) = f[) (2 — p()) ————-—-f e du(z) > 0,
[a,0) H

for wy < w < w; . Now for \ £ I, we have, by (1.3B), p(w(\)) = \ which implies
that w(A) is unique and that dw(N\)/d\ exists and is given by

do(\) 1
T )

THEOREM 2.2: If F(z | N) s defined by (1.4), then all moments of F(x | \) exist,
and all derivatives of w(\) exist and are finite for N e I, .

Proor: The function w(\) is continuous and strictly increasing for N € I, by
Theorem 2.1. Therefore, the moment generating function given by

f ez g0y
[a,0)

f % 4u(z)
[a,0)

(23) > 0.

(24) - ma(8) =

exists for each A ¢ I, for all ¢ in some open interval about zero since both the
numerator and the denominator of the ratio (1.3B) must be finite for any
N eI, . That is, for any fixed N € I, , we may choose ¢ # 0 small enough in magni-
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tude so that there exists a N* ¢ I, for which |¢| + w(A) < w(A*) so-that the
integral in the numerator must converge.

Repeated formal differentiations of p(w) yield sums of ratios involving products
of integrals of the form [(4,) 2"¢**du(z) in the numerators and powers of
Jio.w € du(2) in the denominators. These integrals are finite and those in the
denominators do not vanish for w = w(\), N ¢ I,,, so all derivatives of p(w) exist
for such values of w. As before, forA e I, ,

dw(N) _ 1

dx p'(w(N)
and repeated application of the rule for differentiation of implicit functions
shows that w(\) possesses derivatives of all orders forA e I, .

TrEOREM 2.3: The distribution function F(x | \) defined by (1.4) may be repre-
sented for a < z = b and for N € I, by

o A
(26)  Flz|)) = K(v) j{m exp{w()\) - L e () du} du(t),

(25)

if and only if assumption (1.3B) s satisfied, wherey € I, and K (v) s a normalizing
factor depending on the choice of v determined so that F(b+ |\) = 1.
Proor: We observe that

27) [ #™ ) = o) f 26°V% du(z)
A\ Jiaw) [a,%0)

so that dividing both sides by [(s.) ¢*V* du(z) and referring to assumption
(1.3B) we have forAe 1, ,

d o)z 2) — !
(2.8) L1 f[m) M Gu(z) = M’ (V).
Hence
/K‘ ) M du(z) = exp {f Mo’ () dN + c}
(29) o

= K(y) exp{_[; uw' (u) du}

for v € I, . The fact that assumption (1.3B) is satisfied whenever (2.6) is valid
follows immediately by differentiating the expression F(b+4 |N) = 1 with re-
spect to A.

We now verify that the classes §; and F. defined by (1.11) and (1.16) satisfy
the above assumptions, and determine closed expressions for the n-fold con-
volution of distribution functions in these classes.

THEOREM 2.4: If the function w(\) and the measure u(x) are defined by (1.9) and
(1.10), then condition (1.3B) s satisfied.

Proor: Let the function r(x), x = 0, k, 2k, - - - be defined by the generating
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function
b* eat B =0
2. Tz ) a )
(210) 2, r(ka)i {(1 — By, 8 0.

It is easily verified by successive differentiation of (2.10) that 7(z) = du(z)/dv(x)
as given by 1.10. Substituting N/ (ke + B\) for ¢ in (2.10), we obtain

b* z e)‘/k’ B = 0)
.]. = alB
(2.11) 2 (ko) (k ¥ m\) ( + 5*) ’ B 0.
Noting that w(A\) = (1/k) In (\/(ka + B\)) by (1.9) we may write (2.11) as
& g =0
2.12 s g = alf
@) fuw 0 0 =1 (g Y o

Differentiating (2.12) with respect to N and dividing both members by
W' N) = (a/Nka + BN)), we obtain

)\e_“k, B =0,
. zw(N) V) — alf
(213) -/;O,w) =& dulz) (1 + ’”‘) , 8 = 0.

The proof is completed by noting that the ratio of (2.13) to (2.12) is always N
so that (1.3B) is satisfied.
Theorems 2.3 and 2.4 imply that for any F(z |\) e

(2.14) F(kz|\) = ZZ—;r(kt) exp{ktw()\) - f e’ () du}

for integer values of &, where w(\) is given by (1.9), r(z) = du(zx)/ dv(x) is
given by (1.10), and the value of v appearing in (2.6) is taken to be zero. The
fact that we must have K(0) = 1 if F(b+ |\) is to equal one follows from the
observation that w(A\) — — o as A — 0 together with the assumption that
r(0) =

The following theorem provides an integral formula for the n-fold convolution
F™ of F(x|\) when Fisin &, .

THEOREM 2.5: If F(x | N) € %y, then for integer values of m, F™ is given by

0, m = 0,
(n) m—
(2.15) F™(km[N) =<8 ™ ("”")f (e + BO™

'oadu
-exp{—n A m dt, m = 1,2,"‘,
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where

1, z = 0,

(216) rP(z) = nelna+B) - ("“ + (£ B 1) 6)

(—‘) ! |
k
Proor: By (1.7)

(2.17) F"™( [A) = /;ow) exp{w(k)x - nlk uw' (1) du} du™(z) =1

where 1™ is the n-fold convolution of u. Hence, letting r™ (z) = du™ (z)/dv(z)
and t = N/(ka + BN\) and recalling that w(A\) = (1/k) In (\/(ka + Bt)) for this

case, we have
nb* kat/1—Bt
(n) @ o du
r(kx)t® = exp{n f —
27" k) P { b Fa + ﬁu}

enat’ ﬁ = O,
(1 — gty £ 5 0.

(2.18)

Successive differentiation of (2.17) with respect to ¢ yields (2.16). Referring to
(1.8), we may write

m—1 z A
. B ) R _ _adu
(219) FP(km|2) = 2, r (k) (ka = Bx) exp{ " FaF ﬁu}’

for integer values of m. Assuming that (2.15) holds for some integer m, we have

F™(k(m + 1) |))

m A
= F™(km|N) + r™(km) (k———a _?_ B)\) exp{—n A k_—aa—{(-iuﬁu}

(2.20) W L A { [ adu
1 —mr (km)/0 mexp n ) ke T pu dt
A

(n) A " _ adu
+ ™ (km) (———ka T B’\) exp { " | % T Bu T ﬁu} .
Integrating the second term on the right by parts yields

A t
(n) m—1 —m _ o du
mr™ (km) ]o. t [(ka -+ Bt) exp{ n ) T T Bu ﬂu}] dt

I

(n) ’ tm o du
(221) = r"(km)(na + mp) /; T + oy oXP f ka + Buf

A

) Ay _ o du
+m () {0 [ 2
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Substituting this expression in (2.20) and recalling (2.16), we see that (2.15) is
verified for F*” (k(m + 1)). It is easily shown directly that (2.15) holds for
m = 1 so that the desired result follows by induction.

We now consider the family &, of distribution functions obtained when w(\)
and p(2) are defined by (1.14) and (1.15).

THEOREM 2.6: If F(x |N) € Fo, then (2) condition (1.3B) s satisfied, and (1)

nn 00
(2.21) F(">(x [\) = (nz) W gy
T(nn) I

Proor: Any distribution in %, is a gamma distribution with parameters de-
termined so that the first moment is N, thereby satisfying (1.3B). The con-
volution of such gamma distributions is well known (cf. [6]) to be given by

nnntnn——l
T'(ng)\m
By making the change of variable v = a\/t we obtain (2.21).

e .

(2.22) F™(z|\) = fo

3. The Bayes decision rule.

TuEOREM 3.1: The function ¢.(t) given by (1.21) s finite and strictly increasing
forteI(™.

Proor: The finiteness of E(A) = [¢ A dG(\) insures the finiteness of ¢,(¢)
foralltel ﬁ") with the possible exception of a set of u™-measure zero since

(31) ‘Pn(t) = E{AlSn = t}’

for all te I{® — A, where A is the exceptional null set. Hence, for any fixed
teI{”, we may choose t; , tre I$™ such that &, < ¢ < t, and ¢,(t), ¢a(tz) are
finite. Then tw(A) = max (tiw(N), w(N)) for all N e I, and the finiteness of
¢n(t) follows from the finiteness of the integrals in the expressions for ¢,(#) and
@n(t). Now choose ¢ and & > 0 so that [t, ¢t + 8] < I\ and let

fz exp {tw()\) —-n f)‘ uw' (u) du} dG(\)
(32) Hy(z) = 25 x -
fo exp{tw()\) - nf uw’ (u) du} dG(\)

Then H,.(z) may be interpreted as the distribution function of some random
variable Z and we may write

(33) ou(t + 8) — on(t) = E{Z exp {&U(ZE){}e}X;{fO{(g)}-}E}{eXP {8(Z)}} .

It is intuitively clear and follows rigorously from the inequality on page 43
of [7] that the right hand side of (3.3) is strictly positive for all § > 0 whenever
G(N\) and hence H.(z) are non-degenerate. Thus ¢,(¢) is strictly increasing and
the proof is completed.
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We now recall that the Bayes decision rule (1.20) is equialvent to

-l BE0

where {(n) is defined by (1.24).

THEOREM 3.2: If Ny = sup {M:N < ¢; GA+) — G(N — €) > 0, all ¢ > 0} and
A= inf (AN = ¢; GON 4+ €) — GN) > 0, all € > 0}, and if t(n) 45 defined by
(1.24), then

(3.5) Ao = lim inf tn) =< lim sup t—(l) =\

T e n n->0 n
Proor: Let I be an indicator function defined on the product of the space of
all sequences of numbers {s,} and the real line by

1, if s,/n —\ as n— o/
(3.6) I(fsad, M) = {0, otherwise.

Given A = N, S, is a sum of conditionally independent identically distributed
random variables with mean X. Hence, by the strong law of large numbers

(3.7) E{I({S.},N) A=)\ =1, a.s.,
and this can be shown to be equivalent to

(3.8) E{I({S.}, M) |[A =) =1, a.s.
Thus

(3.9) P{S./n— A} = E{E{I({S4}, A} | A}} = 1.
Furthermore, by a martingale convergence theorem (e¢f., p. 398 of [8]),
(3.10) P{E(A] S,) — A} = 1.
Therefore for all x which are continuity points of G(z),

(3.11) P{E(A| S.) <z} — G(x),

and

(3.12) P{S,/n < z} — G(z),

as n — . Suppose that lim sup,—.. (¢(n)/n) > \; : Then there is a & > 0 such
that \; + 6 is a continuity point of G(x), and ¢{(n)/n > N\, + & for arbitrarily
large values of n. Hence, for these values of n

(3.13) P{E(A|S.) = ¢} = P{S./n < t(n)/n} Z P{S./n = M + 8.
However, as n — o

(3.14) P{S,/n < M + 8 — G\ + 8) > G\+)

and for sufficiently large n

(3.15) P{E(A]S,) =S¢ = GM+) + ¢
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for arbitrary ¢ > 0. If we choose ¢ > 0 such that ¢ < G\ + 8) — G(\+)
we are led to a contradiction and hence, lim sup,—. t(n)/n < A\ . A similar
argument establishes the other inequality of the theorem.

TaeoREM 3.3: If G(N) £G1, then

wll(c) Gll(c)

W)y ~ T T

(3.16) t(n) = cn +

The proof of Theorem 3.3 will require a sequence of preliminary lemmas, the
first two of which will also be used in the later derivation of an asymptotic ex-

pansion for the Bayes risk.
Since P{E(A | S,) — A} = 1, there exists a 6 > 0 such that (i) ¢ + dis a
continuity point of G(x), (ii) G(¢c + 8) < 1, and (iii) as n — =«

(3.17) P{E(A|S,) >c+ 8 —»1—G(c+38) >0

But E(A| S,) =< e¢n(nb), as., hence ¢.(nb) > ¢ for all sufficiently large n.
Similarly, ¢.(na) < c for all sufficiently large n. Hence, referring to (1.22) we
see that for all sufficiently large n, t(n), defined by (1.24), is the solution to

(318) 1(n) = [ " = ¢) exp {t(n)w()\) —nf () du} GO = 0.

v

The result of Theorem 3.2 suggests that if G(\) €G;, then we should write
t(n) = cn + ¥(n) so that

(319) 1) = [ T (h = ¢) exp {(nh(A) + w(n)e(N)} dE(N)

where

A
(3.20) ) = aw) ~ [ w'(u) du.

Y
This form of I(n) will be convenient for the application of results from the
theory of the asymptotic expansion of integrals.

LemMa 3.1: Let g(t) be any function integrable with respect to a distribution func-
tion H(t), and let o(n, t) be a function, {t.} a sequence and ¢ a number such that
for all sufficiently small ¢ > 0 there exists a & > 0 such that for all sufficiently large
n, o(n, t) < o(n, t,) — & whenever |t — ¢ | = €. Then for any fixed m

c—€

(3.21) [_m g(t) exp (ne(n, 1)} dH(t) = o(exp {ne(n, t)}n™),
and

(3.22) fi g9(2) exp {ne(n, 1)} dH(t) = o(exp {ne(n, t,)}n ™).
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Proor: For all sufficiently large n,

| [~ ) exo tnotn, 1)) am
(323) o
< exp {ne(n, t,) — né} [» [g(t) | dH(t),

and (3.21) follows immediately. Expression (3.22) follows by the same argument.
Lemma 3.2: If g(¢) is any function which is four times continuously differentiable
in some interval containing ¢, and if g'(¢) = 0,¢”(c) < 0, then

ot 741 Lan
/' (¢ — ¢)" exp {ng(¢)} dt = exp {ng(c)} {n“—-‘;— (—-!7,2(—0) E

C—E€

() () et () ()
B (CY= e B
ey -G, (o)

This is a standard result from the theory of asymptotic expansions and will not:
be proved here. A proof is outlined, for example, in [9].

The next lemma establishes the boundedness of ¥(n).

Levmma 3.3: If G(N) € G and t(n) = cn + ¢(n), then ¢(n) = O(1).

Proor: The method of proof is to derive an asymptotic expansion for I(n) as
defined by (3.19) and show that the assumption that | ¢(n) | — « asn — «
leads to a contradiction.

The expression A(N) 4+ (¥(n)/n)w(N\) is maximized when N = ¢ + (¢(n)/n)
and, noting that ¢(n)/n — 0 as n — « by Theorem 3.2, it is easily verified that
h(N) 4+ (¥(n)/n)w(N) has the properties of the function ¢(n, ¢) of Lemma 3.1
with ¢ = N and t, = ¢ + (¥(n)/n). Hence choosing ¢ > 0 such that dG(\) =
@' (N) d\ for N in (¢ — €, ¢ + €) we have from (3.19) by Lemma 3.1

(3.24)

1) = [ 00— 6 exp Inh() + $me(VIE ()

+o0 (exp {nh (c + Lizn_)_) + ¢(n)w (c + ,/i?:,l)} n"'") ,

for any m = 0. By the definition of G, @A) = G'(¢) + ON — ¢) for
¢ — ¢ <N<c+ e Hence

(3.25)
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cte
I(n) = @(c) f O = o) exp (nh(A) + ¥(n)o(N)} dA

cte
(3.26) +0 (f_ (A = ¢)?exp {nh(\) + ¢(n)w(N)} d)\)

+ 0 <exp {nh <c + '—‘0—%&~)> + ¢(n)w (c + ﬂnﬂ» n%) .

Letting 7, = ¥(n)/nandt = X\ — ¢ — 7., and expanding the exponent in the
integrands about ¢ = 0 we obtain

I(n) = exp {nhc + ) + $(n)alc + 1)} [G’<c> [t
-exp {£[nh"(c + ) + ¥(n)o” (e + )] + £(n, D)} dt]
(3.27) -
o (f_ (t + r)* exp {£Inh" (¢ + 72) + $(M)o"(c + 72)]

€e—T,

+ £, )} dt) + olexp {nh(c + a) + p(n)ulc + ra)}n™)

where | £§(n, t) | < knt® for some &k > 0, all n, and all {in (—e — 7o, € — 74)’

Since 7, — 0, changing the range of integration from (—e — 7,, € — 74) to
(—¢*, €¥) for 0 < ¢* < e adds only terms of negligibly small order by Lemma
3.1. Hence, I(n) may be expressed in terms of integrals of the form

(3.28) [ £ exp {Flnh" (¢ + ) + ¥(n)o”(c + )] + E(n, )} dt
for r = 0, 1, 2. Applying Lemma 3.2 to these integrals, regarding

[nh” (¢ + 1a) + ¥(n)w”(c + 74)]

as the parameter which becomes large, and noting that the first terms in the
expansions remain unchanged if either the upper or lower bound for E(n, t) is
used, we obtain

I(n) = exp {nh(c + 7.) + ¥(n)w(c + )}

' ¥(n) -7 e
(3.29) . [G () nil? (h”(c + 7a) + Tao"(c + 'rn)>

o) o ()]

However, if | ¢(m) | —  for any subsequence ny — o, (3.29) implies that
I(n) # 0 for arbitrarily large values of n. This, however, is a contradiction,
hence, ¢(n) = O(1).
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These lemmas now permit us to complete the proof of the theorem.
Proor or THEOREM 3.3: Expanding

(3.30) f(n,N) = G'(\) exp ¥(n)w(N)
about A = ¢ in (3.25) and regarding h(\) as the function o(n, t) appearing in

Lemma 3.1 with { = X and ¢, = ¢, we have

cté
1) = [0 = o) exp (mhO) + $(n)e(0)}[6'(0)
(3.31) + (= (@ (0) + G ()wl(e)p(n))
+ R(n, M) d\ + o(exp {nh(c)}n™)

for any m = 0, where
(332) R,)) = O = ) [ Zstn, 0+ 00,00 = ) = 2 sn,) |
for some 0 < 6(n, )\») < 1. Now let

cte
(3.33) T() = [\ = o) exp (nh(W)}R(n,\) dn.
For any arbitrarily small § > 0 we can find an 7(8) > 0 such that | R(n,\) | <
d(N — ¢) for N in (¢ — 7(d), ¢ + n(8)), since

9/aNf(n,N) = [G"(N) + G'N)¥(n)o'(N)] exp {¢¥(n)w(N)}
regarded as a function of N\ is continuous at ¢ uniformly in n. Applying Lemma
3.2 we have

c+n(8)
| T(n) | = fc_w) R(n,\) (A — ¢) exp {nh(A)} )| + ofexp (nh(0)}n~™)
c+9(8)
(3.34) <3é f_ 5 (A = ¢)*exp {nh(\)} d\ + o(exp {nh(c)}n™)
=30 (e____"p f@?f;“ﬁ) :

But § may be taken arbitrarily small, hence

lim $up,— (| T(n) |/exp {nh(c)}n™"")

is less than an arbitrarily small quantity, so that T'(n) = o (exp {nh(c)}n ).

Using this fact and applying Lemma 3.2 to the terms of (3.31) involving (A — ¢)
and (A — ¢)*.we have,
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I(n) = n™* exp {nh(c) + ¥(n)a(c)} [G’(c) (’”"'("))

3!
2 5/2 " ’ ’
(335) (-m) I(6/2) + (€ (c) + ¥(n)w' ()G (c))
3/2
(~i2) T@2 +on] =0
which yields

h"’(c) G”(c)

- _ w”(¢) G"(¢)
(3.36) y¢(n) = 2K (c)w'(c) G'(c)w'(c)

W@y G )

This establishes the expression (3.16) for ¢(n) if G(N) € G1. We now turn to
consideration of G(\) € G: .

THEOREM 3.4: IfG(\) £ G2, &1 = G(le+) — G(la), and {2 = G(ue+) — G(ue),
then

+ o(1) = + o(1).

lua uw'(u) du In g%ii——.:l—%;
@31 ) = = T eue) — ) T

Proor: As in Theorem 3.3 we must find an asymptotic expansion for the
solution ¢(n) of

(338) I(n) = ‘[o N —=2¢) exp{t(n)w()\) —-n ‘[:‘ uw’ (u) du} dG(\) = 0.
For A < lg, consider

(3.39) nr, ) = 42 (wih) wlio) + [ “ e (u) du.

Integrating by parts, and applying the mean value theorem and Theorem 3.2,
we have lim supn.. 11\, ) = lo (@A) — w(le)) + lew(le) — Nw(N) —

(l¢ — N)w(A*) where A < A\* < lq . Therefore, since w(\) is increasing, we have
lim Supn—. 71(\, 7) < O for each A < Il . Hence, for each A < l¢

(A — ¢) exp {t(n)w()‘) -n jj wew' (u) du}
(340) (Ig — o) exp{t(n)w(lg) - nf ww’ (u) du}

v

A—c¢

exp {nri(\,n)} — 0,
lo — C
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as n — o, so that

e+ (M — ¢) exp {t(n)w(k) —-n f: uw' (u) du}

CEVI | - —6
(lg — ¢) exp {t(n)w(lq) - nf ww' (u) du}

as n — o, by the dominated convergence theorem. This, however, is equivalent
to

lg

+ A
/., (= ¢ exp{t(n)w()\) —n f e () du} dG(\)
(342) lot
= f1(lg — ¢) exp {t(n)w(lg) - nf “uw' (u) du} (1 4+ o(1)).

Similarly

(3.43) lim sup {t(—zz (w\) — w(ug)) — f)\ we' (u) du} <0

n-—>00

for each N > ug, and

fo (N —¢) exp {t(n)w()\) —-n fx uw' (u) du} dG(\)

(3.44) ve
= ¢(ug — ¢) exp {t(n)w(ug) - nf uw’ (u) du} (1 4+ o(1)).

Therefore we must determine ¢(n) so that

lg
i = 1a) exp {Hmalle) — n [ w'(a) du} (1 + o1)
(345) ! v
= ¢(ue — ¢) exp{t(n)w(ua) - nf uw’ (u) du} (1 4+ o(1)).

Taking logarithms, we obtain (3.37) as desired.

4. Asymptotic characterization of the Bayes risk and the Bayes sample size.
TueoreM 4.1: If F(x |N) e %1 (with k = 1) and G(\) € G, then the Bayes
risk for fixed n and N s given by

R(5*,n,N) =n ((81 —r)EQ) + s — 10+ (1 — al)-[ \—=c¢) dG(A))
(41) +N (rl EW 4t =) [0 -0 dam)

+ (N —n) (re — a2)(a + ﬂC)Gl(C) + (N _ n)o(/'lz)

2an
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and the Bayes sample size is
N ) AG é O;

4, *(N) = ()"
( 2) n (N) N1/2 ((7’2 - M)éZA'l' BC)G (0)) ! + O(Nll2)’ Aa > 0,

where
(4-3) Ag = (8 — Tl)E(A) + 8 —=r+4+ (n— @) ‘[ - c) dG(n).

Proor: By applying (1.20) to (1.19) we see that
R(*,n,N) = n((si — n)E(A) + ss — 1)

(4.4
@ + N(nE(A) + 1) + (N — n)(a — n)B{(A — c)L(A, n)},

where
(4.5) LN\, n) = E{§*(Sa) | A =N = P{S, < t(n) | A = )},

where {(n) is defined by (1.24).

Letting 7(n) = [t(n)], where [z] indicates the largest integer less than equal
to z, we may write 7(n) = ¢n 4+ ¢(n), where ¢(n) = O(1) by Theorem 3.3.
Now, noting that F™(m |A\) - 0ash — b form < b, we may apply Theorem
2.5 to obtain

L\ n) = (r(n) + 1)r™(+(n) + 1)

(4.6) Y {_ " adu }
v (@ + pryom &P ”fo o

for values of n large enough so that 0 < r(n) < b. Hence

b+ b
BI(A = OL(, w1 = () + DG +1) [ 0~ [

t

P o du }
exp{ n A mdu dt dG(N\)

(o F By
41 (a + BY)

7(n)

b £
= (r(n) + 1)r"(+(n) + 1) fo @ F gy

-exp{—nl &C:—d?iu}/o N = ¢) dG(\) dt.

As before, let

¢ ' adu
(4:.8) h(t) =cln (ﬁ'ﬁ) —l ot Bu.
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Then
(4.9) E[(A — ¢)L(A, n)] = (v(n) + 1)r™(7(n) + 1)I(n)
where
(4.10) I(n) = fo " K, n) exp (nh(D)} dL,
and
tv(n) t

(4.11) K(n) = gm0 = ©) 46OV,
Now

dK(¢e,n) _ ™ ap(n) — Be\ [°
) HEn e (i a) | 0= 0 600,
and

'K (c,n) _ ct™
(4.13) y (; t(ﬂj)’(mz )) — 4aBee(n) + 26°¢" [°
- , o’ (o (n) — o(n)) — 4aBep(n (5 _

[e@ + ) — dop [o-awm],

so that

l(ZZ—K((: n) + R(i,n)
2 a2 ! ’

where, by an argument similar to that used in Theorem 3.3,
R(t, n) = o((t = ¢)*)

uniformly in n. Furthermore by Lemma 3.1

(414)  K(tn) = K(e,n) + (t = 0) & K(em) +

(4.15) I(n) = fc_ﬂ K(t,n) exp {nh(t)} dt 4+ o(exp {nh(c)}n™)

for all m = 0. Hence, substituting (4.14) in (4.15), treating the remainder of

(4.14) as was done in Theorem 3.3, and applying Lemma 3.2, we obtain

(
I(n) = exp{\r;i:_l(c)} (_h(f(c))”z 4LK(°’") o (%)

(1.16) P(g) 2 V' [r®@%) 5% ())’
+T[K(“’") (‘hw(c))[ a 72h<2><c>]

I (‘hw?(c))z(hw;(f)) + 3755 (o) |+ (i)}

From (4.8) we have
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@ - _ @
h™(e) = c(a + Be)’
2
N ® - M
(417) R0 = G o
3 2
@ _ o (o + 3d%8c + 30
N W (e) = 6( e + Boy? Z)
and hence
2rc(a + Be)\"? e
I(n) = (T) exp {nh(c)} (a F Boyrm

’ 1{ ale’(n) + o(n)) | & + afc + B¢
(4.18) j(: W = ) dG() {1 t 7&( 2¢(a + Bc) + 12ac(a + fc)

+ G'(e) > +o (%)}

2a [oc(x - c) dG(\)

Furthermore by (4.8)

AR RN
(4.19) exp {nh(c)} = a-:Bcl ot e
(&) e t=em, e=o,

and from (2.16) we have
(en + o(n) + D7 (en + o(n) + 1)

gertemHp (%? + en + o(n) + 1)
b B > 0 b
(en 4 o(n))IT (’%)
= (na)cn+v(n)+l _
(en + e(m))!”’ 8=0,
(_B)cn+w(n)+l(nb)! _g 3
o F o) (b = en — p(m)—=T)1” g=b>0

(4.20)

na

.
c—(cn+¢(n)+l/2(a +ﬁc) B

/n a(i(n) + o(n)) _ o + B + afc (l)
"‘/2_1r|:1_ 2nc(a + Be) 12nac(a+6c)‘+0 n :|’ 670,

B , n - 172
exp {cn} acn+¢(n)+l /‘/c_ ¢ (en+¢(n)+1/2)
73

) (1 _emtem) 1 0(1))’ 8

2nc 12¢n n

+ento(n)+1/2 a—-':T“ﬂ/z

I
g
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by Stirling’s formula, using the form Inn! = (n + 3)Inn + 3 In27 — n +
1/12n 4+ o(1/n). Combining (4.19) and (4.20), we obtain

(N = )@ = WE{(A = LA, m)} = N —n) [ T = ) OOV

(421) + (= @)t B0 o) 4 ngr, — | T = ) dOOV)
(a2 — 1) (@ + Be)G'(c) 1
+ - +<N—n>o(,-l),

which upon substitution in (4.4) yields (4.1).

It is easily verified that, as long as there are sets with positive probability
on each side of ¢, the Bayes decision rule leads to an incorrect decision with
positive probability whenever = is finite. Hence, for each finite »

(4.22) El(A — o)L(A,n)] > fo "= ¢) dGOV) .

By (4.21), however, E[(A — ¢)L(A,n)] — fo (A — ¢) dG(N), asn — . Suppose
that the Bayes sample size n*(N) = O(1) as N — . Then there exists an
integer m such that

(4.23) E{(A — ¢)L(A, n*(N))} > E{(A — ¢)L(A, m))}.

Referring to (4.4) and recalling that a; > 7 by assumption we see that this
implies that

(4.24) R(8* n*(N), N) > R(&* m, N),

for all sufficiently large values of N. This, however, contradicts the assertion
that n*(N) is the Bayes sample size. Similarly, for any subsequence N, — «
the assertion that n*(N:) = O(1) leads to a contradiction. Hence n*(N) — o
as N — «,

Now for simplicity of notation we write (4.1) as

(425) R(8*,n,N) = A¢n + B¢ N + Ce(N — n) (;I‘L-i- 0 (%)),asn—» o ,

In order to characterize the Bayes sample size we must consider two cases.
(Case i; Ag = 0): If Ag < 0, the risk is clearly minimized by taking n as
large as possible (i.e., equal to N) since C¢ > 0 by assumption so that
Co((1/n*) 4+ o(1/n*)) > 0 for large N since n*(N) — .
(Caseii; A¢ > 0): Let the Bayes sample size be written as

(4.26) n*(N) = AN + &(N)

where
_ CG 1/2
(o) = (2)

G,
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and let
(4.28) n(N) = AN
Now as N — oo,

R(6*,n*(N),N) — R(6*,n(N), N)

1 1
_ AgE(N) + o(N""5(N))
ANELEN)

which is positive for arbitrarily large values of N unless £ N) = o(NY*). If
this expression is positive then the risk using n(N) is less than that using n*(N)
which contradicts the assertion that n*(N) is the Bayes sample size. Hence
E(N) = o(N'").

TueoreM 4.2: If F(z|\) e & (with k = 1) G(\) € G and Ag is defined by
(4.3), then the Bayes sample size is given by

N
! A¢=0
(4.30) n*(N) = K =7
KlnN——z—lnlnN+O(l), Ae>0.

(The definition of K is lengthy and is contained in the proof.)
Proor: We rewrite (4.4) as

R(3* n,N) = N(r E(A) + r2) + n((s1 — n)E(A) + s, — 1)

+ (V= n)(a — m{[ (= d60) + [ (e = N1 = LOyn)) dG)

+ ]f (h = L m) 4B
Now referring to (3.37) let 7(n) = [{(n)] = K + ¢(n) = O(1) and

Ug
j; uw' (u) du
=¢ 4 .
K, w(ua) = ale) (clearly lg < K; < ug)

For A < K, we may apply a well known result of asymptotic expansion theory
(ef. [10]) to (2.15) to obtain

e\n)
1= L, n) = (s(n) + D™ (r(n) + 1) (aﬁ m) an(Kll =Y

A " adu
-exp{n (K1 lnm - _£ s ﬂu)} (1 4+ o(1)).

Similarly, we obtain for A > K;

(4.31)
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¢(n)
LO,n) = (r(n) + Dr®((n) + 1) (ﬂtﬁ)

. JL(TI:—KT) exp{n (Kl In (Z-I")\—ﬁ)\) - fox &%» (1 4+ o(1)).

Now, for A < Ky, KiIn (\/(a 4 B\)) — o adu/(a + Bu) is increasing in \,
and for X > K, it is decreasing. Hence we have 1 — L(\, n) = o(1 — L(lg, n))
forA < lg,and L\, n) = o(L(ug,n)) for X > ug as n — «. Let \* be which-
ever of I and ue maximizes K; In N/(a + B\) — [0 a du/(a + Bu), and let *
be the weight assigned to that point by G(\). At this stage we discuss in detail
the case where

o ¢ o du ( Ug )_ “¢  adu
(433) Kllnm ‘[ a+Bu7éK1 In a+ﬁuq _[ a+Bu

The case where equality holds can be treated in a similar manner and leads to
the same Bayes sample size, as will be noted at the conclusion of the proof. By
using expression (4.2) for (7(n) + 1)r'"(r(n) + 1), we have

R(8*,n,N) = N(nE(A) + ) + n((ss — r)E(A) + (82 — 12))

(4.32)

4+ (N —n)(a—m) [ (h — ¢) dGQV)

[x*(a + BKx)]"(") (a + BEKON**(A* — ¢)
Ki(e + BA¥) (A — K1)V 27raK (o + BK,)n

(4.34) a+ BK:, (o + BK:\\\
exp{n <K1 an + 3 In (a T ﬁ)\*))f , 8 =0
exp {n <K1 In = -I- K, — )\*)} 8 = OJ
‘.
(14 o(l))j .
Let
_ (M + BK1)>‘°("’ ( (a + BE)N*(A* = ¢) )
(435) v(n) (Kma +69) \o* = K)varekia T 8K
a+ 3K1 a + BK,
Kllnf-i- 8 In a + B’ B =0,

(4.36) -

=l

K;lnR—;+K1—)\*, ﬁ=01
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and note that K > 0. We then have, from (4.34)

R(é*,n,N) = N (TIE(A) + 7+ (a1 — &) [ N\ —¢) dG(X))

437) +n ((sl ~ B Fa -t (n—a) [ =0 dG(x))

n

+ (&1 — s)(N — n) () eXp{—%} (1 + o(1))

asn — . Now, by the argument given in the proof of Theorem 4.1, n*(N) — «
as N — «. As in Theorem 4.1 we have two cases, (i) A¢ < 0 and (ii) 4¢ > 0.
Case (i) is treated exactly as before. Case (ii), however, requires a slightly
different argument as follows: Let n(N) = KIn N — (K/2) Inln N and write
n*(N) = n(N) + &N). Noting that

N—nWN) [ 1 ol 1 S e
(4.38) NT6%) exp{ Kn(N)f VR as N ,

we have
R(a*y n*(N)) N) - R(a*y n(N)) N)

- oy (N =) — &)
aamy = A + = ) (Y20 o) + )

oxp{ —f (W) + N} (1 + o(1)) + O(1))

If £(N) or any subsequence — + oo, the exponential term is bounded and the
" linear term becomes infinite. If £(N) — — «, then

N — n(N) — &N) exp{_flf (n(N) + z(N>>}

Vn(N) + £&N)
N — n(N) { 1 } { 1
———— €X ———'n(N) ex it (N) .
vam “PUE PITE*

Recalling (4.38), and noting that y(n) is positive and bounded away from zero,
we see that the exponential term of (4.39) becomes infinite and dominates the
linear term. Therefore (4.39) is positive if £(N) or any subsequence becomes

infinite, hence ¢(N) = 0O(1).
If equality holds in (4.33), we observe that letting

v(n) = (L&ﬂK_))"( (a + BE)ls £1(c — 1) )
Ki(a + Bleg) (Ky — lg)\/2naK (a + BK,)

(ug(a + BKl))‘p(") ( (o + BK1)ug $2(ue — ¢) )
Ki(a + Bue) (u¢ — K1)\ 2raK,(a + BK,)

leads to (4.37), and hence to (4.30).

(4.40)

v

(4.41)
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THEOREM 4.3: If F(x |\) € F (with n = 1), G(\) € G and Ag 1s defined by
(4.3), then the Bayes sample size is given by
N, AG é 01
(4.42) n*(N) = A2 ((Tz — as)e@ (c)
24¢

Proor: The method employed here is similar to that used in the proof of
Theorem 4.2. By Theorem 2.6

(443) 1 —L(\n) = (—cﬁ%("))t oxil—exp {nh(t) - ‘@} di

where A(¢) = In (1/t) — (¢/t). We note that this h(t) satisfies the conditions
of the lemmas on asymptotic expansions and a simple calculation shows

1/2
) + o(N'), Ag > 0.

R(8*,n,N) = n ((81 —mEQ) +s—rn+(n—a) j: - c)dG(k))

(444)  +N (n EW) 4 rt a—n) [0 o) d(m))

+ (@ — W =) (D 4 (1))

2n n

This now may be written as in (4.25) and exactly the same argument proves
the theorem.

THEOREM 4.4: If F(x |N) ¢F, (with n = 1), G\) € G, and Ag is defined by
(4.3), then
(N, Ag 20,

(4.45) n*(N) =
iKlnN—%{lnlnN+0(1), Aq > 0.

Proor: We define \* as being whichever of Iy and ue¢ maximizes — (K;/\) +
In (1/X) and let

LK (K
(4.46) 7= In 3F ()\* 1> .
The remainder of the proof parallels that of Theorem 4.2.
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