TEAM DECISION PROBLEMS!

By R. RabnEr
University of California, Berkeley

1. Introduction. In a team decision problem there are two or more decision
variables, and these different decisions can be made to depend upon different
aspects of the environment, i.e., upon different information variables. For ex-
ample, the ‘“decision maker” may be a group of persons, each with access to
different information (because of difficulty of communication, say), each decid-
ing about something different, but participating in a common payoff as a result
of their joint decision. As a second example, the decision maker might be an
individual making different decisions in successive time periods, the payoff being
a function of all the decisions made over the total time period. In such a case,
if the decision maker does not ‘“forget’’ anything from one time period to the
next, then the problem is a typical sequential or dynamic programming problem.
However, the keeping of records might be so costly that it would be worthwhile
to forget some things, in which case new phenomena emerge.

Although from the most general point of view a team decision problem is a
one-person problem, of a somewhat unconventional type, it is sometimes sugges-
tive to talk about it in terms of the first, “many-person,” example above, and
that will be done in this paper. J. Marschak has called such a decision maker a
team [19] to emphasize that there are no conflicts of interest between the members
of the group. It should also be pointed out that differences of opinion (as em-
bodied in different a prior: distributions, for example) cannot be handled in this
context, since these result formally in the same game-theoretic difficulties as do
conflicts of interest.

The origin of the problems considered in this paper is Marschak’s work on the
theory of organization [19]. Marschak’s approach is in the spirit of the theory of
games and of decision theory. The immediate background of the present paper
consisted of attempts by several workers to analyze some of the many-person
aspects of organizations that are present even in the absence of many-person
game complications, i.e., conflicts of interest and differences of opinion. These
attempts took the form of study of some simplified examples of organizations,
(4], (8], (18], [20], and [21]. Beckman [5] and McGuire [22] have also analyzed
some real organizational problems from the point of view of the theory of teams.
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858 R. RADNER

Although this paper is not primarily concerned with conventional statistical
methods and problems, some of the results suggest that under certain circum-
stances standard methods may not be appropriate for statistical inference in an
organizational context. I shall give a primitive illustration at this point; for a
more general discussion see Sections 6 to 8. Suppose that two people are each
required to estimate a population mean m, from different but overlapping sam-
ples. Assume that person 1 observes {; and §; and that person 2 observes ¢; and
{3, where 1, {2, and {; are independent and identically distributed, with ex-
pected value m. Suppose further that the loss due to errors of estimation depends
quadratically upon the errors of both persons, with an “interaction” between
the errors, thus

(ar — m)* + (a2 — m)* + 2¢(a1 — m)(az — m),

where a; is person ¢’s estimate of m. It can be shown that the minimax estimates
of m are

a=E+ 0+ 00/2C+q9, a=[k+ 0+ d6/2+9

(provided ¢* < 1). One also obtains these estimates by adopting the point of
view of the Markoff theorem on least squares. Notice that these reduce to the
standard estimates (sample means) only when the “interaction coefficient,”
g, is zero. Thus if errors in opposite directions are less costly than errors in the
same direction (¢ > 0), then each person will give less weight to the common
observation.

An important organizational problem is the determination of what statistical
information shall be made available to the various decision makers in the or-
ganization. Implicit in the solution of such a problem is the determination of the
best use that can be made of any given structure of information, i.e., the best
decision functions. The results to be presented here are concerned with this
latter problem. I have applied these results elsewhere [26] to the analysis of the
evaluation of information in organizations.

In the present paper, certain team decision problems are analyzed from both
the Bayes and the minimax points of view. Most of the paper is devoted to the
case in which the payoff function is quadratic in the decision variables. The
geometry of Hilbert space is helpful here in investigating the existence and
uniqueness of Bayes decision functions, which can be interpreted as projections
(Section 4). ‘

If, in the quadratic payoff function, the coefficients of the quadratic terms are
independent of the state of nature, then the situation is even more amenable to
analysis (Section 5). It is shown that if the a priors distribution of the states
of nature induces a normal distribution of all the information variables and of
the coefficients in the linear terms of the payoff function, then the Bayes team
decision function is linear in the information variables.
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A team analogue of the Markoff problem of minimum variance unbiased
estimation is solved (Sections 6 and 7), and the minimax properties of such
solutions are investigated (Section 8).

Before going into the quadratic case, a general formulation of the team decision
problem, and one general result on Bayes decision functions, are presented
(Sections 2 and 3). A team decision function is called person-by-person-optimal
if it cannot be improved by changing the decision function of any one person
in the team. The above-mentioned result gives a sufficient condition for person-
by-person-optimality to imply true optimality. (For a discussion of the case in
which the payoff function is linear or piece-wise linear in the decision variables,
and with linear constraints, see Radner [25], [24].)

From discussions with J. Marschak and with L. J. Savage, and from a study
of Savage’s recent book [27], I derived encouragement both to undertake and to
continue this study, and help in arriving at the present formulation and in work-
ing out specific problems.

2. General formulation of the team decision problem. The team decision
problem is concerned with a decision making unit (called here a team) that
chooses a decision a from a set D and is thereupon rewarded according to its
choice and the prevailing state of the world z. The decision variable a is actually

an N-tuple (ay, -+ - , ax) of individual decision variables a;, with a;in D;, and
the set D of possible values of the team decision variable is some subset of
the Cartesian product of Dy, -+, Dx.

It will be assumed here that the reward is a real number % (a, ) determined by
a payoff function u. In a given situation the relevant state of the world may be
the outcome of some random process, as in a prediction problem, or it may be a
particular probability distribution of random events, as in an estimation problem,
or it may be a combination of the two. Therefore let Z be a measurable space,
whose class Z of measurable subsets is to be interpreted as the class of random
events, and let P be a set of probability measures p on Z. The states of the world
z will be represented by pairs (2, p), with 2in Z and p in P.

Typically, the decision maker bases his decision upon some given information
about the state of the world, according to some rule or decision function. This
concept will be represented in this paper asfollows. Assume that there are given a
field @ of subsets of P, and let (X, &) be the Cartesian product of the two meas-
urable spaces, (Z, Z) and (P, ®) (see Halmos [15], p. 140). For every
i=1,--+,N,let D; be a given field of subsets of D; , and let Y; be a given sub-
field of o; then any N-tuple & = (au, + -+, ay) such that, for each 7, a; is a
y,-measurable function from X to D; will be called a team decision function
based upon the N-tuple of information subfields Y = (Y1, - -+, Yw). The func-
tions o; will be called component decision functions.

In some problems the decision functions available to the decision maker are,
for external reasons, restricted to some subset of the set of functions measurable
with respect to the information subfield, for example, by the requirement of
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linearity. In what follows, the set of decision functions available to the decision
maker will be denoted by A.

A probably more familiar, but completely equivalent, way of representing
information would be in terms of a transformation, that is, a measurable function
from X to some other measurable space, say Y; component decision functions
would then be measurable functions from Y; to D;. These two ways of repre-
‘senting information are equivalent, as has been said, and in this paper one or
the other will be used, according to the nature of the particular problem being
.considered. For a discussion of the two sorts of representation, subfields and
transformations, as well as the closely related concept of a statistic,”
-see Bahadur [1] and [2], and Bahadur and Lehmann [3].

For any given decision function o and any probability measure p in P, the
-expected payoff is

Ulep) = [ ulalzp), (2 p)) dp(2).

"The problem for the team is to choose a decision function from the given set 4
that will make U(a, p) large in some sense: Two approaches, commonly known
as Bayes and minimazx, will be considered in this paper.

If G is a given a priord probability measure on @, then the Bayes payoff for a
-decision function « is defined as

Vi) = [ Ulap) @), = [ ua),adr),

where dF(z) = dp(z) dG(p); and « is a Bayes decision function if it maximizes
the Bayes payoff on the set 4.

Note that as soon as the Bayes approach is adopted, the distinction between
Z and P ceases to have any real significance, for once a particular a priori measure
‘@G is given, the whole probability structure of the problem can be summarized
in terms of a single measure F on X.

For any decision function «, and any p in P, the risk is defined as

p(a, p) = supwes U(/, p) — Ula, p).

Let @ be a given field of subsets of 4, and let A™ denote the set of all probability
measures on @;any such measure § in A* is called a randomazed decision function.
Extending the risk function to randomized decision functions in the obvious
‘way, a randomized decision function § is called minimax in A* if for all 6 in A™

SUP per p(5, P) = SUDPper (8, p).

It may be helpful to the reader to show how the usual one-person nonsequential
statistical problem is represented within the framework just described. In this

case, N = 1 and
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(a) Z is the sample space;

(b) the single information subfield Y is the class of all sets S X P, where S
is in Z, i.e., the true distribution of z is unknown;

(¢) the payoff function depends upon z only through p; i.e., ula, (2, p)] =
iifa, p]. Because of (b), any decision function « can be represented by a meas-
urable function & from Z to D. It is interesting that, if a function W is defined by

W(a’ p) = SUDq’ep a(ala p) - ﬁ'(a; p)’

then the risk p is given by

pla,p) = fZW(&[z],p)dp(z),

as can easily be verified. In the statistical literature, the function W is often
taken to be a datum of the decision problem (instead of being derived from a
payoff function u, as was done here); in that case W is usually called the “‘loss”
or “weight”’ function, and [, W(al2], p) dp(z) is called the “risk” function
(see Wald [29], pp. 8, 10; Hodges and Lehmann [16], p. 182; Blackwell and
Girshick [6], p. 82). Thus in this case the risk function p, as defined in this paper,
does coincide with what is usually called risk. On the other hand, p is called the
“Joss” function by Savage [27], p. 163, and the “regret” function by Chernoff [9].

In this paper it will be assumed that for each ¢ the set D; of possible decisions
for the 7th team member is a Borel measurable subset of the real line. This as-
sumption is not quite as special as it might at first seem, for a problem in which
some D; is a Borel measurable subset of M-dimensional Euclidean space could be
recast in the present framework by replacing that person by M persons, all with
the same information, each with a one-dimensional decision variable, and with
their decision functions possibly subject to some joint constraint. Alternatively,
such a D; could be mapped onto a Borel set of the real line, the mapping being
one-to-one and Borel-measurable both ways; this could be done even if the
dimensions of D; were infinite but denumerable (see Halmos [15], p. 159, exercise
7). Admittedly, although these devices achieve a certain technical generality
for the present framework, in practice they might sometimes lead to unnecessary
complexity and awkwardness. However, all of the results in this paper can also
be reinterpreted directly in terms of vector decision variables.

3. Person-by-person maximization and stationarity in the Bayes problem. If
& is a Bayes team decision function relative to an a prior¢ distribution, then the
decision function &; for any one team member ¢ must be best, given that every
other member j uses the decision function &; . Call a decision function « person-
by-person-mazximal if a cannot be improved by changing «; for any one ¢ alone.
Thus any Bayes decision function is person-by-person maximal. The converse is
not true, however, as the following example shows.
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Consider a team of two members, whose payoff function is independent of z,
with contour lines as in the accompanying figure; for example,

(3.1) u(ay, a) = min {—ai — (az — 1)°, — (a1 — 1)* — a3},

where each decision variable a; is real. It is easily verified that any a for which
a1 = @y is person-by-person maximal, (e.g., point P in the figure) whereas the
maximum of  is attained only at a; = a; = %. Note that 4 may be strictly con-
cave in a, as is (3.1).

Suppose the decision functions of all but one of the team members are fixed;
then the problem facing that one member becomes a one-person Bayesian prob-
lem, for the actions of the other members can then be considered as part of the
“state of the world”; and he can therefore apply Bayes’ rule. More precisely,
let & be person-by-person maximal, and suppose (with little, if any, real loss of
generality) that for each ¢, conditional expectations given ; are bona fide ex-
pectations; then for every ¢ and a.e. z, a;(x) maximizes, with respect to a;,
the conditional expectation

(32) (I)i(a‘l' ) .’L‘) = E{u[&l(x)) ety Gy &N(w); x] I‘Hz}

These N simultaneous conditions constitute the team analogue of the one-person
Bayes rule, but as was just shown, they are, though necessary, not in general
sufficient to determine the Bayes decision function, or functions.

If, in addition, ®;(a;, z) is differentiable in a;, then

(8/8a:)®i(a; , ) | a;=2:) = O.
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Call a decision function « stationary if the Bayes payoff V(a) > — «, and, with
®; defined as above,

(3.3) (8/0a:)®i(ai , T) | aimasy = 0 ace.,

for every <. Thus, under suitable regularity conditions, a Bayes decision function
is stationary. The following theorem gives one condition under which a stationary
decision function is Bayes. This theorem will be applied in Sections 4 and 5.

The content of the theorem is essentially the following. Suppose that u is
concave and differentiable in a for each z, that « is stationary, and that V satisfies
certain conditions of finiteness. Then it is shown that for each & such that (« + §)
is not worthless, V(a + ) is concave and differentiable in the real variable ¢,
and its derivative vanishes at ¢ = 0. Consequently, e maximizes V.

The Bayes payoff functional V(a) = V(a, G) will be said to be locally finite
at the decision function « if ‘

1 |(Va)| < w;

2. for any decision function & such that |V (a + 6)| < «, thereexist by, - - - , ky
all positive such that

IV(al + h151, ey, O[N + hN6N)| <

for all hy, --- , hy for which |k < ki, -« -, |ha| < kn.

In what follows it is assumed that the set A from which a decision function is
to be chosen is actually the set of all @ = (a1, - -, ax) such that «; is Y.,-meas-
urable.

TaEOREM 1. If

1. u(a, x) is concave (from below) and differentiable in a for a.e. x,
2. SupﬁV (B) < o,

3. V is locally finite at «,

4. o 1s stationary,

then « is Bayes.
Lemma. If f(c, ) is a concave function of the real variable c on the closed interval

[¢/, ¢”], for a.e. z, and |Ef(c, )| < « on [¢, ¢"], then
(d*/de)Ef(c, @) | e—er = E(37/3¢)f(c, @) | omer
(d"/de)Ef(c, ) | emer = E(87/3c)f(c, ) | o=er s

where the superscripts © and ~ refer to differentiation from the right and left, re-
spectively.

Proor. The concavity of f implies that, for a.e. z, (flc, ] — fl¢, z])/(¢c — ¢)
is a nonincreasing function of ¢ for ¢’ < ¢ = ¢”. Therefore, the first part of the
lemma follows from the Lebesgue monotone convergence theorem (Halmos [15],
Section 27, Theorem A); the second part follows by symmetry.

Proor or THE THEOREM. Suppose that V(o + 8) > — . Let

f(k, ) = wloa(z) + kidi(2), -+, an(z) + kndn(x), 2],
and let F(k) = Ef(k, ). By the assumption of local finiteness F is finite in some
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neighborhood of 0, and, using the concavity of u, it is easy to verify that F is
concave. Hence, for every ¢,

(8%/0k:)F(0) and (8~/dk:)F(0)
are finite. Hence, by the lemma, for every ¢,
(8%/0k:)F(0) = E(3%/0k:)f(0, ).
But it follows from assumption (1) that f is differentiable in k a.e., and hence
(8/0k:)F(0) = E(3/0k:)f(0, z)
= Eb:(x)(8/3a:)ula(z), 7],

which last expectation is therefore finite.
On the other hand, by the lemma, applied to the condition of stationarity on «,

(3.4) E{(9/0a:)ula(z), ] | Y = 0;
hence E(8/da;)ula(x), ] is finite, and therefore
Ebi(2)(9/8as)ule(z), ] = E[E{5:,(x)(3/0a:)ula(z), ] | Y]
= E[3:(z)E{(0/0a:)ula(z), ] | Y]
= 0.
(See Doob [11], chapter I, Theorem 8.3.) Hence, for every <,
(8/0k:)F(0) = 0.

Defining k° = (1, - - -, 1), it follows that F(tk"), as a function of the real variable
t is differentiable at ¢ = 0, and
(3.5) (d/dt)F(th") |0 = 2 (3/0k:)F (K)|imo = O

(see Bonnesen and Fenchel [7], Section 13). Now V(a + ) < <« for all ¢ (by
Assumption 2), and is finite for ¢ = 0 (Assumption 4) and for { = 1 (because it
was assumed that V(a 4+ 8) > — ».) Hence V(a 4 &) is a finite, concave
function of ¢t for 0 £ ¢ £ 1. But V(o + ) = F(tk"), hence it follows from
equation (3.5) that V(« + ¢) has a minimum at ¢ = 0, for 0 = ¢ < 1, which
completes the proof of the theorem.

The following example shows that some condition like local finiteness is needed
for the theorem just proved. Consider a team of two persons with the payoff
function

uw(a, z) = —v(z) (@ — a)® — 20,05,

where » is any measurable function for which »(z) > % (for concavity) and
Ey(z) = ; and suppose that only constant decision functions are allowed
(i.e., Y1 = Y2 = {X}). Then the expected payoff is
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— o, if a # as;
V(a) = )

—2q?, if a=as.
Hence V is finite, but not locally finite at any a for which a; = a2, and any
such a is person-by-person maximal; but a; = a, = 0 is the single best decision.

4. The team with a quadratic payoff.

4.1. Introduction. This section will explore the consequence for the Bayes
problem of assuming that for every state of the world «, the payoff is a quadratic
function of the team decision, thus:

(4.1) u(a, ) = Nzx) + 2a¢’6(z) — a’Q(x)a,

where a varies in N-dimensional Cartesian space R", and for every z, \(z) is
real, 6(z) isin RY and Q(z) isan N X N symmetric matrix (), é and @ all meas-
urable). I want to consider only the situation in which, for a.e. z, u(a, ) has a
unique maximum in a; it will therefore be assumed that Q(z) is positive definite

for a.e. x.
It will be more convenient to speak in terms of loss (in a sense to be defined)

rather than payoff. Maximizing (4.1), the one best team decision for any given
typical = is

(4.2) y(z) = Q'(z)8(x)

and the loss due to using any other decision a is

(4.3) la — v(x)I'Q(2)le — v()].

The expected loss, given the team decision function and the state of nature p, is
(4.4) o(a, p) = Efla(z) — v(2)1'Q@)[a(z) — v(2)] | p}.

For any a prior: distribution @, the Bayes expected loss, Eo, will be denoted by
(a, @), or sometimes just by ().

The expected loss function can be transformed to a certain extent without
altering the problem. Roughly speaking, one can change the coordinate system in
the decision space in any way that is compatible with the given structure of in-
formation. In particular, such a change could depend upon the state of the world,
z. Let T(z) be a measurable, N X N-matrix-valued function of z that is non-
singular a.e., and such that for any decision function «, both [7'(z)a(z)]; and
[T (x)a(x)]; are measurable-Y;; then the function B defined by B(z)
= T(z)a(z) is a decision function if and only if « is, and the expected loss

function
EB(z) — T()y(@)[T(2)Q)T(2)B(z) — T(x)y()]
defines a problem equivalent to that defined by (4.4).
For example, let the team members be divided into subgroups I, - -, I},

and let T'(x) be a matrix with blocks T:(z) down the diagonal and zeros else-
where, where T(z) is a nonsingular matrix of order equal to the size of group
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I, and measurable-() xr;Ys - In particular, T'(x) can be taken to be any diagonal
matrix such that, for every 1, {;;(x) is measurable-; ; typically, this will be the
only type of T possible.

4.2. Bayes decistons as projections—itheir existence and unigueness. A glance at
equation (4.4) above shows that the team problem looks something like a pre-
diction or estimation problem, with a quadratic form replacing the one-dimen-
sional mean squared error. It is not surprising, therefore, that the Bayes solution
can be described in terms of a projection in a suitable Hilbert space. Theorem 2
below describes the set of team decision functions that have finite Bayes expected
loss. Theorem 3 proves that if any decision function has finite Bayes expected
loss, then the best decision exists, is unique, and can be characterized as a pro-
jection.

In what follows it is to be understood that there is a given a prior: probability
measure on P, and that all expectations, probabilities, and references to ‘“almost
everywhere’” are based on it. Any two functions on X that are equal a.e. will be
considered equivalent, so that hereafter whenever any space of functions on X
is introduced, it is to be understood that, strictly speaking, the object under
discussion is really the corresponding quotient space modulo the space of func-
tions that are zero a.e.

Let H be the space of all measurable functions o from X to R” for which

Eo(z)' Q(z)a(z) < «;
then, under the inner product
(e, B) = Ea(z)'Q(x)8(z),

H is a (nontrivial) Hilbert space. This follows from the fact that the positive
definite square root of @(z) induces a measurable isometry between H and the
set of all measurable functions 8 from X to R" for which E8(x)'8(z) < o ; the
details are routine and will be omitted.
In what follows let 4 be the set of all measurable « from X to R" such that
a; is Y;-measurable. Also, denote the norm of an element g of H by ||8] = (8, 8)*.
TaEOREM 2. For any measurable v from X to R, the set F of a in A for which

Ela(z) — v(2)]Q(z)[a(z) — v(z)] <

18 either empty or it is the closed linear subvariety AN (v + H) of the complete
linear variety (v + H) under the distance function

d(a,8) = |[(a —v) — (B =)=

(For the special case, N = 1, of this theorem, see Girshick and Savage [12],
Theorem 2.2.)

Proor. Suppose that F is not empty. It follows that F = AN (y + H) and
that (v + H) is complete under the given distance function; it remains to show
that F is closed. Let o® be any element of F; then (y 4+ H) = (a’ + H). The
transformation that takes any 8 in (y + H) into (8 — ') in H is an isometry
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from (y + H) onto H, and the image of F under this transformation is 4 N H.
Therefore, F is closed if and only if A N H is closed. Suppose that the sequence
{a!™} in AN H converges, in the norm of H, to &, which is therefore in H. By
repeated application of Theorem 22.D (together with 25.A and 21.B) of Halmos
[15], one can show that there is a subsequence {a™} converging to a coordinate-
wise and pointwise a.e.; hence each a; is Y,;-measurable (or more exactly, has a
9Y-measurable representation), which puts « in 4.

An an example of a case in which F is empty, let  be uniformly distributed
on the unit interval, let N = 1, ¢(z) = 1/2% v(x) = z, and let A contain only
constant functions. It is easy to verify that there is no real number a such that

1 2
f(_‘z_4x)_dx<oo_
0 x

The Bayes problem is one of finding an element of F that is closest to v, in
the sense of the distance d. Because of the isometry between (y 4+ H) and H,
this problem is equivalent to the problem of finding an element of A N H that is
closest to (y — ') in the sense of the norm of H (where o is as in the proof of
Theorem 2). Therefore, if F is not empty, it can be assumed without loss of gen-
erality that vy is in H, and this will be done from now on. It then follows, of course,
that F = AN H.

TaeorEM 3. If F is not empty, then there is a unique team decision function o
that minimaizes the Bayes expected loss 6(a) = ||a — v|| on F, and a s the orthogonal
projection of v into F.

Proor. Immediate from Theorem 1 and the minimizing property of the orthog-
onal projection (see Halmos [14], Theorems 11.1 and 11.2).

4.3. The condition of stattonarity for the quadratic case. In this section it is shown
that, under a certain condition on the random matrix Q(z), the hypothesis of
Theorem 1 is satisfied, and therefore that a stationary decision function is Bayes.

Let r(z) be the lower bound of Q(x) with respect to the quadratic form

i gulx) ai, ie.,
r(z) = mina'Q(z)al/[2 gis(x)ail;

and let r be the essential infimum of r(z).

Tueorem 4. If r > 0, and if a s stationary, then « s Bayes. (Note that the
hypothesis of this theorem is automatically satisfied if Q(x) is a constant matrix,
independent of x.)

Proor. The present theorem will be proved if it can be shown that the hy-
pothesis of Theorem 1 is satisfied. In interpreting Theorem 1, the reader should
keep in mind that he is now concerned with expected loss. The only point not
immediately obvious is that the expected loss & is locally finite at «, which will
now be demonstrated.

As already shown, there is no loss of generality in assuming that
II¥|I* = B¥'Qy < =, and hence that the Bayes expected loss ¢(a) < o if and
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only if [le|| < . Suppose, then, that ||| < « and ||e + 8] < «; it follows by
Theorem 2 that [|§]| < «. For a.e. x,

r(w); ¢:i(2)83(2) = 8(2)'Q(x)8(2).

Hence

E’E ¢::(2)83(z) < (1/r)[aP,

and thus for every ¢,
Eqi(z)d(z) < .

Let 8 = (0, ---, 5,0, +++,0); then for every 1, 16| < «, and hence by
Theorem 2, |la + Y.: ks < o, for all real &y, - - - , kx , which concludes the
proof.

In the quadratic case with r > 0 the condition for stationarity becomes (see
equation (3.4))

(4.5) E{; gii (@) [a;(x) — 7f§x)] |y} =0

for every 7 and a.e. x, since Theorem 1 applies.

Under these conditions the equations for stationarity determine, of course,
the orthogonal projection of vy into F. It can be shown that under these conditions
F is a Cartesian product ][ F; , where F is the space of all Y,-measurable func-
tions B; such that Egq.(x)B3(z) is finite. Note that the example at the end of
Section 3 does not satisfy these conditions. There, the matrix Q(x) is

[ g(z) 1-— q(x)}
1 — g(x) oz) |’

and r(z) = 1/g(z), so that r = r. On the other hand, Theorem 3 still applies,
with F the set of all a such that a; = a2 . _

5. The case of constant coefficients of the quadratic terms. It will now be
assumed that the matrix @ is independent of z, i.e., is constant and known. A
number of detailed results can be derived in this case, but the reader should keep
in mind that this assumption represents an important loss of generality. As thus
far discussed, the general quadratic payoff might be thought of as an approxima-
tion, for each x, to an arbitrary smooth payoff function in the neighborhood of
the best team action y(z) corresponding to z. If @ is constant, the approximated
payoff function in the neighborhood of y(z) is the same (or at least almost
always the same) for each z, which is clearly a most special circumstance.

One who is familiar with the theory of minimum variance estimation and
prediction might guess that the normal distribution would have a special place
in the theory of the team with a quadratic payoff function. Such a guess would
be correct, as will be shown in the present section. The main result here is that if
the a prior: distribution induces a normal distribution of all the information
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variables and the vector y(z), then the Bayes decision function is linear in the
information variables. An explicit algorithm is given.

It will be more convenient to use the transformation, as opposed to the sub-
field, terminology in the next four sections.

For each 7 = 1, -+, N, let 5, be a measurable function from X to K, di-
mensional Cartesian space R*¢; n;(x) will represent the information that becomes
available to the 7th team member when z is the state of the world. In this section
it will be assumed that, under the given a prior: distribution, 7, , -+ - , 7y and v
all have a joint normal distribution (see equations (4.1) and (4.2)). Let C;; de-
note the matrix of covariances between the coordinates of ; and the coordinates
of 5, . There is no loss of generality in assuming that for every ¢, C;; is the identity
and 7; has mean zero. In summary,

(5.1) Cov (n:, ;) = Cij,Cii = Ig, , En; = 0.
Let 6(x) = Qy(x) (see equation (4.2)); the regression of é on 7; is linear, i.e.,
(5.2) E[3: | ni(x) = yi] = Bo: + diys,

for some vector d; . '

TaEOREM 5. If, under the given a priori distribution, v and the information
functions ny, - -+, nx have a joint normal distribution, with parameters given by
(5.1) and (5.2), then the components of the unique Bayes team decision function
are linear,

(5.3) adni(x)] = bini(z) + ¢,
where the vectors b; and the numbers ¢; are determined by the systems of linear

equations
(5.4) Z qiiCib; = di, t=1,---,N;
J
(5.5) Zq,-,-c,-=E6¢, 7 = 1,'~~,N
J

Proor. The existence and uniqueness of the Bayes team decision function
follows from Theorem 3; and by Theorem 4 it must satisfy the conditions of
stationarity, i.e.,

(5.6) Z,: gisBla; | ni(z) = yi] = Elb: | ni(z) = yi
for all 7, and all y, in R**. If the Bayes team decision function is to be linear, of
the form (5.3), then (5.6), (5.1) and (5.2) imply that
2 :i(biCiys + ¢;) = Esi + diys,
J
for all ¢ and all y; in R**. From this it follows that if the Bayes team decision

function is linear, then the b; and ¢; must satisfy (5.4) and (5.5). Hence the
proof will be complete when it is shown that (5.4) and (5.5) have solutions. The
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solvability of (5.5) follows from the fact that @ is positive definite, and that of
(5.4) from the following lemma.

LemMA. If C is a K X K symmetric nonnegative semi-definite matriz, partitioned
symmetrically into blocks C;; , such that C.; is positive definite for every i; and if
Qis an N X N symmetric positive definite matrix with elements g;; ; then the matrix
H composed of blocks qi;C;; is positive definite.

(A special case of this lemma is the known result that the Hadamard product
((qisei5)), of two positive definite matrices, ((g:;)) and ((¢s;)), is positive
definite. (See Halmos [13], Theorem 2, Section 85.) In this paper the matrix H
of the lemma will be called the Hadamard product of @ and C (corresponding to
the given partitioning of C).

Proor or LEmMMA. Since C is nonnegative, it can be expressed as

C = ‘z; r(p)r'(p),
where for each p, r(p) is a vector in K-dimensional Cartesian space. For any
K-vector v, let {v;} be a partitioning of v into subvectors, corresponding to the
partitioning of C; then for every ¢ and j§

Ci; = 2 ri(p)ri(p).
v4
For any v
(5.7) v'Hv = Z; giiCijv; = Zp: Z} giiri(p)ry(p)v; = Zp: 2 Giwi(p)wi(p),
1 1 17

where wy(p) = viri(p). Hence v'Hv = 0for all ». Now let » % 0; then for some
7, v # 0. For that ¢, and for some p, vir{(p) 5 0, because C; is positive definite.
Hence from (5.7), v'Hv > 0 if v 0, which completes the proof.

ExaMPLE 1. Let 2, and @, be random variables with a joint normal distribution,
with means zero, variances one, and correlation p. Suppose that the team has two
members, that member ¢ observes «;, that member ¢’s decision variable is a;,
and that the loss function is

a; + 2qa02 + a3 — 2012y — 20525 + a constant,
where ¢° < 1. In the notation of the theorem just presented, 8'(z) = (z1, 22),

Q= (; (11)’ Cii=1,Ci; = p,d; = 1, Es; = 0. The Bayes decision function is

(5.8) ai(x:i) = [z:/(1 + go)l, i=1,2.
Note that
yi(z) = (z: — qz;)/(1 = ¢*),
and
E(vi|x:) = [(1 — g0)/(1 — )]s,
so that ai(z;) = E(y;|z;) onlyif ¢ =0orp = 1.
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One general way in which the conditions of the previous theorem can be ful-
filled is as follows. Let 21, - -+, zv be N random vectors with a joint normal
distribution, with known covariances, but with unknown means. However, letting
z denote the combined vector (2, ---, 2y) and K the dimension of z, suppose
that the mean of z is known to lie in a linear subspace M of K-dimensional
Cartesian space Z. In other words, the set P of probability measures p on Z is
the set of all normal distributions on Z that have the given covariance structure
and such that EZ is in M. The set P can therefore be represented by M, and X
can be represented by the external direct sum M + Z. If the a prior: distribution
on M is itself normal, this induces a normal distribution on X.

ExampLE 2. Suppose that the team as a whole has available to it a random
sample of & observations from an N-variate normal distribution with unknown
mean p and known covaraince o;; , but that for every 4, member 7 knows only
the sample values of the 7th coordinate, and on the basis of those values needs
to estimate the corresponding mean u;. Suppose further that the a prior: dis-
tribution specifies that p;, - -+, py are independent and normally distributed
with means all zero and variances 73, - - - , 7w , respectively.

If z; denotes the vector of k sample values of the 7th coordinate, then in the
notation of the (quadratic) team decision problem

x = (zl, "'7zN’:uly'°'7”'N)’ n‘l'(x) =Zi,’)’i<$) = Me .

A straightforward calculation yields

Ez; = Eu; =0
(5.9) E(ui|2:) = e, E(8:|2:) = quiZi,
E(zj|2:) = (0ij/0i)(2: — eZ:if)
where
ei = [1+ (ou/brD)]™
ff=(@,1,.--,1) (k-dimensional)

Z; = (1/k)f'z; (the #th person’s sample mean).

Rather than normalize the information variables so as to be able to apply
Theorem 5 directly, it is easier to write down the stationarity condition for this
example, knowing that the Bayes decision function is linear. If ai(2;) = biz; , the
stationarity condition (applying (5.9)) is

(510) qiibﬁzi + Z qi,-b;-(o,-,-/o,-,-)(z,- -_ eié,'f) = €iZ; 5 7 = 1, ..o N.
It
It is easily verified that (5.10) is satisfied by
b = (bi/k)f,

5.11
( ) or bizi = bY% y
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where the numbers ! are determined by the system
(5.12) bi + [(1 — €:)/guiosi] 2 qsioibi = e, i=1,---,N.
i

In other words, the 7th person’s estimate of u; is proportional to his sample
mean, but is not in general equal to it. It is interesting, however, that as the a
priors information becomes more and more “vague,” i.e., as 71, - - - , 7w increase
without limit, the numbers e; approach 1 (see (5.9)), and therefore so do the co-
efficients b} (see (5.1)). The same effect is produced when the sample size & gets
large.

It is not in general true that as the a prior¢ distribution becomes more and more
“vague,” the Bayes team decision functions tend to a function independent of the
matrix Q; this question will come up again in the next section.

6. Markoff decision functions. This section and the next deal with a problem
that is the team analogue of the one-person problem of minimum-mean-square-
error linear unbiased estimation, or the ‘“Markoff problem.” In the situation to
be considered, each team member observes the value of a different random
vector. The covariance structure in each vector space is known, as are the co-
variances between the vectors of different members, but the mean of the N-tuple
of vectors is known only to be in a certain linear subspace of the direct sum of
the N vector spaces. Each team member wants to estimate a given linear func-
tional of the mean of his vector, the loss function for the team as a whole being
a given quadratic form (determined by Q) in the errors of the estimates. Suppose
further that the team wants to use only estimators for which the expected loss is
bounded as a function of the mean, and finally, suppose that the team members
want to keep their estimators simple and therefore restrict themselves to linear
estimators. A Markoff estimator for the team is one that minimizes the expected
loss for all possible values of the mean, subject to the two conditions of bounded
expected loss and linearity. It is, of course, a very special circumstance that
permits a single argument to minimize the expected loss for all values of a
parameter at once. One result of this section is that the Markoff problem for the
team is, in a certain sense, equivalent to an ordinary, one-person, Markoff prob-
lem, involving all the vectors together, in which the covariances between the
vectors are weighted by the corresponding elements of the matrix @; in particu-
lar, the Markoff problem for the team typically has a solution.

The requirement of bounded expected loss is close to the minimax principle
in spirit, and, in fact, the next section shows that Markoff estimators are indeed
minimax under certain conditions.

Actually, the interpretation of this problem as one of estimation is only sug-
gestive. What 7s essential is that each team member’s best decision under com-
plete information, v;(x), should be a linear function of the mean of his information
vector 7:(x).

Let the space Z of random events (see Section 2) be the direct sum of N real,
finite dimensional vector spaces Z;, - -+, Zx ; let M be a given linear subspace
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of Z, and let P be a set of probability measures p on Z. Let { = (1, -+, $v)
denote the random vector in Z (with ¢; in Z;), and assume that:

1. For every p in P, E({ | p) is in M. For every m in M there is a p in P such
that E(¢ | p) = m.

2. All p’s in P have the same matrix C of covariances between the coordinates
of ¢ (relative to some fixed coordinate systems in Zy, - - - , Zx).
The matrix C' can be partitioned into blocks C;;, where C;; is the matrix of
covariances between the coordinates of ¢; and the coordinates of {; . There is no
loss of generality in assuming that:

3. For every ¢, C,; is nonsingular.
(If Cy; were singular, Z; could be replaced by a linear subspace of itself, for which
the corresponding covariance matrix would be nonsingular.)

Assume further that the team loss function is quadratic, of the form

(6.1) la — v(@)]'Qla — v(x)],

and that the function v is an N-tuple of linear functionalsy;of E(¢: | p),i.e., for
each 7,

(6.2) vi(z) = ¢iE(s:| p),

for some ¢g; in Z; .

Finally, suppose that the set of allowable team decision functions A is the
set of all « such that a; is a (possibly nonhomogeneous) linear functional on Z;,
i.e., for every ain 4,

(6.3) ai(z:) = ba + biz:,
for some number b, and some vector b; in Z; .
For any such team decision function «, the expected loss is
E Y gifba + big: — giBcdba + bit; — ¢iE¢] = 2 ibiCib;
¥

7
+ Z”) giilbio + (b — i) E¢illbj + (b; — g3)'E¢il.

The minimum expected loss is zero, for a given p in P. Hence expected loss is
identical with risk as defined in Section 2.

The function « will be called a bounded-risk decision function if the above risk
is bounded as E¢ varies in M. The Markoff problem is to choose, if possible, a
single bounded-expected-loss decision function that minimizes the risk for all
E¢in M.

The idea of replacing the familiar constraint of unbiasedness with the equiva-
lent (in this problem) but intuitively more reasonable constraint of bounded
risk seems to be due to L. J. Savage.

For every 4, let M be the set of all z; in Z; such that for some

m= (my, -, my)
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in M, z; = m; . It is clear that M, is a linear subspace of Z; . Let M + denote the
orthogonal complement of M; in Z; ; then « is a bounded-risk decision function

if and only if, for every <,
(6.5) (bs — ¢gs) isin M3,

as can be eagsily verified.

From this it follows that no linear bounded-risk decision function is admissible
unless by = O for all ¢; and whenever a bounded-risk decision function is referred
to from now on it is to be understood that it is homogeneous. The risk for such a

decision function is therefore
2 qi,biCijb; = b'HD,
)

where H denotes the Hadamard product of @ and C (see Section 5), and

b, = (bl y ° bN)
Let M be the internal direct sum »_; M; of the subspaces M, let M* denote
the orthogonal complement of M in Z, and let ¢’ (gl y ottty gN) then é& s a

solution of the Markoff problem if and only if 6(z) = bz, where b minimizes b'Hb
subject to (b — ¢) in M™.

It is clear that & solves the ordinary (one-person) Markoff problem of finding
a minimum variance linear unbiased estimator of g’E’ (¢ p), where ¢ has the
covariance matriz H, and E({ | p) is known to lie in M. Let M be the H-orthog-
onal complement of M* in Z. As is well known (see for example Scheffé [28],
pp. 19-21) the solution of this last problem is given by

(6.6) b = Pg,

where P is the H-orthogonal projection onto /. Note that P is not affected by
multiplying either @ or C by a positive constant.

ExaMpLE. Suppose there are only two team members. Let ¢, {2, and {3 be
independent and identically distributed random variables with unknown mean
m, and variance 1, and suppose that member one observes 7: = ({1, {2), and
member two observes 7. = ({1, ¢3). The covariance matrix of 5, and #, together

is therefore

1
Markoff decision function b = (by , bia ; bar , bas) therefore minimizes

b'Hb = Z}; b% + 2gbubn

Suppose that @ = (; q) , and that each member needs to estimate m. The
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subject to the constraints: by; + b1z = bar + bee = 1. The solution is easily found
to be:

ba 1/(2+ ¢q)

1 =1,2.
b= (1+¢)/2+ 9

Note that if ¢ = 0, the best estimator for member ¢ is his sample mean §; . If
g > 0, then the loss is greater the higher the (positive) correlation between the
errors of the two members; hence less weight is given to the variable that is
observed by both.

The case of M defined in terms of a parameter space. In many problems the set
of possible values of the mean E¢ is defined as the image, under a linear trans-
formation, of a “parameter space.” Thus, let V be a vector space; for each ¢,
let B; be a linear transformation from V to Z; , and suppose that for every possible
value of E¢ there is a v in V such that, for every <,

E{z = B:,;Q.

Suppose, further, that each v, is a linear functional on V.

By examining the risk function, as before, one can easily show that there
exists a linear bounded-risk decision function if and only if, for each <, there
exists a vector ¢; in Z; such that for all v in V

giBw = vi (v);
ie.,
vi(v) = g:E(%i|v).

In other words, there exists a linear bounded-risk decision function if and only
if the quantity to be “estimated” by the ¢th person depends upon the mean of
the random vector { only through the mean of his own information vector.

Note that the set M of possible values of E¢ is a linear subspace of Z, and that
B;(V) corresponds to the subspace M ; of the previous formulation.

7. Decomposable Markoff problems. In the (one-person) theory of minimum
variance unbiased linear estimation, the Markoff estimator of a linear functional
of the mean of the observed vector can be represented as that same linear func-
tional of a projection of the observation into the linear subspace in which the
mean is known to lie. This fact gives one meaning to the statement that this
projection is the best (vector-valued) estimator of the mean itself.

In the team Markoff problem, this situation does not generally hold for the
individual team members; when it does, the problem will be called decomposable.
This section describes two situations in which decomposability occurs.

Formally, a team Markoff problem is called decomposable if, for every ¢, there
exists a transformation S; from Z; into itself, such that, for all ¢ in Z, the best
decision function for member 7 (best “estimate” of g:E[¢; | p]) is g:8:: . From
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(6.6) it follows that a Markoff problem is decomposable if and only if, for every
gin Z

(7.1) (Pg) = (9181, -+ , gnSw),

where P is the H-orthogonal projection onto M, i.e., if and only if P is a matrix
with blocks S; down the diagonal, and zeros elsewhere. (Recall that M is the
H-orthogonal complement of (> MH*)

ExampLE 1. Suppose that in the matrix H, which is composed of blocks
¢:iCi; (see the previous section), all the off-diagonal blocks (7 # j) are zero.
There is no loss of generality in assuming that each C;; is in identity matrix. In
this case, for every x and y in Z,

(7.2) 2’Hy = Z iy -

It follows from (7.2) that z and y are H-orthogonal if and only if they are orthog-
onal (z'y = 0), and hence equation (7.1) is satisfied by taking S; to be the
orthogonal projection, in Z, , onto M, .

In particular, the assumptions of this example will be satisfied if either the
observations of different team members are uncorrelated, or the matrix @ is
diagonal (no “interaction’).

ExampLE 2. Suppose that all the spaces Z; have the same dimension, K;
suppose that for every ¢, M; = M, , where M, is a linear subspace of K dimen-
sional Cartesian space; and suppose that for every ¢ and j, Ci; = 0i;[x , where
I is the identity matrix of order K. A special case of this example is suggested
by example 2, Section 5, in which (1) the team asa whole has available to it a
random sample of K observations from an N-variate normal distribution with
unknown mean p and known covariances o;; ; (2) for every 4, member ¢ knows
only the sample values of the ¢th coordinate; and (3) on the basis of those values
needs to estimate the corresponding mean u; .

For any z and y in Z, by the assumptions of this example,

vHy = 2 ¢ioitiy; -
1)

From this it quickly follows that (7.1) is satisfied by taking, for each ¢, S; to be
the (ordinary) orthogonal projection, in K-space, onto the subspace M .

In particular, for the special case mentioned above, the Markoff estimate of
p; is the sample mean of the observed values of the ¢th coordinate.

8. Minimax properties of Markoff decision functions. In the decision situation
described in Section 6 it can be shown that the Markoff decision function is
minimax in the set of all team decision functions, provided the set P of prob-
ability distributions is sufficiently rich in normal distributions (in a sense made
precise below). More generally, suppose that the covariance matrix is known
only to be one of some given class of such matrices; then, for certain such classes,
there exists a Markoff decision function, relative to one of the covariance matrices
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in the class, that is minimax in the set of all team decision functions. Three cases
of this kind will be considered in this section.

In the first case it is assumed that the covariance matrix is known to be a
positive multiple of ¢C of some given matrix C, and that the factor ¢ is known
to be bounded. In this case the Markoff decision function relative to C is minimax.

In the second case it is assumed that the covariance between random variables
observed by the same person are known, but that those between variables
observed by different persons are unknown; here it is shown that there exists a
Markoff decision function that is minimax, but the corresponding (least favor-
able) covariance matrix is not described explicitly.

In the third case, it is assumed that the covariance matrix is only known to
be bounded relative to some given matrix C°. In this case the Markoff decision
function relative to C° is minimax. This might cause some uneasiness about the
application of the minimax principle in this case. In such a context one typically
would be willing to grant that the class of covariance matrices is bounded some-
how, but would not have a very precise idea of the nature of the bound, whereas
in this result the minimax decision function is quite sensitive to the form of the
bound, as represented by C°. '

For related results in the one-person case see Wald [29], p. 142; Hodges and
Lehmann [16], Theorem 6.5; Girshick and Savage [12]; and Radner [23].

As in the previous two sections, let Z be the direct sum of N real finite di-
mensional Cartesian spaces Z,, and let M be a linear subspace of Z. Further,
let © denote a set of symmetric nonnegative semi-definite matrices of order the
dimension of Z; and for each C in @, let ((C;;)) denote the partitioning into
blocks corresponding to the direct summands Z, .

Given @, let P be a set of probability measures p on Z such that

1. For every p in P, the mean is in M and the covariance matrix is in €.

2. For every m in M and C in € there is a normal probability measure p in
P with mean m and covariance matrix C.

The assumption that P includes normal distributions is a natural one, since
normality can rarely be ruled out as preposterous. (The form of the assumption
given in (2) is, strictly speaking, slightly stronger than necessary for the purpose
of this section, but has been put in that form for the sake of simplicity. See the
remark after Lemma 2 below.)

Let the (quadratic) loss function be given by (4.3), with constant matrix @,
and let the set of allowable team decision functions be the set of all

= (ay, - -+, ay) such that «; is a real-valued measurable function on Z; . The
entire situation just described will be called here a generalized Markoff situation.

The main tool of this section is Lemma 2 below. Basic to this lemma is Lemma
1, stating that if the covariance matrix is known, then the corresponding Markoff
decision function is minimax. It should be noted that, because of the convexity of
the loss function, it is sufficient to consider only nonrandomized estimators (see
[16], Theorem 3.2).

(Throughout the rest of this section, it is to be understood that all matrices
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are of order equal to the dimension of Z, unless explicit mention is made to the
contrary.)

Lmmma 1. If @ consists of a single matriz C such that C; is positive definite for
every t, and if P contains only normal distributions, then the Markoff team decision
Sfunction relative to C 1s minimax tn the set of all team decision functions.

Proor. The proof consists in showing that the risk for the Markoff decision
function, which is constant on P, is the limit of a sequence of Bayes risks, for
some suitable sequence of a priors distributions on P. Adopting the ‘“parameter
space” approach (see the end of Section 6), let V be a Cartesian space of the same
dimension as M, let B be the matrix of a nonsingular transformation from V to
M, and set up a 1-1 correspondence v, between V and P such that the mean
corresponding to p is By, . Consider a sequence of normal probability measures
on V, each with mean zero, such that under the rth measure (r = 1, 2, ete. - - -),
the coordinates of v are independent, with variance r. Each of these a prior:
distributions on V induces a normal distribution on Z; therefore, by Theorem 5,
Section 5, the corresponding Bayes team decision function is linear and
homogeneous. Given r, the Bayes risk for the decision function a(z) = b’z is

(8.1) Z gibiCitbj + 7 Z :i(bi — g:)'B:Bj(b; — ¢3),

where B; are the blocks of B corresponding to the summands Z; . As r increases
without limit, the minimum of (8.1) with respect to b approaches the minimum
of D _:; gibiCs;b; subject to the constraint

(8.2) Z,: q:(bs — ¢:)'B:Bj(b; — g:) = 0.

This last condition is satisfied if and only if, for every ¢, By(b; — g:) = 0. The
reader can easily verify that this last is, in turn, equivalent to the condition,

(8.3) (b — ¢g:) in My, i=1,--- N,

where M; is defined as in Section 6, completing the proof of the lemma.

For any (homogeneous) bounded-risk linear decision function, a(z) = b’z
(and in particular for any Markoff decision function) the risk depends upon p in
P only through the corresponding covariance matrix C in €, and is in fact equal to

VHD = Y q:0iCib;,
57

where H, denotes the Hadamard product of C' and Q. Therefore the risk for such
a decision function can simply be denoted by p(b, C). Further, when reference is
made to “the decision function b,” it is to be understood as referring to the linear
function, a(z) = bz.

The next lemma follows immediately from Lemma, 1.

LemMma 2. In any generalized Markoff situation, if b is Markoff relative to C in €,
and if p(b, C) £ p(b, C) for all C in ©, then b is minimax in the set of all team

deciston functions.
According to Lemma 2, there is a Markoff decision function that is minimax
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if the risk function p(b, C') has a saddle point (minimax) with (b — ¢) in D M}
and C in @.

Note: For the proof of Lemma 2, condition (2) in the definition of a generalized
Markoff situation could be replaced by the assumption that for every m in M
there is a normal distribution in P with covariance matrix C.

If b is minimax, and Markoff relative to C, as in Lemma 2, then although there
may be no least favorable a priors distribution, € is, in a sense, a least favorable
covariance matrix. In the following three theorems three different classes @ are
considered; in each case there is some Markoff decision function, relative to a
least favorable C, that is minimax.

The next theorem is a team analogue of Theorem 6.5 of Hodges and Lehmann
[16]; its proof is immediate from Lemma 2, and is omitted.

THEOREM 6. Let C be a fixed covariance mairiz such that C; is positive definite for
every i; let k be a fized positive number; and let C be the set of all ¢cC such that
0 < ¢ < k. Then the Markoff decision function b relative to kC is minimaz.

(Note that b does not depend upon k.)

The next theorem deals with the situation in which the covariance structure
of the random vector observed by each- team member is known, but the
covariances between the vectors observed by different team members are un-
known.

TuEOREM 7. Let @ be the set of all C such that Cs; = Ci;, where C3; is, for each
i, a fixed symmetric positive definite matriz; then there exists C in @ such that the
Markoff decision function b relative to C is minimaz.

Proor. There is no loss of generality in assuming that C3; is an identity matrix,
for each 7. Let 3C be the set of all Hadamard products H. of @ with a C in @,
and let ® be the smallest closed convex set containing all b such that b is Markoff
relative to C for some C in €. By Lemma 2, it is sufficient to prove that b’Hb
has a saddle point (minimax) for b in ® and H in 3C. Consider 3C as imbedded in
a vector space, in the usual way, and with the inner product of H and K defined
as the trace of HK. According to a theorem of Kakutani [17], such a saddle point
will exist if

1. b’Hb is continuous on ® X 3C.

2. ® and 3C are each convex and compact.

3. For every b in ®, the set of all H that maximize b’Hb in 3¢ is convex.

4. For every H in 3C, the set of all b that minimize b’Hb in ® is convex.

(Although the conditions given here are not explicitly written out in the paper
cited, they are implicit in the proof of its Theorem 3. Kakutani’s result is not the
most general saddle-point theorem available, but is sufficient for this proof.
For references to other literature on the subject see Debreu [10].)

It is easily verified that 3C is convex and closed; furthermore, 3C is bounded
because for any H in 3C (recall that H is positive definite),

tr (H*) = [tr ()T,

and the trace of H equals ¢ = D_; g:m;, where n; is the dimension of Z, . Hence
3¢ is compact.
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To see that ® is also bounded, let & be some fixed vector in ®, and for every
H in 3¢ let 7(H) denote its smallest characteristic root; then for any H in 3¢
and for b Markoff relative to H,

(8.4) bbr(H) £ WHb < V'Hb < b'btr (H).
From (8.4),
(8.5) b'b < (Wb tr (H)/r(H)].

On the one hand, trace (H) = t (see above) for all H in 3C. On the other hand,
infy in 5o 7(H) > 0, which follows from the continuity and positivity of 7(H) on
3C, and the compactness of 3¢. Hence ® is compact.

For any fixed b in ®, b’Hb is linear on 3¢, which is convex; hence condition (3)
is satisfied. Condition (4) follows from the uniqueness of the Markoff decision
function relative to any fixed H. Finally, b’Hb is clearly continuous on & X 3¢,
which completes the proof.

If nothing at all is known about C, that is, if € is taken to be the class of all
possible covariance matrices on Z, then the risk for every decision function is
unbounded on €. To get a finite minimax value, the class © must be ‘“bounded”
in some sense. One such sense is provided by the concept of the norm of one
quadratic form with respect to another. Let C° be a given symmetric positive
definite matrix, and for any symmetric nonnegative semi-definite matrix C' define
the bound of C relative to C° by

[C]l = maxsez (b'Ch/b'C’D).

THuEOREM 8. Let @ be the set of all C such that |C|| = k, where k is a given positive
number and C° is a given positive definite matrix; then the Markoff decision function
b relative to kC° is minimaz. Note that b depends upon C° but not upon k.

Proor. Since Q is positive definite, there exist ¢;(n), 7, n=1, - - -, N, such that
¢i=2_nqi(n)gi(n)for 4,j=1, -- -, N. If b is of bounded risk then for any C in €,

p(b, C) = ; GibiCib; = 2 2 qi(n)biCiiqi(n)b;

(8.6) = 2101 2 ai(m)biCliai(n)b;
= [Cllo(b, C") < kp(b, C°) = p(b, kC").

In particular (8.6) holds for b, so that Lemma 2 can be applied to complete the
proof of the theorem.
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