EXISTENCE, UNIQUENESS AND MONOTONICITY OF SEQUENTIAL
PROBABILITY RATIO TESTS!
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Summary. Existence and uniqueness questions concerning SPRT’s for testing
one distribution against another in the case of independent and identically
distributed random variables are considered under general conditions. Tests
that need not take an observation (n = 0), as well as tests that are required
to take at least one observation (n = 1) are being considered. SPRT’s are
allowed to have arbitrary stopping rule at the stopping bounds. The error point
o of a test is the vector of error probabilities, and A (u, v) is the set of all error
points of SPRT’s with stopping bounds «, (v = v). For given « < v there are
four nonrandomized SPRT’s (three if w = v), where » may be a stopping point
or a continuation point, and similarly v. It is shown in Section 4, Theorem 6,
that the error points of these four tests are the extreme points of the convex set
A(u, v). A special mixture of these four tests is denoted R(s, t), its error point
a(s, t), where s = (u, A\) and ¢ = (v, u) are the randomized stopping bounds,
and s, ¢t may be considered points in an ordered topological space Z. Let D =
{a:a; = ai(s, s) for some seZ and 7 = 1, 2}.

Using the characterization of SPRT’s as Bayes tests, it is shown in Theorem
2 that there is a SPRT with given error point ™ if and only if af + a5 < 1in
the case n = 0, and o* & D in the case n = 1. In Theorem 1 a somewhat stronger
result is claimed, namely that the SPRT in Theorem 2 can be taken to be a
test of the form R(s, t). The main tool in dealing with the uniqueness question
is the monotonicity Theorem 3, stating that if of a test R(s, t) s is decreased
or ¢ increased, and the new s, ¢ have positions , v, then the change A« in the
error point satisfies uAa; + Aas = 0 and Aoy + Aae/v =< 0, with at least one
strict inequality unless the new test is equivalent to the old one. Theorem 4
says that a test of the form R(s, t) with given error point is unique up to an
equivalence. On the other hand, a SPRT is in general not unique. Theorem 5
claims only uniqueness of the stopping bounds u, v, up to an equivalence, in
the case of a SPRT with given error point.

1. Introduction. Let X;, X, - - - be a sequence of independent and identically
distributed random variables, having joint distribution either P; (hypothesis
H,) or P, (hypothesis H;). For any test T of H, against H let a;(T) = P;(T re-
jects H;) be the error probabilities, ¢ = 1, 2. The vector a(T) = (aa(T), ae(T))
will be called the error point of T. Forn = 1, 2, ---let Y, = po/11. be the
probability ratio at the nth stage of sampling, where p., is the joint density of
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Xi, -+, X, under H; with respect to a measure dominating both P;. At the
zero-th stage of sampling we shall define Yy = 1. In this paper a sequential
probability ratio test (SPRT), with lower stopping bound u and upper stopping
bound v, will be understood to be as it was defined by Wald in [7], except that
the stopping rule at the stopping bounds is arbitrary. That is, whenever Y, = u
or = v we have the option of stopping or continuing sampling, with the (possibly
randomized) decision depending in a measurable way on X;, ---, X, . Thus,
the test does not necessarily strictly depend only on the sequence {Y,}. Let
C(u, v) be the class of all SPRT’s with stopping bounds w, v, and A (u, v) the
set of its error points. We shall consider two kinds of SPRT’s: those that start
at sampling stage n = 0, and those that start at n = 1. The first kind is per-
mitted to take no observation (this will happen if w > 1 orv < 1, since Yo = 1),
and the second kind is forced to take at least one observation, no matter what
% and v are. If necessary, the tests will be distinguished by the specification
n = 0,n = 1, respectively. The notation C(u, v), A (u, v), will be used for both
kinds of tests.

There are four members of C'(u, v) that are of special interest. We shall denote
them T'(u,v), T(u—,v), T(u, v+ ), and T'(u—, v+ ). The notation u or v means
that the test stops whenever Y, = u or = v, whereas u— or v+ means that
the test continues whenever Y, = % or = ». Thus, the SPRT defined by Wald
in [7] is of the form T'(u, v). If w = v, T(u, v) is not defined, but the remaining
three are. The error points of the four tests will be denoted a(u, v), a(u—, v),
ete. Any mixture of these four tests is a member of C'(u, v). Of particular interest
is the type of mixture that can be described as follows: if w < v choose « to be
a stopping point with probability A, a continuation point with probability 1 — A,
and, independently, v to be a continuation point with probability u, a stopping
point with probability 1 — . This suggests putting s = (u, A), ¢t = (v, u), and
calling s, ¢ the randomized stopping bounds of a test which we shall denote R(s, t),
and its error point by «(s, t). A modification of this definition of R(s, t) is neces-
sary if u = v, A < u: choose T'(u—, u), T'(u, u+), and T(u—, u+) with prob-
abilities 1 — u, A, and u — A, respectively.

In this paper the following questions will be considered: Given a point o™ in
the error plane, is there a SPRT with n = 0 (or with n = 1, respectively) that
has o* as its error point? Is this test unique in some sense? The same questions
can be asked for SPRT’s of the special form R(s, t). We shall first summarize
some known results in this respect. For tests of the type T'(u, v) and n = 1
(i.e. Wald’s original SPRT) the uniqueness question has been answered in the
affirmative by Weiss [10] if the probability ratio is continuously distributed,
by Anderson and Friedman [1] assuming » = 1 =< v, and in [13] without re-
strictions. For those same tests and continuously distributed probability ratio
the existence question has been answered in [11]: let D be the set in the a-plane
bounded by the coordinate axes and the locus of points a(u, u), 0 < u < o,
then there is a test T(u, v) with » = 1 and given error point o if and only if
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a:‘: D.If n = 1is replaced by n = 0, then o ¢ D should be replaced by of +
(67 é 1

If the distributions P; are arbitrary, no simple results to the existence question
can be expected unless randomization is allowed. Consequently, we consider
all SPRT’s that constitute the classes C'(u, v), as defined in the beginning of
this section. Alternatively, it suffices to look only at tests of the form R(s, ¢).
There are mainly two methods of attacking the existence question. The first is
by making use of the characterization of SPRT’s as Bayes tests. This was done
by Ghosh [4], and we shall return to this type of proof in Section 2. This method
furnishes a shorter proof, but also somewhat weaker result than the second
method does. The latter was followed in [12]. It considers only tests of the form
R(s, t) and studies the properties of a(s, t) as a function of s and ¢. To facilitate
this study and obtain results that are formally the same as in the case of non-
randomized stopping bounds and continuously distributed probability ratio, s
and ¢ are considered points in a certain ordered topological space Z. Here Z is
a space of points 2 = (2,4),0 < 2 < »,0 = y < 1, with the points (0, 1)
and (<, 0) added. The latter two points will be denoted 0 and «, respectively.
The ordering is lexicographical, and the topology is generated by the intervals
defined by the ordering. It can then be. verified that the «;(s, t) are, in each
variable separately, continuous and monotonic on Z. Let D = {a : a; = a4(s, s)
for some s ¢ Z and both ¢}, i.e. D is the closed set bounded by the coordinate
axes and the locus of error points a(s, s), s ¢ Z (in the continuous case this is
the same D as defined before). The type of existence proof in {11] for the con-
tinuous case can be carried over to the general case by letting Z play the role
that the real line did before. For future reference we state the result as

TuroreM 1. There is a test R(s, t) with n = 0 and error point o* if and only
if af + a5 = 1, and there s a test R(s, t) with n = 1 and error point o™ if and
only if o™ € D.

Uniqueness results in the case of arbitrary P, are somewhat less simple. To
begin with, in the case of discrete distributions it may occur that there exist
uand ug, 0 < u; < ug < o, such that P;(u; < Y, < uz) = 0 for all n (for
each n this probability is either 0 for both ¢ or positive for both ¢). Then if
w < u < u < up, two SPRT’s with the same upper stopping bound » (and
same stopping rule at v) but lower stopping bounds u, ', respectively, can differ
only on a set of sample sequences of P; probability 0 for both <. We shall call
two such tests equivalent. A similar situation may obtain at the upper stopping
bound. Clearly, two equivalent tests have the same error point. Consequently,
any uniqueness has to be understood up to an equivalence. For instance, the
uniqueness property of 7'(u, v) is of that nature [1] [13]. We shall deal with the
uniqueness question more fully in Section 3. It will be shown that, up to an
equivalence, a SPRT with given error point is in general not unique, but a test
of the form R(s, t) is. On the other hand, a SPRT enjoys a certain amount of
uniqueness, in that its stopping bounds are unique, up to an equivalence.
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The uniqueness and nonuniqueness results follow from a monotonicity prop-
erty of tests R(s, t) (Theorem 3) and from the geometry of the sets A (u, v).
In Section 4 it is shown that the extreme points of the convex set A(u, v)
are the four points a(u(—), v(+)). Thus, if these four points are distinct, and
o™ is an interior point of A (u, v), there are many mixtures of the four tests
T(u(—), v(+)), and thus many nonequivalent SPRT’s, all having error point
o". However, all these SPRT’s have stopping bounds w, v.

2. An existence theorem. The introduction of losses for wrong decisions,
costs for making observations, and an a priori distribution on the two hypotheses,
has shown itself a valuable mathematical tool in proving properties of SPRT’S.
One of the uses to which it can be put is to prove the existence of a SPRT with
given error point. Ghosh made an application of this in [4].

If the cost per observation is constant and the same for both hypotheses, then
Wald and Wolfowitz [9] and Arrow, Blackwell and Girshick [2] have shown that
a test is Bayes if and only if it is equivalent to a SPRT. One of the assumptions
made in [8] is that the P; are either discrete or absolutely continuous with re-
spect to Lebesgue measure (Assumption 3.1 in [8]). This, however, can easily
be verified to be irrelevant. In other words, the characterization of Bayes tests
as SPRT’s remains valid for any pair of distributions.

A little less obvious is the question of compactness of the class of all measur-
able tests if the distributions are arbitrary. In [8] the definition of regular con-
vergence of a sequence of decision functions is given separately for discrete
and for continuous distributions. However, it is obvious how to generalize this
notion in the case of a dominated family of distributions. In particular, this can
be done when there are only two distributions. It follows as a special case of a
theorem by LeCam [6] (Theorem 2) that the class of sequential tests is compact
relative to regular convergence (this can also be proved very simply directly).
Furthermore, if T'; — T in the regular sense, then we have convergence of the
joint distribution (for both %) of sample size and terminal decision under 7'; to
that of T. As a consequence, we have lim inf a;(T;) = ai(T), liminf »,(T;) =
vi(T), where, for any test T, »;(T) stands for the expected sample size of T
under H;. That is, regular convergence implies weak intrinsic convergence in
the sense of [4] Lemma 1 (see also [8] Theorem 3.2). Thus, the class of all se-
quential tests is compact in the sense of weak intrinsic convergence, and the
same is true for the class of all tests with » = 1. (It is of some interest to note
that if T7; — T and T has a closed stopping rule, then o;(7';) — o (T).)

Ghosh [4] used the decision theoretic approach to study several properties of
SPRT’. One of the results (Theorem 2.3 in [4]) is the existence of a SPRT
with given error point, under certain conditions. As indicated in [4] in a remark,
most of these conditions can be relaxed to obtain the same result. However,
Assumption 3.1 of [8] was made throughout. This, too, turns out to be unneces-
sary, by the above remarks on regular and weak intrinsic convergence. Thus,
the existence proof outlined by Ghosh in [4] in his remark is valid without any
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assumptions, provided the proper definition of regular convergence is used. For
the sake of easier accessibility, the proof is given in some detail below, constitut-
ing the proof of the “if”’ part of Theorem 2. One of the main devices in the proof
is borrowed from Kiefer and Weiss [5], Section 4 (this device was also used in
[4] to obtain Theorem 2.3, but the proof of the latter is somewhat different from
the proof of Theorem 2 below).

TurorEM 2. There is a SPRT with n = 0 and error point o if and only if
of 4+ a3 £ 1. Thereis a SPRT withn = 1 and error point o if and only if o eD.

Proor. The “only if”” in the first sentence is immediate, for every SPRT has
a; + a2 = 1. In the second sentence, if a SPRT T with n = 1 would have a(T) #
D, then there is another SPRT T™ that takes exactly one observation, so that
2:(T*) < »y(T), and such that a;(T*) < a;(T), with at least one of these four
inequalities strict. This, however, violates the optimum property (OP) of
SPRT’s with n = 1, [3] [4] (it would be sufficient to consider the OP of SPRT’s
with n = 1 within its own class [13]).

To prove the “if” part in the first sentence of the theorem, consider first the
case af = 0. A SPRT with v = o will have oy = 0, and as u increases from
0 to , ay increases from 0 to 1. Thus, as = o5 for some u, with possibly ran-
domization at u. The case a5 = 0 is analogous. Now suppose a; > 0. Take
any (g1, ¢2), with 0 < g; < 1 and ¢; + g» = 1, and, for any test 7', put »(7T) =
> gwvi(T). The set S of all (a1, a2, ») of tests T is convex. Since ai > 0,
there are tests with a; < of and »; < =, for instance fixed sample size tests.
Let no be the infimum of »(7T), taken over all T for which a;(T) £ of . Take
a sequence {7';} such that »(T;) — no, then by weak intrinsic compactness
there is a subsequence converging to some 7™, and we find

ai(T*) < af, vo(T*) < n.

But the latter inequality is obviously an equality, and the first two are also
equalities, using the argument in [5], Section 4, for otherwise mixing with a test
that takes no observation could produce a test having a; = af and having a
smaller », . Thus, T has error point «*, and it remains to show that 7™ is equiv-
alent to a SPRT. Now since there is no point in S with a; £ a , » < ¢, there
is in (e , a3 , mo) a supporting hyperplane of S with nonnegative direction
numbers. That is, there exist a; , a2, as , all = 0, such that (ai , a5 , 79) mini-
mizes aiau + Geae + azvo among all (ar, o, %) in S. From of > 0 it follows
that ag > 0. Put W; = a;/g.0s, 7 = 1, 2, then T* minimizes

2 gilWiai(T) + »i(T)]

among all 7. Since this expression is the risk of " when the losses for wrong
decision are W, the cost per observation is one unit, and the a priori distribu-
tion is (g1, ¢2), it follows from [2] [9] that T™ is equivalent to a SPRT with
n = 0. The proof of the “if”’ part in the second sentence of the theorem is identi-
cal to the one just presented, after restricting the tests to n = 1 and letting the
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tests that take exactly one observation play the same role as tests that take no
observation did before.

3. Monotonicity and uniqueness. The following theorem is an extension to
randomized stopping bounds of the monotonicity theorem (Theorem 2) in
[13]. It is the main tool in establishing uniqueness.

TurOREM 3. Let R(s, t) and R(s', t'), with either n = 0 or n = 1, be nonequiva-
alent, with 0 £ s £ s 2t £t < wands = (u, \),t = (v, n). Let Aa =
a(s, t) — a(s', 1), then

(1) uhoy + Aoy £ 0
(2) Aoy + (1/v)Acz = 0

and at least one of the inequalities (1), (2) s strict.

The steps in the proof that have to be verified, using Theorem 2 in [13], are
straightforward and will be omitted. Note that (2) follows from (1) by inter-
changing the roles of H; and H, , and vice versa. If in Theorem 3 Aoy = 0, then
from (1) and (2) and strict inequality in one of them it follows that Acs < O.
Similarly with subscripts 1 and 2 interchanged. Thus we have

CorouLARY 1. If R(s, t) and R(s', t'). are as in Theorem 3, then Acy = 0
implies Acs < 0 and Aoy = 0 implies Ay < 0.

This corollary, applied to tests with n = 1, is a generalization to randomized
stopping bounds and arbitrary distributions of a result of Weiss [10], who showed
in the continuous case (and nondegenerate intervals carrying positive prob-
ability) that if the stopping bounds of a SPRT are separated in such a way
that one of the error probabilities remains constant, then the other decreases
strictly.

TuaroreM 4. Up to an equivalence, there vs at most one test RB(s, t) withn = 0
and given error point. Similarly for a test R(s, t) with n = 1.

Proor. Suppose R(s, t) and R(s’, t') are not equivalent. If we can pass from
one test to the other by changing the randomized stopping bounds in the same
direction, then by the monotonicity of the «; at least one of the «; changes.
If we pass from one to the other by changing the bounds in opposite directions,
then by Corollary 1 at least one of the «; changes. Therefore, the two tests
cannot have the same error point.

We shall make use now of the result of Theorem 6 in the next section, which
states that the four points a(u(—), »(+)) are the extreme points of A (u, v).
This implies that if «* & 4 (u, v) for some u, v, then not only is there a SPRT
with error point o, but there is even a test R(s, t) with that property.

THEOREM 5. If there is a SPRT with given error point o, its stopping bounds
are unique up to an equivalence.

Proor. If o™ is in only one set A (u, v), the stopping bounds u, » are unique.
If «*eA(u, v) and e A(w', V'), with (u, v) # (u, v'), then there are R(s, t)
and R(s, t'), both with error point o, where s = (u, \), etc. By Theorem 4,
R(s, t) and R(s’, t') are equivalent, so that the probability that Y, is between
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w and «’ is 0 for each n and both 4, and similarly for » and . Thus, the stopping
bounds are determined up to an equivalence.

Considerations similar to those of the above proof lead to the following ob-
servation on the sets 4 (u, v):if A(u, v) and A(«’, v") are distinct, they can at
most have boundary points in common. In fact, two such sets are either dis-
joint, or their intersection is one vertex, or one edge, of both.

4. The extreme points of A (u, v). In the following theorem A(u, v) is the
set of error points of SPRT’s with either n = 0 or n = 1, and stopping bounds
U, v.

TurEOREM 6. A(u, v) is convex and closed, and its extreme points are au, v),
a(u—, v), e(u, v+), a(u—, v+) if u < v, and a(u—,u), a(y, ut), a(u—, ut)
if u = v.

REMARK. Some or all of the extreme points listed may coincide. For instance,
in the case of a SPRT withn = 0Oand u = 1 < v, T'(u, v) and T(u, v+ ) both
coincide with the test that accepts H; without observation, so that a(w, v) =
a(u, v+) = (0, 1).

Proor. We shall give the proof for SPRT’s withn = 1land 0 < u < v < .
If Py(Y, = u) = 0and P,(Y, = v) = 0 for all n (this is true for ¢ = 1 if and
only if it is true for ¢ = 2) then A(u, v) is a single point and the theorem is
trivially true. If exactly one of these equalities is violated (for both ¢), only
two of the four points that are claimed to be extreme are distinct. It will follow
from the remainder of the proof that A(u, v) is the segment between these two
points. Assume then that Py(Y, = w) > 0 for some n, and P;(Y, = v) > 0
for some 7, then all four points a(u(—), v(4)) are distinct. These points are
the vertices of a quadrangle, which can easily be shown to be convex. There-
fore, this quadrangle is the intersection of four half spaces. The theorem will
be proved if we show that the error point of an arbitrary member of C(u, v)
lies in each of these half spaces. The proof being practically identical for each
of the four half spaces, we shall restrict the proof to the half space determined
by the vertices a(u, v) and a(u—, v), i.e. the set of error points & for which

(3) mAay + Aoy = 0,

where Aa = a — o, ¢ being any point on the segment between a(w, v) and
a(u—, v), and m = v is the negative of the slope of this segment.

Let TeC(u, v), and let T' & C(u, v) stop sampling whenever ¥, = v, but
have the same stopping rule as T at the lower bound u. Then

4) a(u,0) = a(T) £ aa(u—, ),  oa(u,v) Z aa(T) Z an(u—,).

We first show that «(T") is on the segment between «(u, v) and a(u—, v). The
sample sequences that lead to different decisions under T" and under T(u, v)
are those sequences that reach u before stopping, and subsequently equal or
exceed v before stopping at or below u. Let N be the random sample size when
T is used. Define the following events forn = 1,2, -+ : 4, = [N > n, Y, = ul,
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B,=u<Y;<wvforn <j <N, Yy = v]. Then

ar(T") — an(u,v) = D Pi(A.B,) = X Pi(A4,)Pi(B, | A,)
= au(1,v/u) ) Pi(4,).
Similarly, as(u, v) — a(T") = (1 — (1, v/u)) D, P:(A,). Since
Py(An)/Pi(4Arn) = u

for all n, we get
(5) Olz(u, 1)) - a2(T,) =y 1- 0&2(1,1)/’“)

al(T") — aa(u,v) ar(l,v/u)
The right hand side of (5) is independent of 7", that is, the result is valid for
any test 7" & C'(u, v) that stops sampling whenever ¥, = v. Equating the left
hand side of (5) to the expression obtained by replacing T by T(u—, v), and
observing (4), proves the claim that a(T’) is on the segment between a(u, v)
and a(u—, v).

Putting a(T) = o, (T') = o/, 0 — &’ = A, it is only left to be shown that
A« satisfies (3). Any sample sequence that accepts H, when T is used does so
when 7" is used. Denote by B the set of sample sequences that accept H, when
T" is used, but accept H; when T is used. Every sequence in B terminates at a
value < « when T is used, so that Py(B)/Py(B) £ w. Since Py(B) = a3 — o
and Py(B) = ay — a3, we have Aegy < 0 and uAay + Ay < 0. Then (3) is
satisfied since m = v > w.
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