MULTIVARIATE WIDE-SENSE MARKOV PROCESSES AND
PREDICTION THEORY'

By FrepERICK J. BEUTLER
University of Michigan

1. Introduction. This paper analyzes multivariate wide-sense Markov proc-
esses (hereafter abbreviated MWM processes) as a generalization of the uni-
variate case (see [4], p. 233). Known properties are extended to MWM processes
and new results are obtained; these are useful in the theory of multivariate
prediction. K ‘

Of MWM processes, only the stationary multivariate gaussian Markov
process appears to have been studied [3]. Analysis of this process has centered
on its second-order properties, the gaussian density function serving as a princi-
pal tool [7]. Actually, the same second-order properties hold for any MWM,
and these depend only on the covariance matrix. The special character of this
matrix (Theorems 2 and 3) is therefore the key to the analysis of MWM proc-
esses.

The most significant application of MWM processes is to the theory of linear
minimum-mean-square-error prediction of (not necessarily wide-sense stationary)
multivariate stochastic processes. Ordinarily, the optimum prediction may be
determined by solving simultaneous sets of Fredholm integral equations of the
first kind—a rather hopeless task.” For MWM processes, however, prediction
problems admit of explicit solutions determined almost by inspection. The
solution technique is readily extended to linear functionals on MWM processes,
using Bochner integrals to supply the analytic basis.

Without attempting to be precise at this time, we can nevertheless illustrate
the scope of generalized prediction of MWM. Consider the integral equation

v

t t
(11) 2(t) = fo A(D)a(r) dr + fo M=) dy(r), t2 0,
in which upper- and lower-case symbols represent matrices and vectors, re-
spectively. If y(-) is a second-order temporally and spatially homogeneous
(vector) process with orthogonal increments, and if some integrability con-
ditions are satisfied, (1.1) may be regarded as an integral equation defined on an
abstract function space and possessed of a unique solution. Indeed, the solution
z(-) is exhibited and shown to constitute a MWM process. Consequently, the
linear mean-square optimum predictor for z(¢ + a), a > 0, based on z(s),
t — T = s < t, can be explicitly formulated. We can also find linear optimum
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estimates of 2(¢) = |2, K(t, s)z(s) ds, where 2(-) is as in (1.1), and the estimate
is based on the availability of z(-) over a specified subset of the reals.

2. Definitions. A multivariate second-order process z(-) consists of » compo-
nent processes 21(+), 22(+), - - -, Z.(+), each of which is itself a complex second-
order process. It will be convenient, throughout to regard z(t) as the matrix

xl(t) O 0"'0
(2.1) @) 0 0---0
Zat) 0 0---0

and z*(¢) as the complex conjugate transpose of z(t).

The expectation of a matrix is the matrix formed of the expectation of each
element of the original matrix. For instance, E[z(s)z*(f)] is the matrix whose
ij element is Elz:(s)z;*(¢)]. An analogous convention applies to other linear
scalar operations such as integration, differentiation, and scalar multiplication

We shall now construct a Hilbert space H as follows. If the prefix  denotes
the trace of a matrix,

(2.2) (2(s), 2(1)) = 7{Blz(s)z" ()]}

is an inher product which is a positive symmetric bilinear functional. However,
this inner-product space is insufficiently large for our purposes; we need to con-
sider all elements of the form A (¢)z(t), where A(-) may be any nX n matrix
with (finite) complex nonstochastic .entries. The inner product of two such
elements, say A (s)z(s) and B(¢)z (1), is then

(2.3) (A4(s)2(s), B(t)a(£)) = ~{A(s) (Blz(s)z*(£)]) B*(8)}.

The space of elements such as A (¢)z(t) is extended to a linear manifold which
is completed to H, the Hilbert space we shall work in henceforth.

Next, we define the wide-sense expectation E; for any z ¢ H, and any subset
of the real line, £ [z | z(t), t € T] is the projection of z on the subspace M, where
M is the span.

(24) M = V{A(t)x(t):t e T, all finite valued A(¢)}.

In terms of prediction theory, B[z | z(¢), ¢ T] is the optimum linear estimate
(in M) of 2, the optimization criterion being the sum of the mean-square com-
ponent errors. In other words, we have minimized-

(2.5) g =lz—yl’= 21: (B2 —yil’]

for a specified z ¢ H over all y ¢ M. That such a y £ M exists and is unique (up
to a set of probability zero) is a well-known result applicable to projection
operators in a Hilbert space. The minimum property of y is equivalent to the
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orthogonality condition (z —y) L A(t)z(t) for all finite valued A(t) and
t ¢ T. Orthogonality is usually most easily verified by the criterion of?

LEMMA 1. Given a random variable w and any invertible matriz C, w L M if and
only if Elwz*(t)C] = 0 for all te T.

The proof of Lemma 1 is obvious. Usually, we take C to be I (the identity
matrix) in the application of this ¢riterion.

The error criterion (2.5) may prove inappropriate for some purposes. We shall
therefore consider

(26) &) = Z{E |Z ba(t)[a(t) — ()] "} = IB@(®) — O

as a generalized figure of merit, with B(¢) any finite complex matrix, and §(¢)
an estimate of z(¢). We assert that the optimization solution already discussed
specifies the y(f) ¢ M which minimizes (2.6). Indeed, we have the stronger
result of

TueorM 1. If y(t) € M minimizes (2.5), §(t) = y(t) minimizes (2.6) over all
§(t) € M. If, in addition, B(t) is nonsingular (at t), §(t) = y(t) is the unique
element of M minimizing (2.6), up to sets of probability zero.

Proor. If we let w(t) = B(t)(t), the problem of minimizing (2.6) is reduced
to finding the unique w(t) & M; which minimizes ||B(#)z(t) — w(t)||. Here M, is

(2.7) M, = V{A(t)B(t)x(t):t e T, all finite valued A(t)}

which is the subspace containing w(t) corresponding to y(¢) ¢ M. Evidently,
M,CM; if B(t) is invertible (i.e., nonsingular), M, = M.

We now show that the choice w(t) = B(t)y(t) yields [B(#)z(t) — w(t)] L M.
Indeed, if u(t) e MiCM, B*(t)u(t) e M [see (2.4)], and so

(2.8) (B(D)z(t) — w(®)], u(t)) = ([2() — y(1)], B*(Du(t)) = 0

because y(t) € M minimizes (2.5). Since the w(t) satisfying (2.8) [and thus
minimizing (2.6)] is unique up to a set of zero probability,

(2.9) B(t)§(t) = B(t)y(t) probability 1 for each ¢

must be satisfied if (2.6) is to be minimized. It is clear that §(¢) = y(¢) satisfies
this equation in any case. If B(t) is invertible, §(t) = y(¢) with probability one
for each ¢ is the only solution of (2.9). Thus the proof of the theorem is complete.

We wish to define a normalized covariance R(- , -) which possesses the prop-
erty

(2.10) Blz(t) | z(s)] = R(8, 8)x(s).
If we call P(s,t) the covariance matrix-whose ¢ entry is
(2.11) Pi(s, t) = Elzi(s)a;* (1))

3 This concepﬁ of orthogonality is stronger than the customary motion. For y L z, it is
not sufficient that (y, z) = 0.
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it is easily verified from Lemma 1 (with C = I) that
(2.12) R(t,s) = P(t,8)[P(s, )"

satisfies the required orthogonality condition provided P(s, s) is invertible. We
are more interested, however, in the generalization of (2.12) which does not
require P (s, s) to be nonsingular. Let A, Az, - - - , Ax be the eigenvalues of P(s, s)
and take D as the diagonal matrix whose entries are d;; = \:8;; (note that s is
suppressed in this discussion). Since P(s, s) is Hermitian, n orthogonal eigen-
vectors {ci, Ciz, - -+ , Cin} correspond to the eigenvalues; we may take these to be
normalized by X ;| ¢;;|* = 1. The unitary matrix C is then formed from the
elements c;; .

Finally, let E be the diagonal matrix with e;; = \; if \; 5 0 and e;; = 1 if
A= 0. Then

(2.13) R(t,s) = P(t,8)[C*E'C]

satisfies (2.10), as we shall show. If D is nonsingular, (2.12) and (2.13) are the
same, and the result is immediate. More generally, we must show that R(i, s)
given by (2.13) satisfies [x(¢) — R(2, s)x(s)] L Az(s) for arbitrary A. Accord-
ing to Lemma 1, the orthogonality requirement is the equivalent of

(2.14) P(t,s)C* = R(t, s)P(s, s)C*

which we proceed to verify. First, P(s, s)C* = C*D, so that E'CP(s,s)C* =
E7'D. Therefore, the right side of (2.14) becomes P(t, s)C*(E'D). Here E'D
is the diagonal matrix whose entries are 1 or 0 according as the corresponding
i #% 0 or A; = 0. A comparison of the right and left sides of (2.14) then shows
equality to hold if the 7th column of P(t,s)C™ is zero whenever A\; = 0. The
latter is proved as follows. Since CP(s, s)C* and E{[Cx(s)][Cx(s)]*} are the
same, we find that

(2.15) E[l; cii(8)F] = N

whence Y_jcix;(s) = 0 (probability 1) for all 7 such that A; = 0. This means
that z*(s)C™ has zeros in its ¢th column with probability 1 whenever A; = 0.
Consequently, so does P(t, s)C* = E[z(t)z*(s)C*], and the proof is complete.

We conclude this section with the remark that the conditional wide-sense
expectation of any random variable is defined only with probability one. Such
a projection ought therefore to be reviewed as any one of an equivalence class
of random variables differing from one another only on sets of zero probability.
Since these sets of probability zero do not, in general, play an essential role in
our theory, the phrase ‘“with probability 1”’ will usually be omitted.

3. Wide-sense Markov processes. A process is defined to be MWM (multi-
variate wide-sense Markov) if

(3.1) Ela(w) | 2(s), 2(0)] = Blz(u) | z(1)]
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whenever s < ¢t < u. With the assumption

(3.2) lim,_s0 [|2(s) — z(¢)|| = O,
the MWM property has the alternative characterization
(3.3) Blz(t) | 2(s),s e T] = Ela(t) | 2(s)], s* = supeers < ¢.

Note that z(s*) £ M by (3.2), and that (3.1) assuresthat[z(¢) — R(¢,s%) 2(s*)] L
A(s)xz(s), any finite A(s),se T.

The prediction problem is easily solved for MWM processes. If the mean-
square linear prediction to z(t 4+ a), a > 0, is to be based on z(s), s < ¢, the
desired estimate is seen to be R(¢ + «, t)z(¢).

In general, the wide-sense Markov property is difficult to verify directly.
However, there is an explicit description of such processes in terms of E(s,t).
The principal result in this direction is

TaeorMm 2. The following statements are all equivalent:

(1) z(-) s wide-sense Markov.

(2) Whenever s = ¢t < u,

(3.4) R(u,s) = R(u, t)R(, s).
(3) Whenever s < t = u, '
(3.5) R(s,u) = R(s,t)R(¢, u).

(4) z(— +) is wide-sense Markov.

Proor. We will show that each statement implies the succeeding one. If (1)
holds with s = ¢ < wu, Blz(u) | 2(t), (s)] = R(w, t)z(t) from (3.1) and (2.10).
From the orthogonality relation and Lemma 1, E{[z(u) — R(u, t)z(t)]z*(s)} =
0; this may also be written as P(u,s) = R(u, t)P(t, s). Finally, both sides of
the preceding equation are post-multiplied by C*E'C to give the desired result
(3.4).

Next, let us assume that (2) is true. We adopt the notational convenience
F(t) = C*(t)E(t)7'C(¢) and observe that the matrix so defined is Hermitian.
Then R*(s,t) = F(t)P(4,s) follows from P*(s,¢) = P(t,s). Substituting for
R* in the equation R*(w,s) = R*(t,s)R*(u,t) enables us to obtain the result

(3.6) F(s)P(s,u) = F(s)P(s, )F (t)P(t, ).

Since F(s) is invertible, (3.6) may be pre-multiplied by F(s)™" and postmulti-
plied by F(u) to complete the proof of (3).
As a consequence of (3),

(3.7) R(—u, —s) = R(—u, —t)R( =1, —s)

since —u = —t= —s. Now if Z(t) = x(—1t), Z(-) has a normalized covariance
R given by R(s,t) = R(—s, —t). Then (3.7) becomes

(3.8) R(w, ) = B(u, )R(, );
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this, as we shall demonstrate, makes Z(-) a MWM process. In fact, (3.8) implies
that

(3.9) B{[#(u) — B(u, )2(1)]z"(s)F(s)} = 0,

for s < ¢t < w. By Lemma 1, then, #(u) — R(u, t)&(t) is orthogonal to a sub-
space which includes both Z(s) and #(¢) [set s = ¢in (3.9)]. Hence

(3.10) Elz(u) | 2(s), #()] = R(u, t)(t)

the right side of which is equal to B[&(w) | #(¢)] from (2.10). This means that
Z(t) = x(—t) satisfies the definition of a MWM process.

Thus this succession of steps shows that (1) implies (4). Because of sym-
metry considerations, an identical procedure verifies that (4) implies (1),
completing the proof of the theorem.

If further assumptions are made about the nature of z(-), even more can be
said of the normalized covariance of the process. It is known, for instance, that
if z(-) is a multivariate nonsingular stationary gaussian Markov process,
R(s, t) takes on the form R(s,t) = ¢°® ™" for s > t, C being some constant
matrix. We shall prove a similar theorem, obtaining stronger results from weaker
assumptions. :

We shall suppose that x(-) is wide-sense stationary, which means that
Elz:(s)z;*(¢)] is a function of s — ¢ only for every s, ¢, ¢, and j. In other words,
we may write (in somewhat questionable but self-explanatory notation)
P(s,t) = P(s — t). If we suppose further that P(0) is invertible,

(3.11) R(s,t) = R(s —t) = P(s — t)[P(0)]".

We shall also give () certain continuity properties, which are completely
analogous to continuity in norm for a univariate process. Indeed, if the multi-
variate z(-) is continuous in norm from the right (or left) at any ¢, z(-) is
continuous in norm everywhere. This assumption also suffices to render P(-) and
_R(-) continuous. Continuity of these matrices may be either in norm (||A|* =
r(AA4*)) or individually for every matrix element; for any matrix, these two
notions of continuity are equivalent. Conversely, if P(-) or R(-) is continuous
from the right (left) at the origin, P(-) and R(-) are continuous everywhere,
and z(-).is continuous in norm.

Under the assumptions we have just made, the MWM property is completely
characterized by

TureoreM 3.* Let x(-) be wide-sense stationary and continuous n norm with
nonsingular P(0). Then z(-) is MWM 4f and only if ‘

(3.12) R(t) = ¢ t=0
where C 1s a constant matrixz none of whose eigenvalues has positive real parts.

4 Only the second statement of the theorem is new. The first has been given various proofs
[31, [7]. Doob’s proof [3] is based on matrix theory, but differs from ours.
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ReMARk. For t < 0, the wide-sense stationary MWM process has R(t) =
—C*t
e .

Proor. Since an R(-) of the form (3.12) satisfies (3.4), the “if”” part of the
theorem is proved. To prove “only if,” observe first that (3.4) and the station-
arity property give

(3.13) R(t +s) = R()R(s) ts=0.

By finite induction, this equation leads to R(mt) = [R(¢)]". Hence [R(s/n)]" =
R(s) and, since roots of matrices are well defined, R(s/n) = [R(s)]'". Upon
setting ¢t = 1/n and s = 1, we find that

(3.14) R(r) = [R(DT r rational, r = 0.

The continuity of R extends (3.14) to nonrational ¢, so that R(¢) = [R(1)]’ for
allt = 0.

We would like to assert that there exists 'a matrix C such that R(1) = e°.
There is such a matrix if and only if R(1) is nonsingular (ef. [1], p. 29). But in
fact, R(t) is nonsingular for every ¢ = 0 (3.13). In the first place, £(0) = I is
nonsingular. Then, by the continuity of R there is a § > 0 such that R(t) is non-
singular for 0 = ¢t = 6. Now let £, > 6 be the smallest value of ¢ for which E(t) is
singular. Then R(%) = R(f% — 6)R(5) implies that R(t, — §) is singular, which
contradicts the existence of the assumed .

From the above argument, R(1) = €°, so that R(t) = [¢°]" = ¢°’. Only the
statement about the eigenvalues of C' needs to be proved. This assertion of the
theorem is true if none of the eigenvalues of ¢ has modulus greater than unity.
Suppose that the theorem is false, so that (1) has an eigenvalue X with [A| > 1.
Now R(n) = [R(1)]"; therefore, R(n) has an eigenvalue A", and

(3.15) lim supi—. [max; [A;(t)|]] = .

But, as we shall show, the eigenvalues of R(t) are uniformly bounded, which
completes the proof ab contrario.

Using the Schwartz inequality (applied in this case to finite sums), we obtain
[|AB|| = ||A||-||B]|. We can show similarly that ||P(¢)|| < ||=(0)|[* for all ¢. From
these considerations it follows that

(3.16) O = IR = [l [|1P(0)7.
Thus the contradiction is reached, and the proof is complete.

4. Functionals of MWM processes. We now consider the minimum-mean-
square-error linear estimation of the random variable

(4.1) ¢ = f B()(t) dt;

that is, we wish to obtain B[z | z(t), t € T]. It is hoped that this wide-sense expecta-
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tion is given by
(4.2) Blz|x(t),teT] = /B(t)E’[x(t) | z(s), s e T] dt.

If (4.2) is true, and z(- ) is MWM, it should be easy to calculate B[z | z(t), te T}.

In view of (3.2), there is a version of x(-) measurable with respect to the
product measure constituted of Lebesgue measure on the real line and probability
measure on an abstract space. Thus the integral can be defined for almost all
sample functions according to the procedure of [4], pp. 61-63. A separate argu-
ment would still be needed to prove ze H and (4.2). To avoid some of these
arguments, and to provide a more elegant structure, we shall define (4.1) as a
Bochner integral instead. This approach yields the same stochastic integral (up
to an equivalence) as [4] when the latter is defined. )

It is hereafter assumed that each element of B(-) is (Lebesgue) measurable,
that z( - ) satisfies (3.2), and that

(4.3) [: [B(H)z(t)|| dt < <.

Under these conditions, the Bochner integral (4.1) is shown to exist, z belongs
to H, and (4.2) is valid. '

In the first place, the (Lebesgue) measurability of each element of B(-)
implies that B(-) is strongly measurable according to [6], Definition 3.5.4. Since
z(+) is continuous in norm, it too is strongly measurable. Then the product
B(-)x(-) is likewise strongly measurable. Consequently, ||B(-)z(-)|| is (Lebes-
gue) measurable and, under assumption (4.3), B(-)z(-) is Bochner integrable
(cf. [6], Theorem 3.7.4). It is evident from the construction of this integral that
ze H. Finally, £ is a bounded linear transformation of H into itself, so that
Theorem 3.7.12 of [6] may be employed to yield (4.2).

We show that, whenever (4.1) exists as the integral described in [4], pp. 51-63,
this integral coincides with the Bochner integral up to the usual equivalence. To
avoid any confusion in the proof, we shall adopt the notations (B) [ and (L) [ to
designate the Bochner or Lebesgue integral, respectively.

The proof is accomplished if there is for each n a countably valued function
B™ ()™ (t) for which both integrals exist, with

(44) (B) f B™ ()™ (1) dt = (L) f B™(1)z™(t) dt (prob. 1)
and the additional properties

(45) “ (B) f B® ()2 (1) dt — (B) [ B)x(t) di “ < 1/n
and

(4.6) EI (L) [ b ()™ (1) dt — (L) f bis (£)2;(t) dt{ <1/n.
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There exist measurable disjoint sets {Ej}, fixed t € Ex, and countably valued
functions

(4.7) B™(t)z™(t) = Zk)z,,(t)B(tk)x(t,,)
such that (cf. [6], Corollary to Theorem 3.7.4)
(4.8) f IB™ ()™ (t) — B(t)=(t)| dt < 1/n.

Here I (t) is the identity matrix or zero according as t € Ey or not. For the function
described by (4.7),

(49) ®) [ B 02" dt = T Btz (tm(Ey),

m(Ey) being the Lebesgue measure of E;. The right side of (4.9) is properly
defined as a random variable. Indeed, this expression is a sum of random vari-
ables; furthermore, the sum is absolutely convergent with probability one from
the inequality

(4.10) E ; |bsi () %3 (t) | m(Ei) < f [1B(&)=(2)|| d¢ + 1/n.

The function (4.7) is also (L)-integrable for almost all sample functions. Since
(4.7) is a countable sum of products of Lebesgue- and probability-measurable
functions, it is itself jointly measurable. To complete the argument, we use (4.10)
to show that the conditions of [4], Theorem 2.7, p. 62, are satisfied. The resulting
integral will then be identical with the right side of (4.9), except possibly on a
set of zero probability.

It is now easy to verify (4.5) and (4.6). Applying the norm inequality of [6],
Theorem 3.7.6, to (4.8) shows (4.5) to be true. (4.6) is successively majorized
by taking absolute values of the integrand, and applying Fubini’s theorem and
Jensen’s inequality. The result is, in turn, majorized by (4:8), so that the proof
is complete.

The results obtained thus far may be summarized in

TureoreM 4. Let B(-) be measurable, and let (3.2) and (4.3) be satisfied. Then
(4.1) may be defined as a Bochner integral, and z may be regarded as the (unique
up to an equivilence) random variable obtained as the limit in H norm of (4.9). If
(4.1) is also defined as in [4], pp. 61-63, the resulting random variable agrees with
that defined by the Bochner integral, up to the usual equivalence. Furthermore, z € H,
and the operator B commutes with Bochner integration, as indicated by (4.2).

In some applications we discuss 2(-) = [K(-, 7)z(r) dr in place of the random
variable z. While conditions on K (-, -) could be given to make z(-) a random
process, we are interested only in indexing random variables by the linear
parameter set t. Therefore, our only requirement on K(-, -) is that
[IIK (¢, 7)x(7)|| dr < « for each ¢, with K (¢, -) measurable in 7 for each ¢.

While the stochastic integral (4.1) is of intrinsic interest, its principal applica-
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tion here will be to the computation of linear minimum-mean-square-error
estimates of 2(¢) = [K(t, 7)x(7) dr for MWM z(-). As we have observed before,
a principal advantage of dealing with MWM is the ease with which such esti-
mates can be calculated.

Let us suppose that the estimate is to be based on a knowledge of z(-) over
the interval [a, b], i.e., T = [a, b]. Then we obtain from (4.2), (3.3), and (4) of
Theorem 2

Blz(t) | x(s),se T] = {/: K(t, r)R(7, a) d'r} z(a) + fab K, r)x(r) dr

(4.11) .
+ { A K(t, 7)R(r, b) dT} z(b).

In particular, the last term in (4.11) follows from the fact that
Blx(t)|z(s), se T]= Elz(t)|x(s«)]= R(t, sx)x(sx) whenevert < s,= inf{s:se T},

which is, in turn, a conseqﬁence of (4) of Theorem 2.
The formula (4.11) may be extended and exploited in various ways, some of
which lead to engineering applications discussed elsewhere [2].

5. Application to differential equations. In this section we consider the pre-
diction of an x(t) specified by a matrix-vector differential equation with “white
noise’’ input, that is, an equation of the form

(5.1) = A()x + M(t)n(t) z(0) = 0, t=0.

Here n(-) is a multivariate random process whose covariance matrix has ele-
ments ¢s; (s,t) = 8;;8(s — t)[6.. and 8(-) are the Kronecker and Dirac deltas,
respectively]. :

Stochastic differential equations similar to (5.1) have been studied extensively
by Ito and others. It is customary to treat the equivalent integral equation

(52) w0) = [ Aa() dr + | M) dy(a), Lz o0,

and to analyze Markov and sample function properties. However, (5.2) may
also be viewed—under conditions less restrictive than Ito’s—as an equation on
an abstract function space. The latter approach appears particularly advanta-
geous when norm topology or linear operator concepts—rather than sample
function properties—are of prime concern. ,

Our assumptions on (5.2) are the following. y(-) is a multivariate process
each of whose components is an orthogonal increment process, with

(53)  E{ly() — y()] @) —y&)I = |t —sll,  y(0) = 0.

Then if [§||M (1')”2 dr < o for each t < «, the second integral on the right of
(5.2) may be regarded as a stochastic integral, as described in [4], Section 9.2; it
is necessary only to extend the usual form to the n-variate case. Finally, it is
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assumed that the elements of A(-) are measurable and ||A(-)|| locally integra-
ble, so that the first integral of (5.2) can eventually be defined as a Bochner
integral (see Section 4 of this paper).

Under the above hypotheses, there exists (for each ¢ = 0) a solution to (5.2)
unique up to the usual equivalence. We first prove this only for some neighbor-
hood of the origin [0, #], where & > 0 is chosen such that [¢'[|4(7)|| dr < 1.
Consider a sequence of successive approximations starting with z, (-) = 0 for
convenience. Then z;( -) is continuous in norm; hence, z;( -) is strongly measura-
ble and bounded (in norm), and A(-)z:(-) is Bochner integrable on [0, #]. A
process of finite induction shows this to be true also for any z.(-). Moreover,
SUPos <ty [[Tnt1 (1) = Tmis (7)|| S [uPogr sty |20 (7) — 2 ()] [S{|A(7)]] dr,
so that we have a contraction mapping on a Banach space generated by y(-).
Hence there is an element z(-) such that lim,-« [supe<-<: ||z, () — 2(7)||] = 0.
This element, being the uniform limit (in norm) of a sequence of (B)-integrable
functions over a finite interval, is itself (B)-integrable, and so satisfies (5.2).

We now extend the solution to any ¢ < «. For any such ¢, there exists a finite
sequence {fi},k = 0,1, -+ ,m,suchthat 0 =ty < ; < -+ < ¢,y St < t, and
[#+1|A(7)|| dr < 1. Assume that z(4) satisfies (5.2) except possibly on a set
of zero probability. Then z( - ) satisfies (5.2) for ¢ > ¢, if and only if it satisfies

(54) () = 2tt) + [ Az dr+ [ M@ dy), >,

in both contexts with probability one for each ¢. The procedure of the preceding
paragraph suffices to assure the existence and uniqueness of solutions for each
[ti—1, tx]. Therefore, x(t) is given by the finite sum z(¢) = [x(¢) — z(txa)] +
D (k) — x(ty)]. Since each z(#) is defined and unique only up to an
equivalence, various versions of z(f) may depend on the choice of the particular
t as well as that of the x(%;); nevertheless, two versions of z(¢) differ onlv on
finite unions of null probability sets.

More specifically, we assert that the solution is provided by the stochastic

integral
(5.5) z(t) = f Ht, /)M(r) dy(r)

where where we define’

(5.6) H(t,s) = X()X '(s)

and X () solves the homogeneous matrix differential equation
(5.7) X =A4t)X, X(0) =1

If (5.5) is true, z(t) € H, where H is generated by y(-). The explicit form (5.5)
will also enable us to compute the covariance matrix of z(-), and thus to prove
that z(-) is MWM.

We next show that the integrél/ (5.5) exists and satisfies the integral equation
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- (5.2). To prove existence, we must verify (according to [4], Section 9.2, and our
(5.3)) that ||H(t, -)M(- )||* is Lebesgue integrable over every [0, ], ¢ < . In
view of our assumptions about M(-), integrability follows if only [|H(t, )] is
bounded and measurable. In fact, X(-) and its inverse are continuous (even
differentiable). Furthermore, Gronwall’s lemma (cf. [1], p. 35) yields

(58) X < o exp{ [ 141 d,}

where n is the number of components of z(-). The same inequality holds for
X(-). Thus the right side of (5.5) exists. Indeed, the z(-) so defined is con-
tinuous in norm and bounded on each interval [0, ¢]; hence the Bochner integral
of A(-)xz(-) is well-defined. We may therefore substitute (5.5) into (5.2) to
ascertain its validity as a possible solution. When (5.5) is substituted into the
first term on the right of (5.2), we obtain from (5.6)

(5.9) fo " A()3(r) dr = fo "X ( fo " X (o) M(a) dy(a)) dr.

If integration by parts is valid on the right side of (5.9), (5.2) becomes an iden-
tity, so that (5.5) is its solution as claimed.

For notational convenience, let V(7) = fSX_l(a)M(a) dy(e). Because V(-)
is continuous in norm, we may partition [0, {] 80 that

(5.10) limsso ‘[ X(r)V(r) dr — gl (X (r:) — X(ri) 1V ()

-

IIA

where0 = 1o < < -+ < 7a = t, Tia u; = r,-,and6=max|1-,~— Ti1 |

But
(5.11) ;;[X(fi) — X(ri)]V(ws) = X@)V(2)

- ?:: X("'i)[v(ui+l) — V(us)l.

The right-hand sum in (5.11) can also be written

n—1

5[ X)X @M (@) dye),

with |r; — a| < 8 in each interval of integration. Now X(-) is uniformly con-
tinuous (in norm) and ||X 1(-)|| is bounded on [0, #]. This implies that
X (r) X M(e) = II| S [IX (@ [1X(7:) = X(a)|| — O for each 7 as 8 — 0, s0
that the stochastic integral converges in norm to fo M(a) dy(a). Thus, we take
limits-in-norm on both sides of (5.11), and rearrange terms to give

fo CH(, DM(r) dy(r) = fo A ( fOTH(T, &) M (<) dy(a)> dr
(5.12) ¢
+ [ M) dyo)
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with probability one. It follows from (5.12) that (5.5) provides a solution to
(5.2).

The preceding arguments verify

THEOREM 5. Let the integral equation (5.2) be given, and let the integrals ap-
pearing therein be understood as Bochner and stochastic integrals, respectively.
Then (5.5) provides a solution to (5.2); for each t, this solution is unique up to an
equivalence. If H s the Hilbert space generated by y(-) as described in Section 2,
z(t) € H for each t.

A direct computation, based on (5.3) and (5.5), shows the covariance matrix
of z(-) to be

min(s,t)
(5.13) Pt s) = fo H(t, 7)M () M* (r)H* (s, 7) dr.

Since H(u, t)H(t, s) = H(u, s), (5.13) can conveniently be rewritten as
P(t,s) = H(t, s)P(s, s) whenever ¢{ > s. Thus, if P(s, s) is invertible for all
s> 0, R(t,s) = H(t, s) for t > s. It follows from this and (5.6) that such a
normalized covariance satisfies the wide-sense Markov criterion (3.4). The pre-
diction B[z (t+a) | z(s), s < t] is then given immediately as X (¢ + o) X '(¢)z(2),
which means that the minimum-mean-square-optimum linear predictor is com-
posed solely of summers and multipliers.

It remains to investigate the case of singular P(s, s). We note first that, if
M(-) is nonsingular in some neighborhood of the origin, P(s, s) is nonsingular
for every positive argument. Also, if P(s, s) is nonsingular and ¢ > s, P(¢, t) is
nonsingular. Both these facts are demonstrated below; they grow out of the
proof that, whether P(s, s) is nonsingular or not, z(-) is always MWM.

Consider the integral W(¢) = [o[X(r)]"M(r)M*(7)[X*(7)]" dr. Clearly,
W (-) is Hermitian, and may be written in the canonical form C7 D, C,, where
C:, D., and E,; are all defined analogously to the C, D, and E occurring after
(2.14). Then R(2, s), t > s is (uniquely) specified by

(5.14) R(t, s) = X()[CY D, E;*C,1X(s).

To verify the assertion that R(¢, s) is given by (5.14), we show that
P(t,s) — R(i, s)P(s, s) = 0 is satisfied. The calculation follows when we sub-
stitute P(s, s) = X(s)W(s)X*(s) = X(s)[C¥ D, C,1X*(s), and note that
¢y Co=1Iand D, E;'D, = D, .

To check the MWM property, we introduce (5.14) into (3.4). The resulting
matrix equality remains unchanged if both sides are pre- or post-multiplied by
invertible matrices. Therefore the MWM property is equivalent to requiring
that

(5.15) P,=P,P, t> s
where we define P, = CyD,E;"C, . A simple check shows that P, is idempotent

and Hermitian, and therefore a projection. Then (5.15) is true if and only if
P, C P, (for the meaning of this relation and associated concepts, see [5], pp.
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41-49). Thus z( - ) is indeed MWM if we show that 9, C I, (for s < t), where
the 91’s are subspaces associated with the corresponding projections.’

If c,; is the sth column vector of Ci , W(s)csi = AeiCoi . At the same time,
Pcos = cos Or zero according as Ay; # 0 or = 0. Because the ¢;; are mutually
orthogonal vectors, 7 = 1,2, --- ,n, W(s)v # 0 implies P # 0 and conversely,
for any vector v. It follows that 91, is precisely the subspace spanned by those
vectors v for which W(s)v # 0. Hence our proof of 9, C 9, , s < ¢, consists of
showing that W (¢)v = 0 whenever W(s)v # 0.

Consider first v = ¢4, Aes # 0. Then (css, W(s)¢ss) = As; . But, using the
definition of W(-), and taking G(r) = [X(7)] 7'M (7), we have (c.;, W(s)cs:) =
J8llG(7)es|* dr. This integral cannot then be zero, so that it is in fact positive.
We have thus proved the \,; to be nonnegative. More important, we have the
inequality

(516) (e, W(t)ew) = f 16wl dr = f 1G(r)eul? dr > 0

which shows that W (¢)c.; is not zero.

The above arguments are readily applied to a general vector v. We write
v = D_acsi, and note that W(s)» = 0 unless, for at least one 7, a; and \,; are
both nonzero. Therefore, W (s)v 5 0 implies (v, W(s)v) = 2 |a:"As; to be strictly
positive. As before, (v, W(-)v) = [o/|G(+)v||"dr. We may then apply (5.16),
with v replacing the ¢,; appearing there. This shows W (t)v # 0, and completes
the proof that z(-) is MWM.

Since X(-) is invertible, G(-) is singular if and only if M(-) is singu-
lar. If, however, M(-) is nonsingular in some neighborhood of the origin,
[3IG(r)v|’dr > O whenever v is nonzero and 8 > 0. It follows from what has
been proved that W(8)v # 0 and, a fortiori, that W(t)v # 0 for any ¢ > 0.
Hence W (t) is nonsingular for every ¢ & 0, from which follows also that P (¢, t)
is nonsingular.

We summarize the above proofs in

TurorREM 6. Let P(-,-) be specified by (5.13). Then x(-) ws MWM, with an
R(-,-) given by (5.14). If we define t, = inf{t:M(-) is nonsingular on a set of
positive measure in [0, )}, then P(,t) is nonsingular for all t > to (but the converse
fails to hold). Further, if P(s, s) is nonsingular, and s < t, then P(t, t) is non-
singular. Finally, of P(s, s) ts nonsingular,

(5.17) R(t,s) = H(t,s), t> s.

The theory just presented may be useful in many applications. For instance,
M(-) could be a switching function in a multivariable control system, in which
it is desired to interpolate an estimated value of z(¢) between samples. If the
input to such a system is not white noise, but rather some integral thereof (e.g.,

8 The vector space to which we refer in this and the following paragraphs is the ordinary
n-dimensional vector space, in which the inner product is the vector dot product, the norm
of a vector its (Euclidian) length, ete.



438 FREDERICK J. BEUTLER

a Wiener process), the prediction can still be performed by artificially enlarging
the dimension of A (). The details of this procedure are left to the reader.

It has been pointed out before that optimum estimates of functionals such as
the 2(¢) given in (4.11) can be found. This, of course, applies pro tanto to a z(t)
derived from a differential equation. Indeed, if K(t, ) is of the form F(t)e™, if
M(-) is a constant nonsingular matrix, and (5.2) a constant-coefficient equation
the exponential of whose kernel commutes with B, the integrands appearing in
(4.11) are exponential, and may be directly evaluated.
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