CONTRIBUTIONS TO THE “TWO-ARMED BANDIT” PROBLEM!
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0. Summary. The Bayes sequential design is obtained for an optimization
problem involving the choice of experiments. Given are experiments A, B,
densities py , p2, a positive integer N and a number £ ¢ [0, 1]. A sequence of N
observations is to be made such that at each stage either 4 or B is observed, the
loss being 1 if the experiment with density p» is chosen, 0 otherwise. £ is the prior
probability that A has density p, . If the mean of p, is bigger than the mean of
P2 one obtains a more common version of the “two-armed bandit” (see e.g. [1]).
The principal result of this paper is a proof of optimality for the procedure which
at each stage chooses the experiment with higher posterior probability of being
correct. Some attention is also given to the problem of computing risk functions.

1. Introduction. A prototype for the class of sequential design problems to be
considered is the following: Let (4, B) be a pair of binomial experiments. An
observation on A or B yields 1 for a success, O for a failure and the probabilities
of success p1 > p. are given, but it is not known which probability attaches to
which experiment. The problem is to find a sequential procedure for taking ob-
servations so as to maximize the expected number of successes in a given (finite)
number of trials. Of particular interest is the class of Bayes procedures when
prior probabilities are assigned to the possible alternatives. This is the problem
originally termed the “two-armed bandit” (TAB) because of its interpretation
as an optimization problem for playing a game on a two-armed slot machine.
The importance and applicability of this problem, and, in fact, of some of its
generalizations, have been noted in papers by Bradt, Johnson, Karlin [1]; Bradt,
Karlin [2] and Robbins [3]. -

Let the ordered pair (p, p’) denote the assignment of p to A and p’ to B and
let H,, Hg, be the hypotheses (p, p’) = (p1, p2) and (p, ') = (p2, p1) respec-
tively. We distinguish the following conditions on the problem:

(i) (4, B) represents a pair of binomial experiments (1, 0)

(ii) H4, Hp are the symmetric singletons (pr, p2) and (p., p1) respectively;

(iii) the total number of trials is finite;

(iv) the expected sum of the observations is to be maximized.

Conditions (i), (ii) can be relaxed in obvious ways. An optimality criterion
which leads to the same procedure as (iv) for the TAB but which is more flexible
will now be described. Let the experiment with higher probability of success, pi,
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be called “preferred” or “‘correct’” while the one with ps is ‘“wrong.” Thus, under
H, , A is correct and B is wrong and under Hp, B is correct and 4 is wrong. Con-
sider the procedure which minimizes the expected number of ‘“mistakes”, i.e.,
observations on the wrong experiments. Clearly, this procedure is precisely the
-one that satisfies (iv). Stating the criterion this way has the advantage that
under a more general set-up the problem can be formulated without reference to
the specific nature of the preference. Also, it allows a natural extension to the
infinite case.

Some problems involving generalized versions of (i)-(iv) have been studied in
1], [2], [3], the results of [1] being of particular interest here. Realizing its limita-
tions, we shall, nevertheless, refer to the following version of conditions (i)-(iv)
as the generalized two-armed bandit (GTAB):

(1)" (4, B) represents a pair of arbitrary, fixed experiments on a sample space
(T, ®);

(il)" H4, Hp are the symmetric singletons (p1, p2), (p2, p1), the p.’s being
«densities with respect to some measure A over (T, ®) ;

(iii)" the number of trials may be finite or infinite;

(iv)’ the expected number of observations on the experiment with density p.
is to be minimized.

The equivalence of (iv)’ and criteria such as (iv) is guaranteed by the sym-
metry conditions (ii), (ii)’ whereby mistakes on 4 and B have equal weight.
‘This will not be the case under condition (ii)"’: H4, Hp are arbitrary singletons
(p, ') = (pp2) and (p, ') = (q1, qz) respectively. We shall briefly consider
‘this case in Section 5.

Let & = £ be the prior probability of H, and let £;,7 = 1,2, - - - be the succes-
sive posterior probabilities of H 4. The following procedure has been conjectured
optimum for the TAB: at stage 7 observe 4 or B according as £,3 > 2oré,; < %
with indifference at £_, = % We denote this procedure by =*. We shall show in
Section 2 and 3 that #* is optimum for the GTAB whether the number of trials
is finite or not. The optimality of =" has already been verified in the following
cases:

(a) TAB, N = 10 (& is the number of trials)

(b) under the following restriction of conditions (i)’, (ii)"’, (iv) with N finite:
D1/q1 , P2/ 2 have identical distributions under both H, and Hp . (Bradt, Johnson,
Karlin [1]).

In Section 4 we compute the risk for the infinite case for binomials with specific
values of p1 , P2 .

2. GTAB finite case. Under conditions (i), (ii)’, (iii)’ of Section 1 we want to
find a sequential procedure for taking observations so as to achieve (iv)’. Let &
denote the prior probability of H, . A procedure = will be evaluated on the
basis of its risk function Ry (£) which represents the expected number of mis-
takes given £ and using =y when N observations are contemplated.

An approach which has been found useful for handling multistage decision
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problems of this sort is that of “dynamic programming” whereby present actions

.are compared on the assumption of future optimal behavior. Thus, in the present
-case suppose N + 1 trials are contemplated, 7y is the optimum procedure for N
trials, and 741, mw4 are defined as follows: 741 observes A first then follows
Ty ; Tw41 Observes B first then follows 7y . R4 (£), R¥41 (£) are the risk func-
tions of wx41 and wx4, respectively. If £ is the prior probability of H, then after
-one observation the posterior probability of H, is given by

_ pu(t)E . .
o £a(t) = T P OT =B if ¢ ¢ T is observed on 4,
£s(t) = 220 if £ ¢ T is observed on B.

()¢ + ()1 — &)

"The risk of 7541 (7x¥41) is the probability of a mistake on 4 (B) for the first trial
plus the expectation of the future risk Ry over the possible values of £, (£s).
Since 7¥41 , w41 exhaust the possible optimum courses of action, the risk function
Ry (§) of wx41, the optimum procedure for N + 1 trials, must satisfy

Ry1(£) = min [Ry41(£), Ry41(8)]
Rya(f) = (1 —¢)

p(t)E _
[ R () 0t + (0 = 5] D)

(2)
Ryn(8) = ¢

pa()€
[ B (g ) ) + (01 = ] (o).
"Then wy41 as determined by (2) is to choose A first if Riv ()< Ry (), B
first if Ryys (§) < Ras (§) with indifference if the two risks are equal. In
-either case my is followed for the last N trials. Because the observations are inde-
pendent, conditioned on the choices of 4 and B, the relevant information after ¢
:stages is given by ; , the posterior probability of H4 , and N — ¢, the number of
trials remaining. Hence the optimum procedure for N trials is determined if we
know ;1 (£), the optimum first choice as a function of £ when the total number
of trialsisk = 1, - -- , N. What we shall show is that actually the optimal first
choice is independent of the total number of trials. Let m,1 (£) be 1 or0 according
.as A or B is to be used. We shall show that for every N the procedure =» deter-
mined by

ma () =m () =1 if ¢2
=0 if ¢<

[N T

(3)

is optimal. Before doing so, a few preliminary results will be established.
PRrOPERTIES OF Ry . For every N, Ry () satisfies the following
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(a) Ry (%) is a continuous function of §

() (b) Ry (%) is symmetric about £ = 1 ,ie., Ry (§) = Ry (1 — §)
(¢) Rv (0) =Ry (1) =0
(d) Ry41 () = Rya (1 — 8).

These properties are immediate by inspection and induction.

LemMa 2.1. Let w%" be the procedure which chooses A then B for the first two trials
and then follows wx_s . Let w3" be the procedure which chooses B then A for the first
two trials and then follows mwy_s . Then for every N and £

(5) Ry"(£) = Ry*(%).

Proor. For the first two trials both 7%” and 7y* incur a risk of 1. Because of
independence the order of receiving information is irrelevant and hence the same
£ will be obtained by both. Since from the third trial on the two procedures
follow mwx_2 , the risk functions must be identical.

LEMMA 2.2. Let £4 (£5 ) be the posterior probability of H 4 given £ and an observa-
tion on A(B). Then t4, £3 are stochastically increasing functions of &, i.e.,
Plta = 2|E], Plts = 2|#] are increasing functions of &.

Proor. We prove this only for £, , the proof for £z being analogous. First note
that the likelihood ratio p./p. , for an observation on A, is stochastically larger
under H, than under Hp . This follows from

Pl(p1/p2) = r |H4, A observed] = f p1 A\
(6) p1/P22T

2 Tf p2 AN = rP[(p:/p:) = r |Hs , A observed]
p1/P22T
and

Pl(pi/p2) < r|Hg4, A observed] = f p1 dA
(7) p1/pe<r

< Tf D2 d\ = rP[(p1/p2) < r |Hz, A observed].
P1/p2<r

The desired result follows by taking » > 1 in (6) and r < 1 in (7). From this
and the definition, (1), of £, , follows

Plts 2 2|Ha = P{(p/p2) = [(1 — §)/8 - [o/(1 — 2)]|H4, A observed}
(8) > Pl{(py/p2) = [(1 — £)/8 - [2/(1 — 2)]| Hz, A observed}
= P[EA = leB]°

Since (1 — £)/£1is a decreasing function of £, P[4 = 2z | Ha]and Pty = 2| Hp]
are non-decreasing functions of £. Now

(9) P[EA%»?lE]:EP[EA%Z]HA]'i'(l_E)P[EAgleB]
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is a convex combination of non-decreasing functions of £, the first of which, by
(8), is uniformly larger than the other. Hence as £ increases so does P[¢4 = z | £].

We are now ready to prove

THEOREM 2.1. For every N the procedure m , which chooses A or B at stage i ac-
cording as £iq = % or £ < 3, is optimal.

Proor. We shall show by induction that the first-choice functions (3) are
optimal. Define the functions

(10) An(§) = Rx(§) — Rx(¥). N=12---.

By virtue of the properties (4) a sufficient condition that =y be optimal is that
Ax(%) be strictly increasing in £. Specifically, (4) guarantees that for every N
there exists zy £ (0,%) such that

ESan=>A0x(8) <0,£2 1 —2v= Ax(§) >0,

while Ax(32) = 0 for all N. Hence if Ax(£) is strictly increasing, = is optimal.
The inductive hypothesis will then be

Hy : A (§) is strictly increasing in £ for all k¥ £ N. This is clearly true for
A; (§) = 28 — 1. Let %1, mv41 be the procedures of Lemma 2.1 where the
continuation after the first two trials is wx_; . Then, define

Anvsr ()) = Ri% (§) — Ryvsa (9)

(11) B BA B
Axy1 (§) = Ry (§) — Ry (8)

so that by Lemma 2.1,
(12) Avir () = Avia (§) — Avga (9).

Let 64 (£) be the random variable whose expectation is Ay 41 (£), i.e., 84 (£) is the
difference in the number of mistakes between mxs; and a4y . 85 (£) is the analo-
gous random variable for An41 (£). Since the first observation is the same for
mwh1, mw1 the difference in risk will depend only on the last N trials and on
whether the posterior probability of H 4 after the first observation is = 3 or < 3.
Thus

(13) Elba (8) | £4] = 7t (£4)[R¥ (£4) — R (£a)]
and, similarly
(14) Bss () | ] = [L — «f (&)]RY (&) — Bx (&),

xt (£) being the first-choice function (3). Under Hy, (13) and (14) are in-
creasing and decreasing respectively and the monotonicity is strict except, in the
case of (18), where #¥ (£4) = 0, and in the case of (14), where =1 (£5) = 1.
Taking expectations in (13) and (14) we get by Lemma 2.2 and the fact that
monotonicity is preserved for functions of stochastically ordered random vari-
ables, Ax41 (£) is strictly increasing except for the set of £'s such that P[£s < 3]
= 1 and Apy (£) is strictly decreasing except for the set of £’s such that
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Plts = 3] = 1. Since these sets are clearly disjoint, the difference (12) is:
strictly increasing. This proves Hy,; and hence the optimality of =¥ .

It should be noted that the choice of 4 at ¢ = } is merely for the convenience
of dealing with a fixed procedure. From the properties (4), of Ry , it can readily
be seen that either choice at this point is as good as the other.

3. GTAB infinite case. Let = denote the extension of procedure 7y to the
case where the number of observations to be made is infinite. Its risk R(¥) is
easily seen to be

(15) R(%§) = limy,. Ry ()

where Ry (£) is the risk of # . Since = is optimal for every N, the only question
concerning the optimality of =~ is finiteness of its risk function, and, because of
symmetry, we need only show that under, say, H, , the expected number of
observations on B is finite.

Let £ = &, &, --- be the consecutive probabilities of H, . Then under H 4.
and 7, a mistake is made every time the event [¢; < 1] occurs and we want to
show

(16) ZOP[£I<%|HA7W*)£]< ®.

To facilitate the proof we transform £; to the (equivalent) statistic
17) r; = log [t /(1 — &)).

The procedure =* in terms of the z-process becomes: choose A or B according
asr; 2 0 or z; < 0. We wish now to show

(18) D Pl <O0|Hs, 75 2] < .
=0
The property of the z-process which simplifies the proof is its transitions:
ZTiy1 = x; + loglp: (t) /p2 (¢))] if ¢ is observed on A
= z; + loglp, (t) /p1 (¢)] if ¢ is observed on B.

Let u; = log p1 (¢:)/p2 (t:) if the <th observation is t; on A and let u; =
log ps (t: ) /o1 (t: ) if the dth observation is ¢; on B. Let S, (z) = = + S ui,
n = 1,8 (x) = z. Then (18) is equivalent to

(19)

(20) ZZ)OP[S,~ (z) <O|H,,x", 7] < .

Let ¢4 (v) be the moment generating function of an observation u on 4, ¢5 (v):
the same for an observation on B. Then, under H, ,

0u(v) = Be™ = [ Ip(t) /ps)Ipa(8) dN(2)
(21)
os(0) = Ee = [ [ot) /m(0)"palt) ar(0).
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Clearly,
(22)  pu(=1) = sa(—1) = [ Ip(OpOF A1) = p < 1

as long as p; , p. are distinct. Now, consider the moment generating function of

S, (x) at »= —%

23) ¢n(—3%) = Eexp [—58.(x)] = Efexp [—38u-1(2)1E [ exp—Fua| Sus(2)]}
= (=1 = "

Since exp [—38.(z)] > 1 for S.(z) < 0 we have

(24) P[S.(z) <O|Hy, 7", 7] < ¢2(—%) = %"

which proves that the series (20) converges and thereby that =* is optimal.

4. Computation of R(¢). It has already been noted in Section 3 that the
transformation (17) has simplifying properties. These properties can be further
exploited if the recursion formula (2) is expressed in terms of this transformation.
From (19) we get

Ewa() = min [Rin(e), Bu(2)]
Rbw(z) = 1 — ) + [ Ralz + log [pi(0) /pa(6)])
(25) (8= + p)(1 — &) d(D)
R(2) = &) + [ Bal + log [pa(t)/ma(0)
p(OE=) + PO = K=)] aN(D)

where we have used the same notation for risk functions, though here the domain
is [— o, + o], and £(z) = €°/¢” + 1. A further simplification can be obtained
by writing

pi()E(x) + () (1 — E(z))

_ yexp [z + § log pi(2) /p2(t)] + exp [—F log pi(t) /pa(2)]
= [p()pa(2)] e + 1

(26)

_ Ipu( t)pz(t)]%

= . ge (X 37 + log pi(8)/pa(0)] + exp — 3z + log pu()/p2()]}

and

_ [p(O)p())
(@7) pz(t)f(x) + pl(t)[l — #x)] = m

-{exp i[log z + log pi(t)/p2(t)] + exp — 3z + log pi(8)/p2(D]}.
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Multiplying Ry4:(z) by €* + ¢ %, the expressions in brackets can be incor-
porated into the recursion property to get

fN+1(~’0) = min [fz‘:'+1(w), ffwl(x)]

(28) fhnle) = "+ p [ fule + u®)p(®) d0)

Foaa@) = &+ p [ fule — u(®))p(t) M)

where fyi1(z) is related to risk Ryji(z) by
(29) fon(@) = (€ + ¢ *)Ryu(z)

and where
o = [ w1 ) <1,

pp(t) = [pm(Op(),  u(t) = log [pu(t)/p2(2)].

The equation (28) can be used directly to prove optimality of ¥ . Also, for the
infinite case (28) becomes a functional equation which can be shown to have a
unique, finite solution. We shall use (28) to get the risk function of #* for the
infinite case when the experiments are binomials chosen so that the likelihood
ratios are simple integers. First, we introduce the following notation:
pr=1— ¢ > p, = 1 — g, are the probabilities of success,
a = log pi/p2, ¢ = log go/qu,

p = (pp)}, ¢ = (ag)’,
f(x) is the normalized risk function for an infinite number of trials.

In terms of the above, the functional equation to be solved becomes
fz) = min [ + pf(z + &) + of(@ — e,
e + pf(x — &) + of(x + )]
since f(z) is the normalized risk of x we must have
f(x) = € + pf(x — &) + qf(x + ¢),
=" + pf(z + &) + of(z — @),

(30)

(31)

8 8
[\
o o

(32) -

or, by symmetry,
(33) f@) =™ + pf(x + ) + of (o — a), 0=z < .
f(z) has an interpretation in terms of the following random walk problem: for
any x transitions are to

z + ¢; with probability p
(34) |z — ¢ with probability ¢

o with probability 1 — p — gq.
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¢ is the cost incurred everytime z is visited and it is desired to find
E, > 20¢ ™" where z is the initial state and the zs all succeeding states.
Choose ¢; , ¢; integers and consider only integral states z. Let Q.; be the expected
number of visits from z to j. Then

(35) 1) = ;Qﬂeﬂ” _ ; Qi w=

Let ¢.(u) = D r0Quu’, so that ¢,(a) = f(z). Let P = {p;;} be the transition
matrix of the random walk. Then from the relation Q = {Q;;} = [I — P]™ one
gets (looking at Q(I — P) = I) that

c2 . .
(36) (1 — pu™ — qu™")¢a(u) = v’ — qul Qaepi(u’ — W), Ju] < L.
a is a root on the left and we use 'Hospital’s rule to get
cz . .
@) o) = [o + B + ) | @ = pe) ™
J=

The problem now remains to evaluate Q,;,j = 0,1, - -+, c2 — 1, which can be
done explicitly for small values of ¢;, ¢z by evaluating (36) at the roots
of 1 — pu™ — qu .

ExXAMPLES.

(a) cs = 1 (ais the only root needed). From (36) we get ¢Qz0 = /1 — ol
Hence

. 14+d° o’
o) = [o 4 1HE]| L
(38) 1 —z/2
=[x+e+ :I ° = f(z), zz0.
e—1 Q2 — P21
The risk of =~ in this case is
(39) R =f(@)/(" + ¢
={z+ [(e+ 1)/(e — D]}/(g: — pec1) (£ + 1), z 0.
(b) ¢; = r (any positivereal no.), ¢; = kr, k an integer and z is some integral
multiple of 7. Then, applying (38) one easily gets
cz(e" + 1)] e—zlz
4 = =0,
(40) f(z) l:x+ ez — 1 @6 — P21’ v=

and the risk for = is

R(x) = [x + Ef—:__l—'li)] /(gaee — p2er)(e” +1),2 =0,

g+ z) + q(e — ) z > 0.
(g2 — @) (g2 — pac)(er + 1)’ =

(41)
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6. The condition (ii)”. When condition (i)’ of Section 1 is violated, conditions
(iv) and (iv)’ no longer lead to the same procedure and xx will not necessarily
be optimal for either. However, the approach used in Section 2 yields some re-
sults worth noting when condition (ii)” holds. In this case we are still given a
pair of singletons but they are no longer symmetric. Lemmas 2.1 and 2.2 still
hold but not properties (4) (b) and (4) (d) (under, say, (iv)’). But, because
(4) (a) and (4) (e¢) still hold, the monotonicity properties will also hold and
therefore we can make the following statement: for every N, the optimal first-
choice function =y:(£) is given by

71'N,1(£) =1 if E2 &
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