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Summary. This paper considers the problem of approximating a discrete time,
discrete states, non-Markov process by a continuous diffusion process. The
problem is set in the context of population genetics but may have more general
application. In the genetic situation, most authors have treated the stochastic
behavior of a gene frequency subject to evolutionary factors by assuming its
probability distribution may be approximated by the solution of the Fokker-
Planck diffusion equation. It is here shown that under certain sufficient condi-
tions such an approximation is valid, even for genetic models in which the gene
frequency does not necessarily form a Markov process.

A summary of some old and new results concerning the asymptotic behavior
of gene frequency is given, with special emphasis on the case when mutation is
absent so that an absorbing state will ultimately be reached.

0. Introduction. In the theory of population genetics, much use has been
made of the Fokker-Planck diffusion equation; outlines of this development, and
extensive bibliographies are given in [1], [9]. The justification for such a pro-
cedure seems to have had rather less attention, however, and the assumption
that the gene frequency of interest forms a Markov process has usually been
made. Consider the problem of investigating the evolutionary behavior of a
dioecious diploid population with the population size, N, and indeed the sex
numbers N; , N, for males and females, being kept constant over time. Then, if
only two alleles @ and A are of importance at a single chromosome locus, there
are six possible types of individuals, and their numbers may be represented, at
time ¢, by six random variables:

Genotype
aa Aa AA Totals
Males ki Ni— ks — 1 ls N,
Females 74 Ny —ri — & St N.
N

of which only four, (., l;, r¢, s;) are needed to specify the state of the popu-
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lation. By evolutionary behavior we mean the manner in which the joint dis-
tribution of these variables changes with increasing ¢. Births and deaths occur
at discrete times, and our time scale is chosen so that these times are ¢ = 1,
2, 3, - -- ; however, the process could be embedded in a continuous-time process
with state changes occurring at random times. One might postulate a population
model by defining transition probabilities to the states such that (k. , l;, r¢, s¢)
forms a Markov chain with a finite number of states.

But the matrix algebra for handling such models is very difficult, and approxi-
mate procedures are required. Most authors therefore consider the a-gene rela-
tive frequency alone, which in our case is

%"l‘%N_l(kt— lt'l'f‘t—st),

and assume that this variable has asymptotically the behavior of a diffusion
process as N — . Actually, it is more convenient to consider the closely related
function.

(0.1) Ty = % -+ ‘};‘er(kt - lt) + %;N;l(?'t - 8:),

the arithmetic average of the relative frequency of the a-gene in the male and
female sub-populations. But in any case, although {z. has a finite number of
states with transitions at discrete times, it is not a Markov process in general,
for the transition probability from state (k; , I, ,7:,s:) to one having a particular
value for z:41 depends on the k., I;, r:, s; explicitly, and not just through the
function z; . '

In this paper, we give sufficient conditions under which the diffusion approxi-
mation holds for {x,}, applicable for the dioecious diploid case described above,
but relevant also for other cases such as monoecious diploid or haploid popu-
lations. We denote by Fy(z, t) the distribution function of z. ; that is

(0.2) Fy(z,t) = Pr{z. = g},

and shall show that by a suitable time-scale transformation ¢ = N™u, and under
certain sufficient conditions,

(0.3) Fy(z, N"u) — F(z,u) say, asN — o,

where F(x, u) is a distribution function uniquely determined by a diffusion
equation subject to boundary conditions.

To the author’s knowledge, the only rigorous derivation for such a limit is
given in [8] for a particular population model, which was, in fact, Markovian
with respect to {x:. Moran [15], [16], [17], was perhaps the first author to recog-
nize that the standard Markovian assumptions are not generally applicable in
genetics, and for three particular population models he investigated the limit
(0.4) F(z, ©)=lim Fy(x, N™u),

N-—>co
uU->00

where F(z, «) is the asymptotic, stationary distribution function, and found
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that F(x, ) had the same form as would be predicted by the stationary solution
of a diffusion equation.

To prove (0.3), two approaches could be made. In one, certain sufficient con-
ditions could be assumed on the 4-variate Markov process so that a 4-variate
diffusion approximation would apply. This would extend the univariate argu-
ment of Khintchine [11]. Then an additional assumption could be used to collapse
the 4-variate distribution so obtained into a degenerate, univariate form. How-
ever, we prefer a different approach because we wish our result to apply to
essentially bivariate and univariate models also, and because the result can be
derived using an extension of Moran’s methods [16], [17], where the sufficient
conditions can be imposed on the {z;} process directly.

In Section 1, an outline of the proof is given because the complete proof, con-
tained in Sections 2-5, is rather lengthy. In Section 6, some comments are made
about applications of the result, and a summary of some old and some new
consequences is given, including the stationary distribution, the probability of
gene fixation and the time for this to occur, and a concept of entropy.

A second paper is planned in which specific population models of finite size
are shown to satisfy the assumptions of this paper.

1. Outline of proof. The assumptions for the proof of (0.3) are contained in
Section 2; roughly, they amount to the conditions that the change z¢11 — ¢
has first and second order moments of the same order of magnitude, say O(N~ ™),
in N, and that for sufficiently large ¢, higher order moments are negligible. The
initial value, o , is assumed constant at p, independent of N.

In Section 3, the discreteness in Fy(z, ) due to that in z; and in ¢ is removed
by a double transformation using two continuously variable parameters 6 and a:

1
(1.1) ov(0,@) = [ & dGa(s, ), ~B<0<B,
0—
where
(12) - Gy(z,0) = (1 — e ™) Zoe-“”‘"“FN(x, £, a>0.
=

Thus ®x(6, ) isthe moment generating function of Gx(x, a), itself beinga mix-
ture of the distributions Fx(z, t). As a consequence of the assumptions, a thlrd-
order differential equation is found for ®»(6, ), (3.5).

In Section 4, it is shown that ®x(6, «) and Gy(z, ) converge to unique limits
&(0, o), G(z, a) as N — o, satisfying differential equations (4.1), (4.9) re-
spectively. Section 5 shows that the convergence Gx(z, @) — G(z, a) implies
Fy(z, N™u) — F(z, u) through the inversion of (1.2), where F(z, u) is a dis-
tribution function whose derivative satisfies the diffusion equation (5.1).

2. Assumptions. In genetics, perhaps the most frequently considered population
models have the properties that the expected drifts in gene frequency are due to
migration, mutation, and selection, while second moments are influenced by
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sampling variances of binomial type. Consider, then, a given state (k:, l:, ¢, s:)
of the population at time ¢. Using the symbol E, to denote an expectation con-
ditional on this state, we assume that

E @+ 1] = N"™0{b — (b + c)x: + sze(l — z)

(2.1)
3@+ 1) — du + 10ax:(1 — z) + Wa(6, 1)}
where
(i) m = 2 or 1, depending on whether births (and deaths) occur one at a
time at ¢t = 1,2, 3, - - - , or the whole generation dies at these times.

(il) a, b, ¢, s, d are constants independent of N, with the interpretations
a (a > 0) is the ratio of effective to actual population size,
b, ¢ (20) are mutation and/or migration rates,
s, d are selection and dominance coefficients.
_ (iii) Wx(6, t) is a function of N, 6, t, k., l;, ., s; , uniformly bounded with
respect to ¢ and N, such that for 6 in any bounded interval [—B, B], and for
some n, 0 < n < m, its unconditional absolute moment satisfies

(2.2) E|Wx(6, N™u)| — 0

. uniformly with respect to % in any interval (e, ©) with ¢ > 0, as N — .
We further assume

(23) Lo = P,

a constant independent of N.
From (2.1), (2.2), we see these assumptions imply that at time ¢ = N"u,

(24) Et(xt+1 - xg) = N_m{b - (b + C)xt + sxt(l - xt)[%(d + 1) - dxt]})
(2.5) Eyu(xip — xt)z = N 3ax:(1 — =),

and that higher moments are o(N~™) . Processes of this type have been considered,
for example, by Wright [22], Feller [3], Kimura [13], and Crow and Kimura [2]
from the diffusion point of view without strictly proving the validity of the
approximation. For definiteness we use the specific moments above, although
other examples are known (c.f. [12]) in which (2.5) is replaced by

E’,(xH.l - xt)2 = N_m%axf(l - xt)2,
or by
Eg(‘xg.;.l - xt)z = N_m%a(xt - 8)2'

In (24), (2.5), we see that a time-scale transformation ¢ = N™u is necessary
to accumulate a change in z, from the initial value p, which is non-degenerate as
N — . However, (2.2) implies that the approximations (2.4), (2.5) are valid
for ¢ = N"u, of smaller order of magnitude than N ™u.

The formulation of the problem in terms of moment generating functions,
implicit in (2.1), is convenient from the point of view of considering specific
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examples of population models, and also because z; lies in the closed interval
[0, 1] and its moments are similarly bounded, so that recourse to characteristic
functions is unnecessary.

3. Transformation of the discrete distributions. The function Gx(z, @) intro-
duced in (1.2) is a distribution on [0, 1] because each function Fy(z, t) is, and
because the mixture weights (1 — ¢ * ")e™*¥ "* are positive and sum to unity
with respect to £. Therefore, the moment generating function (1.1) exists, and
we have

1

B30, a) = [0 & d,Gx(z, @)
1 [}
= [l — T X e s, 1)
0— t=0

00 1
= (1 — ™) S g f ¢ A, Fx(z, 1),
t=0 0—

the interchange of the order of integration and summation being justified by a
limit theorem such as in [10] p. 104. Thus we have the moment generating func-
tion of the mixture as the mixture of moment generating functions of the

FN(:I:, t) :
(3.1) dy(0,0) = (1 —e ™) D2 e ™on(6,8) say,
t=0

where
1

#x(0,8) = [ & duFu(a,0) = B,
We now proceed to incorporate the assumption (2.1) into (3.1). Clearly
on(0,t + 1) — ¢n(0,8) = BT — ™)
_ E{eh‘Et[ea(““*“) — 1)1,
which by (2.1) is
on(6,t + 1) — ¢n(6, )
= N "0E("b — (b + ¢)x: + swi(1 — ) [2(d + 1) — dzl]

+ 10ax,(1 — z) + Wx(6,0)})

(32) = N""8bpn(6,8) — [b + ¢ — 3s(d + 1) — ial[opn (6, t) /6]
— [3s(d + 1) + sd + $0a][6°x (6, ¢) /00"]
+ sdl0'¢x(6, 1) /06°) + Ele" W (6, )]},

using E(zie™!) = _[a"¢N(o, £)/06%,7 = 1, 2, 3. Multiplying both sides of (3.2) by
(1 — e ™) * ™ and adding over all ¢, we get from the left hand side
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(1= &) 2™ Mgn(6, £ + 1) — $w(6, )]
— (1 . e»aN‘"‘)eaN"" tX(;e—~aN_"’(t+l)¢N(0, t + 1)

— (1= ) X (0,0

= e B(0, @) — (1= ¢ ")gw(6,0)] — Bx(6, )

by (3.1). Further, by (2.3), ¢x(8, 0) = E(e") = ¢'” independent of N, so the
left of (3.2) has been transformed to

(3.3) e (1 — e ) [@n(6, @) — 7.

The same transformation on the right hand side of (3.2) produces

N—mo(l _ e—aN"") Ze——aN—"'t

{bpw(6,8) — [b + ¢ — 3s(d + 1) — 18alldgn(6, ) /00]
— [Bs(d + 1) + sd + 20al[d°bx (6, t)/36°]
(3.4) + sd[0°px (0, t) /06°] + E[e™ W (0, t)]}
= N "0{bdx(0, @) — [b+c — 3s(d + 1) — }6a]
[0®x(0, @) /06) — [3s(d + 1) + sd + 16a][0°®x(0, @) /367]

+ sd[0’®x(0, a)/36°] + (1 — e ¥ ) z‘f‘ae‘“”‘"‘E[e’“WN(o, Hl,

the interchange of the order of summation and differentiation being justified by
the fact that the series

(1= ) 2 e w0, 0)/00), i= 123,

is composed of continuous functions and is uniformly convergent with respect to
fin —B < 6 < B.
Equating (3.3), (3.4), and after a little rearrangement, we find

0sd[0°®x (0, @) /36°] — 0[2s(d + 1) + sd + 16a][0°® (6, a) /96")
— 0[b+c — 3s(d + 1) — 16a][0®N (6, a) /6]

(3.5) + (60— N7 " (1 — ¢V ") o (6, o)

= —0(1 —e ¥ )Y e EE™Wx(6,1)]
t=0

_ NmeaN""(l _ e-—aN"")GOP'
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4. Passage to the limit. For a fixed value of a (e > 0), (3.5) may be considered
as an ordinary differential equation with non-homogeneous terms. In this section
we show that its solution ®x(6, a) converges to a unique limit as N — .

Consider the distributions {Gx(z, a)}; as N increases, either this sequence
converges, or there exist two or more subsequences which converge to different
limit functions. By the Montel-Helly Theorem [10] p. 103, we can in either case
pick out a subsequence {Gxs+(z, a)} converging for all  to a monotonic limit
G(z, a) say, which will itself be a distribution on [0, 1] because every Gn(2, )
is of this form. We shall subsequently prove that G(z, @) is uniquely determined
from (3.5) and this requirement, and it follows that the entire sequence
{Gy(z, @)} converges to this limit.

By the first limit theorem ([10] p. 104—note that continuity of the limit is
not necessary) we see that the subsequence of generating functions {®x+(0, o)}
also converges, to ®(8, «) say, where ®(8, ) is the generating function corre-
sponding to G(z, «), and this convergence is uniform for ¢ in any bounded in-
terval [—B, B]. Furthermore, derivatives of ®x«(0, «) will converge to corre-
sponding derivatives of ®(8, ). Before proceeding to the limit of (3.5), we make
two observations concerning quantities thereir:

(i) N ™1 — e ") > aasN > »

(ii) Because z; is bounded in [0, 1] for all ¢, for 6 in [—B, B] we have

0(1 — &™) 2 & B Wn(6, 1)

S Be®(1 — e ™) X eV M E|Wa (6, 1) |
t=0

N7y—1 ©

= Be®(1 — ¢ *"")( ,; + tZ;u Ye N TE|W N (6, 1),

where N"u is an integer, 4 = ¢ > 0,0 = n < m,
é BGB<1 bt 6haN_m+”) MaX()ézéNnu_l EIWN(O, t)l
BePe ™ ™" Maxyswmu E|Wx (6, )|

replacing E|Wx(0, ¢)| by its maximum in the appropriate ranges and summing
the resulting geometric series. By the assumptions referring to (2.2), Wx(9, ¢)
is uniformly bounded with respect to ¢ for 6 in [—B, B], so that the first term
approaches zero as N — « because —m -+ n < 0 and therefore 1 — eV 0.
The second term approaches zero by (2.2).

In view of the above limiting results, letting N — « through the sequence
{N*}, we have from (3.5)

0sd[0°® (0, o) /96°] — 6ks(d + 1) + sd + 10a][9°®(0, o) /00"]
— 0+ ¢ — 3s(d + 1) — 20a][0%(6, @) /36] + (6b — a)B(0, @) = —ae’”.
The third order equation (4.1) has three, linearly independent, solutions.
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However, we seek a solution which is a moment generating function of a random
variable on [0, 1], and this solution will be proved to be unique. Our solution
must have the form

1

2(6,0) = [ & 4Gz, a),
0—
where, for each a > 0, G(z, «) is a distribution function on [0, 1]. Substituting
into (4.1), and differentiating under the integral signs, we get
1

o fo_ b — (b + )z + sa(l — 2)[3(d + 1) — dal} ds C(z, @)

(4.2)

1

1
+ i02af z(1 — 2) d,Q(z, @) = af e d, Q(z, @) — ae™.
0— 0 —

Writing €°? as [i_ €* d.F(x, 0) where F(z, 0) is the distribution function of the
constant xp = p, and integrating the two terms on the right of (4.2) by parts,
gives

1 1

af & d, G(z, a) — afo_e“ d, F(z,0)
= al™(G(z, o) — Flz, ) — a0 [ | 16z, @) — Fs, 0)] de

= fo ' 6z, @) — Pz, 0] da,

since G(1, ) = F(1,0) = 1, G(0—, o) = F(0—, 0) = 0. Substituting into
(4.2), and cancelling 6, we obtain
1

A e”{b —(b + ¢)x + sx(l — z)[&(d + 1) — da]} d, G(z, a)

(4.3)

1

+ %0(1[0 2(1 — ) d,G(z,a) = —a /0‘1 e”lQ(z, @) — F(z,0)] dz

which holds at § = 0 by continuity, at which point we find

1

b — (b+c)x+ sx(l —x)3(d+1) — de]} d.G(z, )
0~

(44) 1
- —a fo_ [G(z, a) — F(z,0)] da.

Define H(x, o) by
H(z,a) = .( b —(b+e)x + sx(l —x)
(4.5) B i
[3(d + 1) — dal} d. Gz, @) + @ fo ' [6(z, o) = F(x,0)] do.
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‘Then clearly, H(0—, ) = 0, and by (4.4), H(1, ) = 0. Integrating the first
and last elements of (4.3) by parts we obtain
1
ioaf r(1 — 2) d, G(z, @) = —[e"H(x, a)]5-
(4.6) . ;
+ 0[ ¢"H(z, a) do = 0f ¢H(zx, a) da,
0— o—

from which 8 may be cancelled and the result will hold also at 6 = 0 by con-
tinuity.

By the uniqueness theorem for Laplace-Stietjes transforms, [21] p. 63, the
equality (4.6) ensures that

(47) 1 /;ix(l — %) d, Gz, a) = fo_H(x o) da,

at least for almost all z. The right hand side is a continuous function, however,
while the left is monotonic since (1 — z) = 0 and G(z, ) is monotonic in the
range of integration, so that (4.7) holds for all z in [0, 1]. Further, since the right
of (4.7) is differentiable with respect to z, so too is the left, and so too is G(z, )
except possibly where (1 — z) = 0. Hence we have

(4.8) tax(1 — 2)[0G(z, @) /3x] = H(z, a), 0<z<l1.
But within the same interval, the right of (4.8) is differentiable, and by (4.5)
we get '
laz(1 — 2)[0°G(x, @) /32"] 4+ }a(1 — 22)[8G(, a)/da]
={b— (b+c)z+sa(l —2)[F(@ + 1) — dz]}[0G(z, @) /2]
=+ aG(x7 a) - aF(x’ 0)7
that is, ‘
laz(l — z)[9°G(x, a) /0a”]
(49) A+ {fa(1 —22) —b+ (b+ )z — sx(l — x)[3(d + 1) — da]}
-[0G(z, a) /3] — aG(z, @) = —aF(z,0), 0<z<l1.
We have thus reduced the problem to solving a second-order differential equa-
tion for G(z, a), of a type studied by Hille [7] and Feller [4], [5]. We need to
show that this equation has only one solution which is a probability distribution
on [0, 1]. Usually, a second-order equation requires two boundary conditions for
a unique solution, whilst here we are imposing a restriction on the general form
of the solution. However, except for special cases, we can impose conventional

boundary conditions. Consider equations (4.5), (4.8). Letting « — 0 from above,
from (4.5) we see that

lim,,o4 H(z, @) = b[G(0+, &) — G(0—, a)].
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But on the left of (4.8) we find
limg.o4 2a2(1 — 2)[0G(z, @) /dz] = 0,

because dG/dx is integrable and cannot have a pole of order unity or higher
as z — 0. Thus, from (4.8),

(4.10) b[G(0+, @) — G(0—, @)] = 0,

and if b > 0, then G(z, a) hasno jump at z = 0, and G(0, @) = 0 is one boundary
condition on (4.9). Similarly, if ¢ > 0, then G(z, o) has no jump at z = 1, and
G(1, @) = 1 is another boundary condition on (4.9). The conclusion, then, is
that if both (mutation rates) b, ¢ are strictly positive, there can be determined,
in view of the two boundary conditions, a unique solution of (4.9). We will sub-
sequently show that this solution is a distribution.

Consider now the case when b = ¢ = 0. Hille [7], see also [4] pp. 487, 488, has
shown that the homogeneous equation corresponding to (4.9) has two linearly
independent solutions whose behavior at + = 0, x = 1 depends on the co-
efficients of 9°G/d2’ and 0G/dx in (4.9). In the present case, these coefficients
are fax(l — z), and

la(l — 2z) — sx(1 — z)[3(d + 1) — dx]
= (d/dz)[}az(1 — 2)] — sz(1 — 2)[3(d + 1) — da’

and the criterion of interest is the integrability, or otherwise, of the function

4 Tsx(l — 2)[3(d + 1) — dx]
@l — o) P {f dx}

tax(l — z)

at z = 0 and z = 1. Clearly its integral does not converge at these points, which
implies that the two linearly independent solutions mentioned above are such
that one is unbounded at x = 0, the other at z = 1. Hence (4.9), the non-homo-
geneous equation, can have at most one bounded solution, that is, the particular
solution, and therefore at most one solution which is a distribution function.

The casesb = 0,¢ > 0and b > 0, ¢ = 0 can easily be treated by a combina-
tion of the two previous arguments, so that if there exists a distribution on [0, 1]
satisfying (4.9) and an appropriate (single) boundary condition, it will be
unique. The actual existence of a distribution function is clear from the deriva-
tion of (4.9), or can be implied from the following section.

This completes the proof that {®x(0, &)} and {Gw~(z, @)} converge to uniquely
determined limits ®(6, o) and G(z, «). In the following section we investigate
how these may be interpreted in connection with the original distribution
F N(.’lf y t) .

6. Interpretation of the limit. Having assured that the problem has a unique
solution, we may now verify, rather than deduce, the nature of that solution.
Consider the function f(x, u) defined as follows:
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(i) f(z, u) satisfies the forward diffusion equation
(3f/0u) = 1a(8*/62")[z(1 — )]
(5.1) —(9/02)[{b — (b + o)z + sz(1 — 2)[3(d + 1) — dzlif],
‘ O0<z<l1l,u>0,
(ii) subject to the boundary condition

e 0
‘Lf(:c,u)dx—»{l ;;z as u — 0,

(iii) and to the lateral conditions, when applicable: if b > 0, then
limg.,o4 {3a(9/02) [z(1 — z)f]
— b= (@+oz+sx(l —2)5(d+ 1) — dz])f}
and/or if ¢ > 0, then
limz.1— {a(8/9z) [z(1 — z)f]
—b—(+c)x+sx(l —z)Ed+1) —dz])f} =0, u>0.

Feller [4] has shown that these conditions are sufficient to determine a unique
solution of (5.1), one for which f(z, v) =2 0in0 <z < 1, > 0 and

[ i, w) de = 1,
o+

with equality when both b and ¢ are positive. When b > 0, ¢ = 0 is either an
“entrance’” or a ‘regular’’ boundary in Feller’s terminology, depending on
whether b = %a¢ or 0 < b < %a apply, and in either case the lateral condition
(5.2) may be imposed. However, if b = 0, (5.2) is not appropriate; its left side
may be interpreted as the flux of probability into the ‘“‘exit” or absorbing state
z = 0. Thus the random variable  is continuous within (0, 1) but has a discrete
probability, Po(u) say, of being in the state 0 at time u, given by the solution of

dPo(u)/du = limg.o4 {2a(9/32)[x(1 — x)f(z, wu)]
— (b= (b+ )z + sa(l — 2)[3(d + 1) — dz])f(z, w)}
which in our case reduces to dPy(u)/du = af(04, u). Thus

(5.2)

0, u >0,

(5.3)

(5.4) Piw) = Pu(0) + fa [ 0+ u) du
where

0 ifz = 0attimeu =0,
Py(0) = . .
1 ifz = 0attimewu = 0.

Similarly, if ¢ > 0, the boundary z = 1 is either an entrance or a regular
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boundary (when ¢ = %a or ¢ < %a) and (5.3) may be applied. Otherwise when
¢ = 0, the flux into the state z = 1 is minus the left hand side of (5.3) and writing
P;(u) as the probability of x = 1 at time w,

(5.5) Pi(w) = Py(0) + 1a [ f(1-,) du
where
0 if z 1 at timew = 0,
Py(0) = . .
1 ifz =1attimeu = 0.

In summary, then, the solution f(x, %) is a density function of a random variable,
z, in (0, 1) but with discrete probabilities Po(%) and Pi(u) at z = 0,z =1
which are non-zero only when b = 0 and ¢ = 0 respectively.

Consider then the corresponding distribution function F(z, u) defined by

So, z <0,

(56) F(z,u) = (Po(u) + [ f(z,u) do, 0=z <1,
0+

L o1

with possible jumps of Po(u), Pi(u) at * = 0 and z = 1. It is easy to verify
that the function

G(z,a) = af ¢ "F(z,u) du, a >0,
0

is a solution of (4.9) subject to (4.10) and the corresponding condition atx = 1.
By the uniqueness already established in Section 4, we have therefore shown
that Gy (z, @) — G(z, @) as N — «, that is, from (1.2),

(1 =6 ™) 2 e ™MFy(z,t) — af ¢ ““F(z,u) du
t=0 0

for all @« > 0. But the left hand side can be written as the integral expression
(1 - e—“N_m)N’”f e AN R (2, INTU)) du
0
where [N™u] here denotes the integral part of N™u. As N increases,
(1 _ e—-aN_’")Nme——a[N”'u]N_’" N ae—au,

S0 we may write

]

limyae fo ¢ Fy(z, IN™u]) du = fo e F(z,u) du, > 0.

By the uniqueness theorem for Laplace transforms, this implies, at least for all
u where F(z, u) is continuous, that

(5.7) Fy(z, IN"u]) — F(z, )
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where F(z, u) is defined in (5.6), arising from the diffusion equation (5.1);
the differentiability with respect to » implicit in (5.1), (5.4), (5.5), (5.6) ensures
the convergence holds for all 4 > 0. Thus for large N, and the time-scale t = N™u,
F(z, u) is the diffusion approximation to the distribution of the variate zym.; ,
and of zym, if we use the ¢ time scale as being continuous with z; = zy .

This completes the main aim of the paper, namely, the proof of (0.3).

6. Applications of the diffusion approximation. In a second paper, it is planned
to give specific examples of population models having a finite (but large) number
of individuals, and showing that for them the above theory is applicable. For
the present, we follow the example of many authors and use (5.1) as a starting
point.

We first point out some of the misuses that have been made of diffusion theory.
It is unimportant whether the diffusion equation (5.1) is written in terms of the
w or ¢ time-scales, provided the order of magnitudes of the first and second mo-
ments (2.4), (2.5) are the same. However in some published versions of (5.1),
a factor N has been applied to the term 2a(8%/82°)[z(1 — z)f] but not to the
first derivative term. This implies that mutation and selection are of higher
order of magnitude in N than is the sampling variance, and the correct approach
would be to use asymptotically deterministic, rather than diffusion, theory. On
occasion, the solution of (5.1) has been obtained by ignoring the lateral condi-
tions (5.2), (5.3) when applicable, or by using them when inappropriate.

Perhaps the most controversial point is the interpretation of the “stationary
distribution,” lim,,.. F(x, w). Equating df/du to zero in (5.1), and dropping the
dependence on wu, the first integral becomes

ta(d/dx) [x(1 — 2)f(z)]

—{b—(b+oz+sz(l —2)d+ 1) — dallf(z) = (1,
say, where C; is a constant. Provided one or other (or both) of b and ¢ are posi-
tive, (5.2) or (5.3) imply C; = 0. A second integration results in
(6.1) f(z) = Cs exp{2sa[(d + )z — da’a® (1 — 2)* L

The constant C, must be chosen so that [5f(z) dx < 1 with equality when
b > 0, ¢ > 0 both hold. Thus if either b or ¢ is zero, C; must also be zero. In
genetic terms, if mutation exists in both directions, the density function f(z, u)
approaches the stationary density (6.1); if one or other mutation rate is zero,
f(z, u) — 0 as uw — » and the population is ultimately absorbed in either state
2z = 0 or z = 1 where all individuals are of the same homozygous genotype.
When b = ¢ = 0, the constant C; cannot be determined by (5.2) or (5.3), and
the general stationary solution of (5.1) has the form

f(z) = exp {2sa”'[(d + 1)z — da”]}
(6.2) A [02 + O, fz e—2sa‘1[(d+1)z——da:2] dx] x—l(l _ x)——l,
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but again this function is not integrable on [0, 1] unless C; = C; = 0, that is,
f(z) = 0. As before, the stationary distribution is purely discrete at x = 0 and
z = 1.

There has been some debate as to what significance, if any, should be attached
to non-zero solutions (6.1), (6.2) when mutation is absent in one or both direc-
tions. Fisher [6] held the view that diffusion theory was inapplicable near the
boundaries x = 0, x = 1; and used techniques for branching process models to
investigate the discrete probabilities at values of z of the form z = r/2N, r fixed.
Diffusion theory would collapse all such states into the single limit x = 0. How-
ever, in my opinion, the only valid objections to diffusion theory are that the
original assumptions may not hold in a specific model, or that the continuous
approximation is not adequate for small populations. But aside from these ob-
jections, there seems no reason to discard the solution f(zx, ), nor its limiting
value of zero, even in the tails of the distribution, provided one also recognizes
the role Po(u) and P;(u) play. There have been attempts to find solutions to
(5.1) which have constant flux into the boundaries; this surely cannot mean
solutions for which (d/du)[Po(u) + P;(u)] is constant, for then probabilities
greater than unity will be encountered. But in any case, although the proportional
flux [1 — Po(u) — Py(w)]7(d/du)[Po(u) + Py(u)] is asymptotically constant
as u — %, such a condition cannot be imposed arbitrarily for finite times because
of the definiteness of (5.4) and (5.5), nor in my mind could it be imposed on an
actual population except by artificial means outside of, and invalidating, the
stochastic model.

To further investigate the roles that (6.1) and (6.2) do not play in the solution
of diffusion problems without mutation, we consider the special case when selec-
tion is also absent; thus, withd = ¢ = s = d = 0, (5.1) becomes simply

(6.3) of (z, u) /ou = 1a(8°/92%) [z (1 — 2)f(z, uw)], 0<z<1l,u>0,

and the integrable solution consistent with a fixed initial value zo = p has been
found by Kimura [13] p. 890:

f@u) = p(1 = p) 3= (26 + 1)iCi + 1)

F(1 — 4,54+ 2,2, p)F(1 — 4,4 + 2, 2; a)e ¥HDax,

(6.4)

For large u, we have from the first term in this series

(6.5) f(z,u) = 6p(1 — p)e ™.
But as the stationary solution of (6.3) is
(6.6) f(z) = [Co/z(l — 2)] + [C/(1 — 2)],

we see that this has little if any connection with the transient solution (6.4),
nor even with the stationary density conditional on no absorption, which from
(6.5) is clearly uniform for z on (0, 1).

There are at least two other interpretations of (6.2). With a suitable choice
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of constants, (6.2) is an approximation to (6.1) when the mutation rates b and ¢
are small but not zero, at least for most of the range 0 < z < 1 but not near
the endpoints. This does not appear to be a very interesting interpretation, for
(6.1) is no more complicated than (6.2) and an approximation seems unneces-
sary. Kolmogorov has given an interpretation of (6.6) in an abstract, [14].
However, the abstract is so brief that I am unable to grasp the import of his
interpretation.

Turning to less controversial aspects of the case when there are no mutations,
one is interested in the rate of approach to homozygosity, that is, the rate at
which fixation or loss of the ‘“‘a” gene takes place. As mentioned earlier, with
b = ¢ = 0 the boundaries z = 0, z = 1 are exits, and according to Feller [5]
p. 11, an exit boundary is accessible, that is, there is a positive probability it
will be reached from the interior of (0, 1) in a finite time. Feller gives several
theorems concerning first passage time problems, some of which will be de-
scribed below.

Tueorem (Feller [5]): Let 2o = p be the initial value, and Pi(p, u) the prob-
ability of absorption at the boundary x = 1 before time u. Then for the diffusion
process (5.1), the Laplace transform

(67) 2o\ = [ " Pyp, u) du
satisfies
lap(1 — p)(9%/9p°) + sp(1 — p)[3(d + 1) — dpl(dz/9p) — Az = 0,

with boundary conditions 2(0, p) = 0, z(1, p) = A\
More directly, Kimura [13] p. 896 uses the equivalent result that

tap(1 — p) (8°P1/dp”)

+ sp(1 — p)[3(d + 1) — dpl(6P1/dp) = (9P:/du),
with boundary conditions P;(0, u) = 0, Pi(1, ) = 1. Note that these methods
are alternatives to the application of (5.5); however, as (6.8) is the backward
equation to (5.1), the two methods are equivalent and have the same com-

plexities for solution. In the particular case with no mutation or selection, the
solution, by either direct solving of (6.8) or by use of (6.4), (5.5), is

(6.8)

Pi(p,w) = p+ (1 = D)3 (2 + 1 (1)’

F(1 — 4,7 + 2,2; p)e FEHe,

(6.9)

As well as this, Kimura gives methods for solution in cases with selection, in
particular when the dominance coefficient takes the values d = —1, 0, or +1.
No general solution of (6.8) has been found explicitly, but Kimura [13] p. 896
has obtained its smallest eigenvalue, Ao say, as a power series expansion in the
selection coefficients s and d. Thus

(6.10) N = %all + Kisa™' + Ky(sa™)® + Ka(sa™)® + Ky(sa™)* + -+ ]
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where
1 _ 1 23, 1 2" 5
Ki=—5d K=gztmmd, K=spmd-gmd,
3 2 b
Ki= —gr LA

TR.7 2.38.55 0 BS.TR.11

The leading transient term in the eigenfunction expansion of P;(p, u) has a
factor ¢™°*, and thus Ao governs the asymptotic rate of approach of Py(p, u) to
its limit, and also, of course, of Po(p, u) which satisfies (6.8) with the boundary
conditions reversed.

The limiting value of Pi(p, u) as u — « is the probability of ultimate absorp-
tion in state z = 1, that is, when all genes are of the type, “a’’. This limit, say
P,(p, «), satisfies the stationary equation

(6.11)  ap(1 — p) (dP,/dp") + sp(1 — p)[3(d + 1) — dpl(dP1/dp) = 0,

with boundary conditions P;(0, ©) = 0, P;(1, ) = 1; for a theoretical dis-
cussion see [5]. The solution is ([13] p. 896)

(612) Pup, ) = [ et gy / [ et gy,
0 0

In particular, with no selection, this reduces to

(6.13) Py(p, ») = p,

which agrees with the limit of (6.9). Similarly, Po(p, ©) = 1 — Py(p, ») since
absorption is certain to occur in one or other state. Equation (6.12) has been
used to find the probability of survival of a single mutant in a population by
taking p = IN'; this initial state does not satisfy our assumption (2.3), nor is
it appropriate for dioecious models with z, defined by (0.1) unless the sex num-
bers N: and N, happen to be equal. The initial value z, would depend on which
sex the mutant occurred in:

1/4N; if male,
Lo =
’ 1/4N, if female.

However, it has been verified [19] for some finite Markov chain models that
the result (6.13), obtained without selection, is an exact result, and the substitu-
tion of (6.14) into (6.13) is therefore valid.

The function Po(p, u) + Pi(p, w) is the probability of absorption, in either
state, by time u, and is thus the distribution function for the first absorption time.
The evaluation of the moments of this distribution, and in particular, the ex-
pected time required for the population to become homozygous, seems not to
have been made by other authors. The theoretical result has been mentioned by
Feller [5], and in our case gives the following: Let

U(p) = fom u du[Po(p, u) + Pi(p, u)];

(6.14)
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then U(p) is the solution of
(6.15) }ap(1 — p) (d’U/dp") + sp(1 — p)[3(d + 1) — dpl(dU/dp) = —1
with boundary conditions U(0) = U(1) = 0. The solution is

©16) U(p) = 4a7'p fo‘ lg(z)]™ u d)y 1 — ) dy:l da:

— 4q7! fop lg(z)]™ [L gy~ (1 =)™ dy] dz,

where g(y) = exp {4sa”'[3(d + 1) — dy]}. In particular with no selection,
s = d = 0, (6.16) simplifies to

(6.17) U(p) = —4a’'[plogp + (1 — p)log (1 — p)l.

It may be verified that (6.17) is the mean of Po(p, u) + Pi(p, w)
where Po(p, u) = P1(1 — p,u) given by (6.9) ; but the general expression (6.16)
can only be obtained in the above fashion for lack of a general solution
for Po(p, u) + Pi(p, u). Higher order moments can also be found by solving
ordinary differential equations analogous to (6.15); see [20] for an example of
this.

The result (6.17) strongly suggests that the function U(p) can be utilized to
define an ‘“‘entropy” for diffusion processes with absorbing states. Moran [18]
has given definitions of entropy for completely regular Markov processes which
would apply in our situation when mutation is present. With mutation absent,
a new definition is needed. Entropy can be defined either for a particular time
in a process, or for a particular state. Thus, we might define the entropy of state
z = p as being given by (6.15), and the ultimate value of the entropy is zero
since then £ = 0 or z = 1. And we would have the (trivial) result that the ex-
pected time to reach an absorbing state is equal to the initial entropy. However,
there is no certainty that the entropy so defined would be monotonic decreasing
with time. Alternatively, we might define the entropy at time u as

1 1—
(6.18) Hw) = [ U@ d&.F@w) = [ U@ie,v) .

0 0+
Then, the initial and ultimate values are U(p) and O respectively with the
previous interpretation, but in addition, H(u) is a decreasing function of wu.

For, from (6.18),

(aH (w)/du) = | ; Ulx) (8f(x, u) /ou) da

- f: (taz(l — 2)(dU(x) /de)

+ s2¢(1 — 2)[3(d + 1) — dz](dU(z)/dz)} f(z, u) dz,
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using (5.1) and integrating by parts twice, = — [o5 f(z, u) dz from (6.15), < 0
as required. The result allows other formulations for H(u), namely,

MM=Hmwy[wmhw—Fu<mwu

mm+[mmaw—Fwﬂww

U(p) —u + fou [Po(p, u) + Pi(p, u)] du.

Whether such a definition of entropy will serve any useful purpose is, of course,
another question.

In the results of Section 6, we have used throughout the time-scale of u, not ¢.
One u-unit corresponds to N generations, or to N birth-death events, in the
finite population, and thus if the generation is taken as time unit, the eigenvalue
(6.10) should be scaled as N '\, the expected time for absorption to occur
becomes NU(p), and the transient solutions (6.4), (6.5), (6.9) should be simi-
larly adjusted. '
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