ON THE LINE GRAPH OF THE COMPLETE BIPARTITE GRAPH'

By A. J. HorFrMAN

I.B.M. Research Center

1. Introduction and summary. In an interesting recent article [4], J. W. Moon
has given a list of properties of the graph L(B.) (to be defined more precisely
below) and investigated the question of whether these properties characterize
the graph. In case m = n, this question had been settled by Shrikhande [5]
(see also [1], [2] and [3]), who proved that the answer was yes unless m = n = 4,
when there is exactly one exception. In case m > n, Moon shows that the answer
is yes unless (m, n) = (5, 4) or (4, 3), which cases were left unsettled in [4].
The purpose of this note is to show that, in those cases as well, the answer is
yes, thus completing Moon’s discussion.

Now to define our problem more exactly. The line graph of the complete
bipartite graph on sets with m and n vertices, denoted by L(Bua), is the graph
with mn vertices given by all ordered pairs (7,7),1 < ¢ < m,1 = j = n. Two
vertices (¢, 7) and (¢, j') are joined by an edge if 7 = ¢’ or j = 5/, but not both.
The graph L(B...) has the following properties:

(1.1) It has mn vertices.

(1.2) Each vertex has valence m + n — 2.

(1.3) If two vertices are not adjacent, there are exactly two vertices adjacent
to each.

(1.4) Of the & mn(m + n — 2) pairs of adjacent vertices, exactly n(7) pairs
are each adjacent to exactly m — 2 vertices, the remaining m(3z) pairs are each
adjacent to exactly n — 2 vertices.

We now assume m > n, and let G, be any graph satisfying (1.1)-(1.4).
Our object is to prove that when (m, n) = (5, 4) or (4, 3), Gun = L(Bmn).
Moon has established G, = L(Bm,) in all other cases.

2. Preliminaries. Let A be the adjacency matrix of G, ;i.e., number the mn
vertices of Gn, arbitrarily, and define A = (a:;) = 1 if 7 and j are adjacent,
0 otherwise. Define B = (b;;) = 1if 7 and j are adjacent, and there are m — 2
vertices adjacent to ¢ and j, 0 otherwise; C = (¢i;) = 1if < and j are adjacent,
and there are n — 2 vertices adjacent to < and j, 0 otherwise. We then have
from (1.2)-(1.4)

A= (m+n—2+ (m—2)B+ (n—2)C+2(J —1-—A4),
where J is the square matrix of order mn every entry of which is unity. Since
A = B + C, this may be rewritten
(2.1) A*=(m+n—8)I+ (n—4)A + (m —n)B + 2J.
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Because 4 commutes with the left side of (2.1), A commutes with the right
side of (2.1). But A also commutes with J, since, by (1.2), AJ = JA = (m +
n — 2)J. Therefore 4 = B + C commutes with B, so B and C' commute.

Because B and C commute, they have a common set of eigenvectors, which
are also eigenvectors of A. Nowu = (1, 1, ---, 1) is an eigenvector of A cor-
responding to the eigenvalue m + n — 2. Since A is an irreducible nonnegative
matrix with m 4+ n — 2 the dominant eigenvalue, u is the only eigenvector
(apart from multiplies of ) corresponding to m + n — 2. But this means that
u is also an eigenvector of B and of C. Thus every row sum of B is the same.
By (1.4), the number of 1’s in B is nm(m — 1), and since B is of order mn,
every row sum of B is m — 1. Similarly, every row sum of C is n» — 1.

It is easy to show that if, for each 4, {j | c:; = 1} is a clique of Gu., then
Gumn = L(Bn,). This we shall show in the next two sections for the
cases (m, n) = (4, 3) and (5, 4).

3. The case (m, n) = (4, 3). Both in this and the next section, we shall say
that (¢, 7) is a B-edge (C-edge) if b:;(c:;) is 1. Let 0 be a vertex of Gy , let (0, 1),
(0, 2) be the C-edges adjacent to 0, (0, 1), (0, 2"), (0, 3') the B-edges adja-
cent to 0. If 1 and 2 are not adjacent, then by (1.4), 1 is adjacent to one vertex
of {1',2', 3}, and 2 is adjacent to one vertex of {1, 2', 3}. Without loss of gen-
erality, 1 is adjacent to 1’, and 2 is adjacent to 1’ or 2'. We also know from
(1.4) that the total number of edges joining vertices in S = {1, 2, 1, 2/, 3'} to
vertices in S is 4. Thus the total number of edges joining vertices in {1, 2, 3'}
to vertices in {1’, 2', 3} is 2.

Now the edge (1, 1) must be a B-edge. For if it were a C-edge, we would
have (0, 1') and (1, 1) successive B- and C-edges. Since BC = CB, we would
have to have (2, 1) a B-edge. But we are assuming 1 and 2 are not adjacent.
Similarly, (2, 1') or (2, 2') is a B-edge. The vertex 3" is not joined to 1 or 2,
o by (1.4) it must be joined to 1" and 2". Hence, 1" and 2’ are not adjacent,
since we have already identified four edges which have both endpoints in S.
Since (0, 1) and (1, 1') are successive C- and B-edges, it follows from BC = CB,
that (3',1") is a C-edge. Then (0, 1') and (1’, 3") are successive B- and C-edges,
so from BC = CB, there must be successive C- and B-edges starting at 0 and
ending at 3'. Hence, there must be an edge joining 1 or 2 with 3’. This is a con-
tradiction, however, so our original assumption that 1 and 2 are not adjacent
must be false. This completes the discussion of the (4, 3) case.

4. The case (m, n) = (5, 4). Let 0 be a vertex of Gss, and let T = {1, 2, 3}
be the set of vertices joined to 0 by C-edges, and V = {1’, 2/, 3’, 4’} be the set
of vertices joined to 0 by B-edges. We wish to show that T is a clique. From
(1.4), we know that the number of edges with both ends in 7' U V is 9.

(a) Suppose that no vertices of T' are adjacent. Then by (1.4) there are six
edges joining vertices in T with vertices in V. By the reasoning in Section 3,
all these edges are B-edges. If a vertex of ¥V were an end of more than one of
these six edges, then from BC = CB, it would follow that the vertex was adja-
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cent to at least two vertices of V, as well as two vertices of 7. This would violate
(1.4). So none of the four vertices of V can be an end of more than one of these
six edges, an impossibility.

(b) Suppose T contains exactly one edge. Without loss of generality, assume
it is (2, 3). Then there are two edges joining 1 with points of V, and an edge
each from 2 and 3 to V, and no other edges joining T and V. Hence, there are
four edges Jommg vertlces in V to vertlces inV. They cannot form a quadrilateral,
say (1',2)), (2, 3)), (3, 4", (4 1), for then 1’ and 3, which are not adjacent,
would each be adjacent to 0, 2/, and 4’ v1olat1ng (1 3) Hence, without loss of
generahty, the edges in V are (1 2', (1 4'), (2, 4) and (3', 4'). By (1.4),
4’ is not adjacent to any vertex of T; in particular 4’ and 1 are not adjacent.
But 0 and the two other ends of the edges joining 1 to V are three vertices ad-
jacent to 1 and 4, a violation of (1. 3).

(¢) Suppose T contains two edges. Then it is easy to see that V contains
five edges, so (without loss of generality), we may infer that 1’ and 2’ are not
adjacent, but are each adjacent to 3’ and 4'. Since they are also each adjacent
to 0, this violates (1.3).

It follows that T is a clique.

6. Conclusion. We can therefore assert, on the basis of [4], [5] and the fore-
going:

THEOREM. A graph satisfying (1.1)-(1.4) 4s L(Bmn), unless m = n = 4, when
there is exactly one other graph satisfying (1.1)—(1.4), described in [5].
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