ON THE LIKELITHOOD RATIO TEST OF A NORMAL MULTIVARIATE
TESTING PROBLEM!
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0. Introduction and summary. Let the random vector X = (X; --- X,)
have a multivariate normal distribution with unknown mean ¢ = (& --- &)
and unknown nonsingular covariance matrix =. Write 2% = T' = (I} --- T,)'.
The problem considered here is that of testing the hypothesis Hy : Tgpq = -+ =
', = 0 against the alternative Hy : Tpryy = -+ = I', = O whenp = p' > g and
£, = are both unknown. This problem arises in discriminating between two
multivariate normal populations with the same unknown covariance matrix
when one is interested to test whether the variables Xy - -+ X, contribute
significantly to the discrimination. For a comprehensive treatment of this subject,
the reader is referred to Rao (1952), Chapter 7.

In this paper we will find the likelihood ratio test of H, against H, and show
that this test is uniformly most powerful similar invariant. The problem of
testing H, against H,; remains invariant under the groups G, and G: where G, is
the group of p’ X p’ non-singular matrices

_ (9u 0
g (gzz gzz>

(with g1 a ¢ X ¢ matrix) which transform the coordinates X; - -+ X, of X and
G, is the group of translations of the coordinates X,'4; -+ X, of X. We may
restrict our attention to the space of the sufficient statistic (X, S) of (¢ Z). A
maximal invariant under G; and G; in the space of (X, §) is R = (R, R.)',
and a corresponding maximal invariant in the parametric space of (¢ =) is
8 = (81, 8:), where R; = 0, 8; = 0 are defined in Section 2. In Section 1, we
will find the likelihood ratio test of Hy against H, in the usual way. The likelihood
ratio test is invariant under all transformations which keep the problem in-
variant, and hence is a function only of R. In Section 2, we will find the joint
density of R; and R, under the hypothesis and under the alternatives and then
follow Neyman’s approach of invariant similar regions to show that the likelihood
ratio test in this case is uniformly most powerful similar invariant.

In terms of maximal invariants, the above problem reduces to that of testing
Hy:8 = 0, 8 > 0 against the alternative H; : 6 > 0, §; > 0. According to a
Fisherian philosophy of statistical inference applied to invariant procedures, it
is reasonable to think of R; as giving information about the diseriminating
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ability of the set of variables (X; - - - X,), but no information about parameters
governing additional disecriminating ability from variables X1 -+ X,/ . Thus
Fisher might call R; ancillary for the problem at hand and condition on it. We
are not concerned here with the philosophical issues of statistical inference;
instead, we will find (in Section 3) the distribution of the likelihood ratio con-
ditional on R, which forms the basis of inference in a Fisherian approach. It will
be shown that in this conditional situation, the likelihood ratio test is uniformly
most powerful invariant.

A more general statement of this same problem is to find the likelihood ratio
test of the hypothesis Ho: T ¢ Z' that T belongs to Z' against the alternative
Hi: T ¢y that T belongs to ', when £ = are both unknown and Z' < o' are
linear sub-spaces of the adjoint space &’ of the space of X’s, and are of dimensions
q and p’ respectively. This problem can be easily reduced to that above by a
proper choice of coordinate system, depending on the particular forms of Z" and
y’. One could have worked with this general formulation instead of that above
but the author did not find it convenient for computational purposes.

As a corollary, if ¢ = 0 then H, falls back to the usual null hypothesis of
multivariate analysis of variance. It is easy to see that the likelihood ratio test
for ¢ = 0 reduces to the usual Hotelling’s T? test which is uniformly most powerful
invariant (Lehmann (1959)).

Fisher (1938) has dealt with a particular case of the general formulation where
Z' is the one-dimensional linear sub-space of &', and a test based on a discriminant
function was suggested by him. The problem of testing H, against H; has been
dealt with by Rao (1949) and a test depending on the ratio of Mahalanobis’ D*
statistics based on the first ¢ and p’ components of X (which is related to Fisher’s
discriminant function in a simple manner) was suggested by him. It will be seen
that both the tests are the likelihood ratio test.

1. Likelihood ratio test of H, against H; . Let X* = (X7 --- X3), a =
1 --- N(N > p) be independently identically distributed normal p-vectors
with unknown mean ¢ and unknown non-singular covariance matrix =. The
likelihood of the observation X' --- X" is

L2 X XY) = (2r)™7(det )77
exp [—% 2 (X*— 92X — s)]

a=1

(1.1)

(2r) #7(det =)™
-exp [— § tr {=7'8* — 2NTX' + N2IT'}]

where 8* = 8 + NXX' ,NX = D ¥ X%and S = D au(X* — X)(X* — X)".
Given the observations, L is a function of £, and Z only, and we will denote it
by L(%, Z). The likelihood ratio criterion for testing H, against H, is

(1.2) N\ = maxg, L(¢, 2)/maxg, L(§, Z).
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Now,
maxg, L(£, 2) = maxr,; z(27) ?(det =)™
(1.3) -exp [—3tr{=7'8* — 2NTwX{y + NZulwIin}l.
= maxs(2r) "?(det=) ™ exp [—3tr{=7'S* — N2 XwX{u}]

where Ty = (T --+ Tp), X = (X1 -+ X,)', and 2y is the upper left-hand
¢ X ¢ submatrix of =. Since = and S* are positive definite, there exist non-
singular p X p upper triangular matrices K and T such that = = KK  and
S8* = TT'. Partition K and T as

_ Ku Klz _ Tll le
(14) K‘(o Kzz)’ T‘(o Tn)’
where K;; and T’y are ¢ X ¢ submatrices. It is easily verified that

y (K7 —(KiKuK) (TR —(Tu'Twe Tw)
(15) K~ —( 0 K , T = 0 T3

and KuK1{, = 2u, TuTi = St , where 81 is the upper left-hand ¢ X ¢ sub-
matrix of 8*. Let L = T 'K, =* = LL' and let us partition L and =* similar to
K into submatrices L.; and =% (4,7 = 1,2) respectively. It is easy to check that
Kn = TuLn . Writing VA m = T1_11X m , we get from (15)

maxg, L(T, 2) = maxg(2r) "?(det K)™
cexp [—3tr{ T'"K'7'K'T — N(KuKu) XX}
= maxx (21r)_*"”(det S*)_;N(det Z*)_*N
X exp [—3tr{2* " — NZ{yZ{ ' Zw}).

(1.6)

Further, let =*™ = A, and A be partitioned into submatrices A;; similar to
=*. From (1.6),

maxy, L(T, 2) = max(2r) **?(det $*)™"(det Ax)*(det An

— ApAyAy))Y
X exp[—3tr{Au + Az — (Au — AwAn Au)(N*Zy)(N'Zw)'}]
(1.7) = (2N7)??(det 8*) ™ (det(I — NZwZin))™

-exp[—3Np]
(2N=) 7 (det 8*)™
(1 — NX{y(Su + NXuXin) " X)) ™ exp[—iNp],

which follows from the fact that the maximum likelihood estimates of A2, Az
and Ay are 0, I/N and (I — NZuyZiy)/N respectively. In a similar way, one
can get
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maxg, L(T, Z)
= (2N=)?(det 8*) ™ (1 — NX{5(Se + NX X' 1) X3 exp[—1iNp],

where Sy is the upper left-hand p’ X p’ submatrix of S and X @ = (X Xp)
Hence, from (1.7) and (1.8) we get
)‘2/1»' — 1 - N)_(le(szz + N)f'm X{z])_ljlzl =7 (say)
1 — NXu(Su + NX 1w X)X '
Thus we have the following theorem:

THEOREM 1. On the basis of observation X*, @« = 1 --- N, the likelihood ratio
testof Hy:Tgp1 = <+ =Tp = Oagainst Hy : Tpryi = --- =Tp = 0, when &, =
are both unknown, is given by Z < Z,, where Z is defined in (1.9) and Z, is de-
termined in such a way that the probability that Z < Z.is equal to the chosen level
of significance.

Z has central beta-distribution with parameters 3(N — p’), 2(p’ — ¢). This
follows trivially from (2.14). It is also given by Rao (1952).

RemARk 1. The marginal probability density of X is normal with mean
fm = (& --- &) and covariance matrix Sy (= the upper left-hand p’ X p’
submatrix of ). Since we are only interested in probabilities of Z < Z, under
H, and H;, we can take p’ = p, ie. Xy = X. This, in no way, restricts our
original formulation of Ho and H; with p' < p.

(1.8)

(1.9)

2. The uniformly most powerful invariant similar test of H, against H,.
Since much of the development in this section proceeds along standard lines, we
shall omit some of the routine details. The reader may consult Lehmann (1959)
for nomenclature and a treatment of the theory of invariance and similar regions
in hypothesis testing.

We have obtained the likelihood ratio test of H, against H; . In this section,
we want to show that the likelihood ratio test is uniformly most powerful in-
variant similar for testing H, against H, . It may be verified that the problem of
testing H, against H; remains invariant under the groups of transformations
G; and G- and hence depends only on the maximal invariants under G; and G, .

‘We need only consider test functions which depend on the sufficient statistic

(X, 8), the Lebesgue density of which is
@1 f(&, s) = C(det =)™+ (det s)P¥ 2
' X exp[—3tr{=7'(s + N(& — £)(z — £)'}],

where ’
C = N3P2§NPW5P(P+1) ﬁ T3(N — i)
=1

Furthermore, it is easy to see that the action of the group G: on X is to eliminate
the components X,; --- X, from consideration to compute the maximal
invariants. We, therefore, take p’ = p and consider the group G; only for the
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invariance of the problem, and compute a maximal invariant of (X, S) under
the action of the group G; which leaves the problem invariant in the usual
fashion: If a function ¢ is invariant, then ¢(X, 8) = ¢(¢X, ¢Sg’) for all g, X,
and S. We may consider the domain of S to be positive definite symmetric
matrices which have probability one for all £, =. Since S is positive definite, there
exists an F in Gy such that S = FF' and Sy = FuF1, . If ¢(X, 8) = ¢(¢X, ¢S¢'),
g € Gy , then it may be verified that ¢ is a function only of the vector Z = (Z,, Z,),
where Z; = X{yFir' Fii X = X(uSiiXwand Z, = X'F7'F'X = X'S7'X. The
vector Z is thus a maximal invariant in (X, 8), if it is invariant under @, which
is easily seen to be the latter. Z; , Z. are essentially Hotelling’s statistics computed
from the first ¢ and p coordinates of X respectively. We shall find it more con-
venient to work with the equivalent statistic B = (R, R:), where

(2.2) R: = NZi/(1 + NZ:;) — NZoa/(1 + NZiy), i=12,

where Z_, = 0 by definition. It is easily verified that B; = 0, DI Ri = 1.
A corresponding maximal invariant A = (8, 6;) in the parametric space of
(¢, =) under G, , when H is true, is easily seen to be given by

& + 8 = N¢=7% = NI'2ZI, and
8 = NE=7% — NEnZi'tm = NI (C®) T
where (%) = (Z» — ZaZnZw), fm = (& - &) Tm = (T -+ T)

and
<211 212>
z = .
Zn 2
Here, 5; = 0. The corresponding maximal invariant under H,, takes on the value
(81, 0). The Lebesgue density function fA of R, depends on A under H; and on
6; under Hy .

In terms of the maximal invariants, the likelihood ratio test is given by
(1 — Ry — R:)/(1 — Ry) £ Z,. Now, to show that the likelihood ratio test is
uniformly most powerful invariant similar, we must compute fx and f7; . Since
f* depends on (%, =) only through A, we may put = = I and redefine N% = N*p
such that Nplupm = 01, Npizpry = & where py = (p -+ p,)’ and
oy = (pgr1 =+ pp)’- We will use the method of Stein (1956) for deriving the
probability ratio fa/fs, of R, based on some simple considerations concerning
invariant measure. The reason of computing the ratio, instead of f and f3,,
will be clear in the later part of this section.

Let G be a group operating (not necessarily transitively) on the topological
space Z and let \ be a left invariant measure under G in Z. Assume there are
given two probability densities p; and p, with respect to A, ie. Pi(8) =
[sp1(Z) dN(Z), Po(S) = [spx(Z)dN(Z), 8 C Z and p;, p: vanish simulta-
neously. Let f(Z) be a maximal invariant under G. Furthermore, let P? be the
distribution of f(Z), when Z has the distribution P; (¢ = 1, 2). Then under

(2.3)
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certain conditions which are satisfied in this problem we have

o) apip/art) = [ Pen) dute) / [ mo2) duto),

where p is left invariant Haar measure in G.

For our problem, f(Z) is the pair (R;, R:) and Z is the pair (N*X, S). A left
invariant measure in Z under G; is d(N*X, 8) = (det S)7*** 4(N'X) d8S.
The proof of this follows from the fact that the Jacobian of the transformation
(X, 8) — (¢X, ¢gSg’) is |det g|”**. Since, for g, h belonging to G:, dgh/oh =
|det gu|™*|det geo|™", the invariant Haar measure in G; is du(g) = |det gu|™"
|det gz|~” dg. Now

f5(Bi, R) _ fm p1(gX, 9Sq’) |det gu| ™ |det go|? dg L
f;‘I(Rly R2) IO’

(2.5)
[ 20X, 95¢) ldet gul ™ det gul” dg
1

where p:(X, 8) = (det 8)!*™® X density of (X, S) under H,. With = = T
b
I; = Cexp [—1(8; + 8)](det S)¥|det gu|"det goo|
exp [—4 tr {g(S + NXX')g' — 20X'q'}] dg,

the range of integration being from — « to « in each variable. Let A be a matrix
belonging to G, for which A(S + NXX')A’ = I. Then A’A = (S + NXX')™" =
S — NS XX’S“/(I + NX'S'X), so that NX'4A’AX = NX'S'X/
(1 + NXS— X) R1 + R2 Since Au(lSu + NX[I]X [1])A11 = I we obtam,
s1m11arly, NX[]]A]IAHX[I] = NX[]]mX[ll/(l + NX(])SH Xu]) =R , 80 that
we can define N'AX as a vector Y such that Y[qu =Ry, YmYm = R,,
where Yy = (Y1 -+ Y,) and Y = (You -+ Y,)'. Writing g4™ = &, we
have dg/0h = |det Au|"|det As|”*. From (2.6), we get

I, = Cexp [—1(8; + 8)] (det S)* |det An|"+" % |det Asn|* ™

{2.6)

X f (det (hay k1)) ™ (det (haphse))* ™

2
© exp [—— tl’{ 2 hiyhi; —2 20 pa Y hﬁj}] dh,

isi=1 JS!-:I

(2.7)

the integration again being from — « to « in each variable. For ¢ > j, the
integration with respect to hi yields a factor (2r)*®™® exp [48:Ri). For
j = 1 = 1, we obtain a factor (apart from the constant term)

q—1
(2.8) exp [FROIE (xa(Ribr))* " TT EGE) 2.
=

This follows from the fact that det (hy + o Yin)(hn + pmY(y)’ is distributed
as the product xo (Rlél)Hf;i x; where x; is a central chi-square with ¢ degrees
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of freedom and x;(8) is a noncentral chi-square random variable with ¢ degrees
of freedom and noncentrality parameter 8(= E(x:(8) — g¢). Similarly, for
Jj = © = 2, we obtain apart from the constant term, a factor

p—g—-1
(2.9) exp [$Ra]E(x2_o(Re) )} [ EGE)M™.
Jj=1

Thus finally, we have, with C’ a constant
= €’ (det $)¥ |det An|""*7"|det As|"

-exp[ z.s + 3R 25/2]

ij=1 1>7

(2.10)
2 N 2 3 qH_l 2 p_qn_l 2
'E[Xq<R161)]%( ~q>E[Xp—q(R252)’(_N_p) I 1E<Xi) 1L E(x;).
1= j=

Of course, I, is just the value of I; when 6, = 0. Hence,

*
dp_l(!il’_@ = exp [—%52(1 - Rl):]

*
(2.11) dpo (By, Bs)

Z (Ry8,)" T(3(N, — q) + r)T3(p — q)
= r! T —gq + 3N —¢q)
From Cochran and Bliss (1948) or using (2.6) with H:6, = 0, 8, > 0 and

Hy:6; = 0, 6 = 0, together with the fact that the probability density of R,
when & = & = 0is f(r1, r2) = T(N/2)/[T[Z(N — p)ITlz(p — @ITG]-

'yiq_l'ya(”_”_l(l - — m)“N_" ! we obtain
dPg (11, 15) = exp [—18)
(2.12) kL (%517'1)r riq—lri(qu)ﬂ(l —_r — T2)%(N—p)—l

=0 r!  BGWN —q),3+ r)BGW — p),3(p — 9)°

Hence, from (2.11) and (2.12), we have

dPY (1, 1) = exp [—3(8 + 8) — 38ami]

=~ (r138)" T(3N + r)T'(3q)

= rl T(3¢ + r)TGN)
(2.13) 3 (ry38)" TI3(N — ¢q) + rITl3(p — 9)]

r=0 7l I3 — q) + TGN — ¢)]

T(AN)ATIHAP 7L — gy — )t P

rGorize — QITGWN — p)l
REMARK. From (2.12), the probability density functionof Z = (1 — R; — Rs)/

(1 — Ry) and R, under H, is

(38m1)%r1
(2.14) eXPl: 51] Z;, r'BA(N — q), 3¢ + r)B(F(N — p), 3(p — 9))

ie— l ) %(N—q)—-lzé(N—p)—l( 1 — )}(p—q)—l
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Hence under H,, Z is beta-distributed with parameters 3(N — p), 3(p — ¢)
and is independent of R; . l

From (2.12), it is easy to see that R, is sufficient for &, . Let ¢ (1, r2) be any
invariant level « test of H, against H;. In order to find the uniformly most
powerful similar one, it is necessary now (see for example pages 130-131 Lehmann
(1959)) to check whether the family of distributions {P; (R:), 6 = 0}
is boundedly complete or not, where:

DErFINITION. A family of distributions { P, (R1), 81 € @} is boundedly complete,

if
(2.15) By (W(B) = [ h(n) dPy(r) = 0

for all &, ¢Q and for any real valued measurable function k(r;) implies that,

h(r;) = 0 almost everywhere with respect to each of the measure P; (R:).
LemMa 2.1. The family of distributions {Ps,(R1), 61 = 0} is boundedly complete.
Proor. Let ¢(R;) be any real valued bounded function of R;. Then

E; (¢(R1)) = exp l:—% 61] i <% 81>r a fl ¢(r) (ry)

r=0

(1 — r)¥¥ 9 gy = exp [—— 81] i( 61> arf ¢*(r1)ri dn

r=0

where a, = B[3(p — ¢), 3(N — p) + 1]/{B[ (N — ¢), 3¢ + 7] Blz(N — p),
i(p — ¢)I} and ¢*(r) = o(r)ri (1 —ry)Y* 27" Hence, E;¢(R:) = 0 im-
plies that

g <% 61>' ay fol ¢*(r)ridrn = 0.

Since the right hand side of this equa,tlon is a polynomial in §, , all its coefﬁcients
must be zero. In other Words fo ¢ (rl)rl drl =90 for r =201, 2 . Let

¢*(Ry) = ¢* (R, ) *(R,), where ¢*" and ¢* denote the posmve and
nega,tlve pa,rts of ¢ respectlvely Hence, we ha,ve ¢ T (ry)r} dry = ™ (r)ri dry
forr =0, 1,2, --- which imply tha,t ™ (r1) = ¢* (r1) for all r, , except possibly
on a set of measure zero. Hence, ¢*(r,) = O a.e. {Ps,(R1), 8 = 0},ie.,¢(R1) =0
a.e. {P51(R1): 6, = 0. '

Since R; is complete, it is well-known that ¢ has Neyman structure with re-
spect to R, (see for example Lehmann (1959) p. 134) i.e.

(2.16) Eu¢(Ry, R:) | Ri] = c.
Now to find the uniformly most powerful test among all similar invariant tests,
we need the probability ratio

dPY(Ry/R:) _ dPi(Rs, R1) -dP5 (Ry)

dP§(Ry/Ry) ~ dP3(Rs, Ry)-dPi(Ry)

- _ _ (Rzéﬁz) I3(N — ¢) + rIT3(p — 9)]
o~ 381 - &) ]Z T(5p — @) + AT — 9)

(2.17)




A NORMAL MULTIVARIATE TESTING PROBLEM 189

(by 2.11). Since the distribution of R, on each surface R; = 7, is independent of
1, the condition (2.16) reduces the problem to that of testing a simple hy-
pothesis: 8, = 0 against the alternative: 8, > 0 for each value of R, . In this con-
ditional situation, by Neyman and Pearson’s fundamental lemma, the most
powerful level « invariant test ¢(Ry/Ry = r1) for testing 6, = 0 against the simple
alternative 8, =.5; is (from 2.17)) given by

¢(Ro/Ry = 1) = 1,

o (R238:)" TI3(N — ¢) + rITl3(p — ¢)]
T AW = ol - g F 1 2 O

¢(R:/R1 = r1) = 0, otherwise,

(2.18)

where C(r,) is chosen in such a way that E;,_¢(R.| Ri = r1) = a. Since R, =
(1 — R)(1 — Z), (2.18) reduces to ¢(Z |Ry = 1) = 1,if Z £ C';and = 0
otherwise, where €’ is given by E;,_¢(Z | R, = 1) = a. Since Z is independent
of r, C' is independent of r, . Furthermore, ¢(Z | Ry = ) is independent of
;2 . Hence, we have the following theorem:

THEOREM 2.1. Given the observations X' ---X" (N > p), the likelihood ratio
test of Ho:T'1g; = 0 against the alternative Ty % 0, when &, = are both unknown, is
uniformly most powerful invariant similar.

3. Conditional power. From (2.17) and (2.12), it follows that the conditional
distribution of Z given R; is a non-central beta B[3(N — p), 3(p — ¢)] with
non-centrality parameter 8:(1 — R;). Hence, in this conditional situation the
likelihood ratio test is uniformly most powerful invariant for testing 6, = 0
against 6, > 0.
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