ON THE COEFFICIENT OF COHERENCE FOR WEAKLY
STATIONARY STOCHASTIC PROCESSES

By L. H. Koopmans
Sandia Laboratory, Albuguerque

1. Summary. The coefficient of coherence is defined for bivariate weakly
stationary stochastic processes which have spectral distributions dominated by
a fixed Lebesgue-Stieltjes measure. This quantity is shown to possess two of the
important properties which make the ordinary correlation coefficient a desir-
able measure of linear regression for pairs of random variables. This provides a
justification for the already common use of the coefficient of coherence as a
measure of linear-regression for pairs of stationarily correlated, weakly sta-
tionary time series.

2. Introduction. Let X = {X()| —» < t < «} be a bivariate, weakly
stationary stochastic process. By this we mean that X(¢) is a column vector
(Xa(t), Xa(t))" of complex valued random variables over a probability space
(2, @, P) such that

(i) EX;(t) = 12——oo<t<°°and

(i) EX;(t + T)Xk(t) is finite in absolute value for —» < ¢, 7 < o, and
depends, functionally, only on 7, for 7, £ = 1, 2.

The restriction to bivariate processes is only a convenience motivated by the
bivariate nature of the coefficient of coherence. The component univariate
processes, X; = {X;(f) | — ©» < ¢ < »}, may be thought of as any pair of
coordinate processes from a general g-variate weakly stationary time series.

In order to avoid an unnecessary duplication of notation we will restrict at-
tention to the case in which X is a continuous time parameter, continuous-in-
the-mean stochastic process. The corresponding results when X is a discrete time
parameter process can be obtained from our theory with only minor alterations.

Let F(A\) = [F;:(\)] be the (2 X 2 matrical) spectral distribution function of
X (see e.g. Cramér (1940)). Throughout the paper we will let u be a fixed
Lebesgue-Stieltjes measure on the Borel sets, ®, of the real line, &, which domi-
nates the signed measures, uj , induced on (®, ®) by Fu(N), 7,k =1, 2.

Let £(A) = [fi(M\)] be the spectral density function (2 X 2 matrix of Radon-
Nikodym derivatives) of F(\) with respect to u. It follows (Cramér 1940) that
fii(\) 20,5 = 1, 2, and fis(A) = fu(\) a.e. (u). Then the u-coefficient of co-
herence or simply the coefficient of coherence of X is defined by the expression:

() = [feM/WaMfaMI on A [fis(0) > 0]
=0 otherwise.
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Since the spectral densities are defined up to u-equivalence this definition in-
sures that p(A\) is uniquely defined on ® up to u-equivalence.

By an immediate extension of a theorem of Cramér (1940, Theorem 1), f())
is non-negative definite and, hence, the Coherency Relation,

'f12()\)l2 = fu(N)fe(N) a.e. (u),

holds. Thus, the coefficient of coherence satisfies the inequalities 0 < p(A) = 1,
a.e. (u). That is, the coefficient of coherence assumes the same range of values
as does the modulus of the correlation coefficient for pairs of random variables.
Note also that, because of the Coherency Relation, [o(A) = 0] = [fiz(A) = O].

One of the most useful properties of the correlation coefficient is the existence
of an interpretation of its magnitude as a measure of linear regression. We
designate this as Property 1 and give the following intuitive version of it.

PropreRTY 1. If p 7s the modulus of the correlation coefficient of random variables
X, and X, , then the proportion of the variance of X, attributable to the linear regres-
sion of Xy on X, is p'.

This property has the following corollaries:

1. The regression of X, on X, s zero if and only if p = 0.

2. The regression of X1 on X, is complete. (i.e. X is a linear function of X.) if
and only if p = 1.

3. 1 — p’ is the proportion of the variance of X not attributable to the linear re-
gression of X1 and X, and, thus, is a measure of the error of estimating X, by a
linear function of X, .

Section 4 will be devoted to establishing the analog of this property for the
coefficient of coherence.

The coefficient of coherence is the modulus of a spectral parameter first intro-
duced by Wiener (1930) for pairs of functions possessing generalized harmonic
decompositions in the case when u is Lebesgue measure. He stressed that the
usefulness of his “coefficient of coherency’’ and the ordinary correlation coeffi-
cient as measures of linear relationship depended to a great extent on the fact
that they are both invariant under linear transformation. Actually, the class of
linear transformations which leaves the ‘“coefficient of coherency” invariant is
too small to be of general physical interest. It does not contain any transforma-
tions which “shift phases”, for example. Since ‘“‘phase shifting” is the rule rather
than the exception for physical linear devices, a measure of linear relationship
which is to be applicable to physical time series should be invariant under these
transformations as well. In Section 5 we will show that the coefficient of coher-
ence, as a measure of linear relationship for a certain family of stochastic proc-
esses is invariant under a much larger class of linear transformations—a class
which contains, in particular, the transformations of physical interest (Theorem
3). Moreover, we will show (Theorem 4) that this invariance property charac-
terizes the coefficient of coherence in the sense that (almost) any function of
f(\) which is invariant under a certain subclass of these linear transformations
must be a function of p(A). The corresponding property for the correlation coeffi-
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cient seems to have received little publicity. Consequently, a precise statement
and proof of this result, which we call Property 2, will be given in Theorem 2.

Section 6 is devoted to a discussion of the limitations of the class of measures,
1, which can be used to define the coefficient of coherence for a given process. It
is shown (Theorem 6) that, in a sense, the coefficient of coherence does not de-
pend on which dominating measure of this class is selected. The section is con-
cluded with a discussion of the special cases which are of interest from the view-
point of physical applications.

3. Preliminaries. In this section and in Section 4 we will be concerned with
a bivariate weakly stationary stochastic process, X, with spectral density £(\)
with respect to u. The class of all complex valued random variables, X, over
(9, @, P) such that EX = 0 and || X||* = E|X|" < » constitutes the familiar
Hilbert space £,(P) with inner product (X, ¥) = EXY. This space clearly con-
tains all of the component random variables of X.

For an arbitrary bivariate, or univariate weakly stationary stochastic process,
Y, let M (Y) be the class of all finite linear combinations of the component ran-
dom variables of Y. This linear manifold will be termed the linear manifold
spanned or generated by Y. Its £:(P) closure, M (Y), will be called the subspace
generated by Y. Unless otherwise stated, we will adopt the notation, M = M (X),
M = M(X), M; = M(X;) and M; = M(X;), 7 = 1, 2 for the manifolds and
subspaces generated by the given process and its components.

Let U= {U,| — » <t < o} be the group of unitary transformations of 51
onto 9 determined by the relations

UX;(u) =X(u+1), j=12; —o <y, bt < .

It will be notationally convenient to adopt a matrix representation for linear
operators, T, when they are applied to the vector process X. Thus,

TX() = I:Tu ijl <X1(t)> _ <T11X1(t) + T12X2(t)> _ <TX1(t)>
Tu To| \X(t) TuXi(t) + TuXs(t) TX,(t))
The existence of the operators T';; for T in the class T to be constructed below

will be clear from the construction.

In particular, it is clear from the definition of U that U, has the matrix repre-
sentation [gt 8], and the defining equations for U may be summarized by

t

UX(u) =X+ u), —o <ut< o.

The usual spectral representations associated with a weakly stationary process
are based on the spectral decomposition of the associated group U of unitary
transformations due to Stone (Riesz and Nagy, 1955, p. 383):

(1) Ug = fede)‘,
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where {E)\ | — o < X\ < } is the spectral family of projections determined by U.
(All integrals will be over the range ( — «, « ) unless otherwise specified.) This
representation will be extended to the matrix version of U, by setting

E. 0
.E)‘ =
0 E\
and performing the integration component-wise.
This theorem results in the following spectral representation for the process X:

(2) X(t) = fem‘ dz(\), —w <1< w,

where Z(\) = EAX(0) = (Zi(\), Z.(\))'.

IfX = (X1, X») and ¥ = (Y7, ¥3) are column vectors of elements of £,(P),
the Gramian of X and ¥, ((X, Y)), is defined to be the 2 X 2 matrix whose
j, kth element is (X;, Y). Then, the spectral representation for the covariance
of X may be written in the form,

3) (X (), X)) = [ 600 du),

where, by Stone’s theorem, f = (d/du)((ExX(0), X(0))), i, (g — h)f(g — h)*
= 0, a.e. (u).

If g(\) denotes a measurable function on & whose values are 2 X 2 matrices
with complex entries, then G is defined to be the class of all such functions for

which

(4) el = tr [ gfe* du < =,

where * denotes conjugate transpose. The elements of G are to be identified by
f equivalence. That is, g ¢ G will represent any of the elements h satisfying Ex-
pression 4 for which h = g, a.e. (f) \. Then the function || || defined by Equation 4
is a norm for G interpreted as a linear space over the field of complex scalars. By
an extension of Riesz’s proof of the Riesz-Fischer Theorem (Riesz and Nagy,
1955, p. 59), G can be shown to be complete relative to this norm. (This result
has also been recently announced by M. Rosenberg (1963).) Thus, with the
inner product (g, h) = tr [ gfh* du, G is a Hilbert space.

We will be interested in the class, T, of all linear transformations, 7, which
map X again into continuous-in-the-mean, bivariate, weakly stationary processes,
TX = {TX(t) | — <t < =}, relative to the group U. That is, the elements
of TX are to satisfy the equations

(5) UTX(u) = TX(t + u), —o <t u< o,

In order for this equation to be meaningful, it is necessary for 7X (¢) to be in
S X 9 for all ¢.
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This property completely determines each operator when T'X(0) is given,
since T is then defined on X by TX (¢t) = U.TX(0). T is extended by linearity
to 91 and thence uniquely to a domain, D(T'), in M to be defined below.

The following construction of the class T provides a linear isomorphism be-
tween G and T via the Spectral Representation 1. Let T consist of all operators,
T, which are defined on X by an expression of the form T' = SraC iUy, , for
some integer n, real numbers, ¢;, and 2 X 2 matrices of complex constants, C; .
From the Representation (1) for U,

(6) 7= [ g0,
where
(1) g(\) = g Ce',

We will denote this correspondence between T and g by T < g.

It follows from Stone’s theorem that U, and T commute. Thus, TX(¢) =
TUX(0) = [eg(\)dZ(\), and U, TX(u) = TUX(u) = TX(¢ + w),
— o < i, u < . This implies, by the definition of T, that the appropriate
linear extension of 7' is in T.

To see that g ¢ G, it suffices to note that there exists a constant M such that
the components of g satisfy the inequality |g:;] = M for all A. Then it is easy to
show that

(8) tr fgfg*du < 8M2t-rffdu < .

Moreover, by virtue of Equation 6 and the discussion following it, every trigono-
metric polynomial of the form given by Expression 7 corresponds to some T ¢ T.

We will now show that T is the class of operators, T, such that either T ¢ T
or there exists a sequence { T} < T’ such that T, '— T in the strong sense on X.

That is,
limusw tr (((T — TW)X(t), (T — To)X())) =0, —e <t< oo,

If T” denotes this class of operators, it is clear that T” C T, since the com-
mutability of the elements of U with those of T’ is preserved in the limit. But if
T & T, then, TX(0) = Z ¢ M X M and either Z is a finite linear combination of

elements of X (i.e. is in 9 X IM);
Z = Z; C,X(t;) = ; C,U.,X(0),
= =

or is a limit of a sequence of such linear combinations; lim, tr (Y, — Z, Y, — Z))
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= 0. In the first case T ¢ T’ by virtue of Equation (5). If weset 7.X(¢) = U.Y,
in the second case then, properly extended, T, ¢ T" and

lim, tr (((T» — T)X(¢), (T, — T)X(t)))
= lim,, tr <<U:(Yn - Z), Ut(Yn - Z)»
= lim, tr (Y, — Z,Y, — Z)) = 0.

Thus, T e T”,and T = T”.

Now, suppose T ¢ T ~ T’ (where ~ denotes set theoretic difference) and let
{T,} T suchthat T, - T strongly on X and T, <> g, . Then, as a consequence
of the Spectral Representation (1),

o) T = TX W, (T = TIXW)) = v [ (g — gt — £)" s

= llgn — &l -0, —w <t< .

Since G is complete, there exists g ¢ G such that ||g, — g|| — 0. We define the
relation <> at T by T <> g. It follows from the Representation (1) that

TX(¢) = ] ¢Pg(0) dZ(N), — << .

It can be shown by applying the inequality [lg|| = >.: >, llgsills, llglls =
[ |g|’fi; du, to the univariate result, that the trigonometric polynomials of the
form given by Expression (7) are dense in G. Thus, if g ¢ G, there exists a sequence,
{g.}, of these polynomials such that ||g. — g|| — 0. Expression (9) then implies
that {T.X ()} is a Cauchy sequence in . X M, —o < ¢t < o, where g, <>
T. e T'. Since 57 is a closed subspace of £,(P) there exists ¥ e 5t X I such
that

lim, T,X(¢) = U,lim, T,X(0) = U,Y.

The assignment TX(t) = U,Y then uniquely determines an element of T
as discussed above, since Equation (5) is satisfied;

U;TX('U,) = UgUuY = UH.uY = TX(t + u).

We write T' <> g and it-follows that <>, as a mapping from T to G, is onto.

That < is one-to-one follows easily from the fact that the elements of T are
uniquely determined by their values on X. The linearity of <> follows from the
integral representation of elements of T on X and the fact that if T;, T» ¢ T and
@, B are any complex numbers, then a7 + BTy ¢ T with D(aT; + B8T:) 2
D(Ty) N D(T:);ie., T is a linear space over the complex field. This establishes
that < is a linear isomorphism between G and T.

A representation of the domains of the elements of T is provided by the linear
isomorphism between 1 and the class H of-all row vectors, z(\), of measurable
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complex valued functions (identified by equivalence as above) such that fxfx*
du < =,

This isomorphism, which we also denote by <, can be established by an
argument paralleling the above for T and G. It follows that if X < z(\), X
= [z(\) dZ(\) and || X|* = [ fz* du. Now, if T «> g, X ¢ D(T) if and only
if X & z(X\) and fxg‘fg*x* du <. Also, TX = [ z(\) g(\) dZ()).

These results and others needed in the sequel are summarized in Theorem A
below. This proof follows closely that for the corresponding univariate result
(which we will call Theorem A;) given, for a special case, in (Doob, 1953, p.
534). The remainder of the proof is straightforward and is omitted.

THEOREM A.

1. The correspondence, <, between T and G is a linear tsomorphism.

2. If T & g, the bivariate, weakly stationary stochastic process TX has the spectral
representation,

(10) TX(t) = [ ¢™g(\) dZ(0), — o <t < w.

The spectral distribution of TX s absolutely continuous with respect to u and has

spectral density gfg”.
3. Let T gand R < h. Thenzfx<—>Xe§)(T),y<—> Y e D(R),

(11) (TX, RY) = f zgfh*y* du.
In particular,
(12)  (TX(1),RX(s))) = fe“'_’“g()\)f(k)h*(k) du(N), — o <ts < o,

4. Further, if the mairixz product gh e G and S < gh, then M S D(RT) C
D(8) S Mand S = RT on D(RT), where RT denotes the composition of R and
T. Thus, if D(RT) = M, RT « gh.

The set of continuous orthogonal projections, T, in T will be of particular
importance to us. The following corollary to Theorem A provides a characteriza-
tion of this subclass in terms of a subclass of the elements of G.

CoOROLLARY A.

1. Let G™ be the collection of g € G for which (a.e. (), (i) g° = g, (ii) gf = fg*,
and such that (iii) [ zgfg* z* du < [ afz™ du for every x e H. Then T ¢ T" if and
only if T > geG".

2. Let I denote the identity operator on . If g > T & T", then the complementary
orthogonal projection, I — T,7s in T and I — T <> 1 — g, where 1 4s the 2 X 2
identity matrix.

Proor. Necessary and sufficient conditions that 7' be a continuous orthogonal
projection are T* = T and T = T™ on 3%, where * denotes adjoint (Riesz and
Nagy, 1955, p. 267). Furthermore, such an operator satisfies | TX]| =< [ X]| for
all X ¢ 9m.
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Let T ¢ T" and let T < g £ G. Then Condition (iii) follows from Equation 11
and the inequality |TX|* =< ||X|".
If T = T* by Equation(12),

(13) (T(t + 1), X)) = [ e™gfldu = f Mg du = (X (¢ + 1), TX(®))

for —o < t, 7 < ». Condition (ii) is then a consequence of the one-to-one
property of the Fourier transform on £;(u).

We now show that' T° = T implies g = g° ¢ G. Let g = [gi], Sn = {A| lgs(N)]
=n,5,k=12,n=1,2 ---,and let I, be the set characteristic function of
S, . Let g, = I, 1. Clearly, g, ¢ G, g% = g, and g.g = gg. ¢ G. Moreover,

/ rg.gfg g™ du < / xgfg*c™ du < [ afz™ dp.

Thus, if Tp< gn, D(T.T) = D(T) = M, T =T, and T,T = TT, < g.g.
Now, by Inequality (8),

tr f (g8.)"((ggn)")" du < 8n' trffdp < .

Hence, (gg.)’¢ G, and, since D((TT,)?) = D(TT,) = M, (TT,)* < (gg.)*
by Theorem A. But (TT,)* = T* T = TT.. Thus,

g = (gg.)° = gg. = I.g a.e.(f) foralln.

This implies that g = g’ ¢ G.

Let g ¢ G satisfy Conditions (i)—(iii), and let g <> 7. Then ||TX| = || X]|| for
all X ¢ 9 by Condition (iii). .

It is easily shown that Condition (ii) is equivalent to gf = fg* a.e. (x). Thus,
since T is linear and continuous and inner product is continuous, Equation (8)
yields (TX, Y) = (X, TY) for all X, Y & 5. Hence T = T*

Finally, g = g and D(T) = M yields T’ > g* = g T, i.e, T* = T on M.

The proof of Part 2 is clear.

An important subclass of T" is isolated in the following immediate consequence
of Corollary A.

CoROLLARY B. Let I be the set characteristic function of a Borel set S and let
gs = Isl. Then gse G" for all Se ®. If Ts<>gs, then I — Ts = Tse <> gse,
where S° is the complement of S. The spectral density of T'sX is If.

If X is a bivariate process or a univariate component of a bivariate process we
will use the notation X = Y 4+ Z to mean that there exists T ¢ T" such that
Y=TXand Z = (I — T)X. If 9, My and N are the subspaces generated by
these processes it follows that

m=my@mz,mylﬁz,

1 This part of the proof is due to M. J. Norris.
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where @ denotes direct (orthogonal) sum, thus
my= m@mz and 3_IZZ=E)TZ€-)3—IZy,

the orthogonal complements of 3, and 3y in M.
Moreover, X(t) = Y(¢) 4+ Z(t) is the unique representation of X(¢) as a
sum of elements in My and Mz, — © < < ».

4. The analog of Property 1. Let X; and X, be random variables in £:(P).
The modulus of the correlation coefficient of X; and X is

p = (X1, X)l/[ Xl [ Xall for [ >0, i=12

Let 9, be the linear subspace of £;(P) spanned by X; (i.e. M; = {cX;|¢
complex} ), and let M = 5y + M., Then a precise formulation of Property 1
can be given as follows:

ProPERTY 1. There exist unique random variables X1, j = 1, 2 such that
() X = X + X, (i) X{° ¢ Mz and (iii) X{° ¢ M © Mo Moreover, (iv)
I1X5°0 = ollXall, (v) IXE1 = (1 = o) 1 Xl

Immediate corollaries are:

COROLLARY 1. p = 0 #f and only if T, J_ ML .

COROLLARY 2. p = 1 if and only if T, = M.

Clearly X< is the orthogonal projection of X; on 3%, . The intuitive interpre-
tation of this property, given in the Introduction, easily follows from this result
by adopting the variance ratio, | X{"||*/| Xu||’, as a measure of the degree of
linear regression of X; on X,.

The usual proof of this result consists of the explicit determination of the
projection by a minimization procedure. In Theorem 1 a spectral parameter
closely resembling this projection is shown to lead to the appropriate element of
T" to establish the theorem. i

If the definition of the modulus of the correlation coefficient is extended by
setting p = 0 in the (trivial) case ||Xi||||Xs|| = 0, Property 1 and Corollary 1
remain the same, since 9; = {0} is orthogonal to every element of 5. In this
case Corollary 2 becomes:

CorOLLARY 2'. p = 1 4f and only if T; % {0} j=1,2 and iy =

This version of Property 1 has the following ana,log for the coefﬁcwnt of co-
herence.

TuroreM 1. Let X be a bivariate weakly stationary stochastic process with com-
ponent univariate processes Xy and X, and let 5N, My and M, be the linear subspaces
generated by these processes. Then there exist unique univariate weakly stationary
process X§? j = 1, 2 such that (i) X; = X + XP, (i) XP C My, and (iii)

Pgmem.

If £ = [fu] is the spectral density and p(N) s the coefficient of coherence of X,
then, for j = 1, 2, the spectral density, 9 of X{? is, to f equivalence,

SO0 = o) fu(N),
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and
FEN) = (1 =6 (N) fu(r).

g\) = [g h(l)‘)],

where b = fi,/(fos + I.) and I, is the set characteristic function of [f, = 0].
Then, since h fo» = fi2, a.e. (u), an easy computation establishes that

(14) gl = I:Pfll ;12] a.e.(u).

Thus, trfgfg du = trffdu < o,since0 < p =< 1.

Itis easﬂy verified that g£=g and gf = fg a.e. (u). Also, if u(A) = (wa(N),
u2(N)), ufu® — ugfg*u® = (1 — ) Jus/*fu = 0, ae. (n), and Property (iii) of
Corollary A is satisfied. Thus, g <> T ¢ T". Let ®, denote the range of T. We
will now establish that ®, = 9N, .

From Expression (10) and the definition of g,

Proor. Let

TX.(t) = f ™ dZ, |

and

By Theorem 4, , TX:(t) ¢ M, for all ¢, thus Ry C N, .

But, from Expression (15), ®7 contains the generators of 91, . Thus, since Ry is
closed, ; & ®r and we have shown that 5, = Q7.

The proof of the theorem now follows from the assignment: X{® = TX; and
X{® = (I — T)X,. The spectral densities f“) and f® are the elements in the
first row and first column of the matrices gfg* and (1 — g) f(1 — g)* = f —
gfg*, which can be read directly from Expressmn (14).

CorOLLARY 1.

A. Let To & T" be the projection determined by setting S = [p = O] m Corollary
B. If 5T is the linear subspace generated by ToX; j=1,2, then T3 L 5W5.

B. Moreover, if My L s for a process, X, then p(\) = O a.e. (u).

Proor.

A. An application of Theorem 1 to X yields

ToX; = ToX{® + ToX{,

where ToX{" C M) and T,X{® C ®r, © Ms. Moreover, it is easily seen that
the spectral density of ToX{" is

1 2
é) = IOP fll,

where p and fi; are the spectral parameters of X defined above.
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But oo’ = 0 a.e.(u) by definition of p and I, . Thus,

1T X = [ du =0, e <i<

which implies ToX; = ToX{?. Thus, M3 S Gz, © M3, or T} L M.

B. If 5y L M., then (Xi(s), Xz(¢)) = 0 for — © < i, s < . By virtue of
Equation (12) it follows that [ exp(ir\) fiz du = 0 for — < 7 < .The one-
to-one property of the Fourier transform on £;(x) then implies that fi, = 0 and,
thus, p = 0 a.e. (u).

COROLLARY 2.

A. Let T e T™ be the projection determined by setting S = [p = 1] in Corollary
B, and let 31} be the linear subspace of M generated by T1X;,j = 1, 2. Then M3
= 5, and W = {0}, 7 = 1, 2, if and only if u{lp = 1]} > 0.

B. If X s a bivariate process for which T, & My or e & My , then

o(A\) =1 whenever p(\) #0 ae. (u).

Proor.

A. Let I, denote the set characteristic function of [p = 1] Then applying
Theorem 1 to 71X, T:X; = T:X{® + T:X{¥ where T.X{" C ;. The spectral
density of T:X{? is I;(1 — p2) fu = 0a.e. (,u) which nnphes T:X® = {0}. Thus
T.X; C 513 which yields s C 3. The reverse inclusion is obtained in the same
way by exchanging the component processes of 71X before a,pplylng Theorem 1.
Moreover, since [p = 1] © (=i [fis > 0] and | T:X;(0)|° = [ Lfisdp, it is
clear that ETTZ? # {0},7 = 1,2, if and only if u{[p = 1]} > 0.

B. It suffices to consader the case 3M; < M, . In the notation of Theorem 1,
X, = X + X®. Then 5, C M, implies X{” = {0}, thus ff(z) du = [ (1
— p%) fu du = 0. But this implies [p = 1] 2 [fu > 0] 2 (-1 [fi; > 01 2 [o 5= 0]
a.e. (1) as was to be shown.

Results paralleling those of Corollaries 1 and 2 were first obtained by Kol-
mogorov (1941) in the discrete time parameter case. In his terminology, X; is
said to be subordinate to X; if ; & I, .

5. The analog of Property 2. Let £3(P) = £:(P) ~ {0}. The modulus of the
correlation coefficient, p(X), is then a measure of linear dependence defined for
all X = (X1, X») € X = [€5(P)]. Let T be a linear transformation from £,(P)
to £2(P) and let TX = (TX,;, TX.). For a given X £ X, let

T7 ={T|p(TX) = p(X)},

the class of linear transformations for which p is invariant at X. This class is
quite large It contains, for example, all operators whose restrictions to the
plane M = {¢,X; + ¢:X; | ¢1, ¢ complex} are rotations and reflections in .
It also contains all operators, T, such that

(16) TX; = a;X;, a; #0,5=1,2.
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We will denote the subclass of TF whose elements satisfy Expression (16) by
Ts. If we let 7 = {cX;|c complex}, j = 1, 2, it is easily seen that another
characterization of this subeclass (which we will need later in the time series
context) is

TS = {T| ToMF €M7 and 9(T) NS = {0},7 = 1,2},

where 91(7T) denotes the null space of 7.

In the construction of a function, H(X), to measure the degree of linear
relationship between the components of X, it is natural to require that the
function at least be invariant at X with respect to the class T4 for all X ¢ .
Physically, this means that each random variable can be independently subjected
to a series of possibly unknown linear transformations, and the linear relation-
ship of the original pair can be recovered by evaluating H at the resultant pair
of random variables. Put in another way, from the projective interpretation of
linear regression given by Property 1, a measure of linear relationship should
depend on the angular separation of 9; and 91, and not on the magnitudes of
their individual elements. Thus, we will require that

H(TX) = H(X) forall TeT?.

Another requirement which seems natural to impose on H(X) is that it depends
upon X through the intrinsic inner product structure of the Hilbert space £:(P)
restricted to M. That is, .

H(X) = V(”XIH» ”X2”, <X1 y X2)),

for some function V.

The modulus of the correlation coefficient clearly satisfies both of these require-
ments. It is the purpose of Theorem 2 to demonstrate that, in a sense to be made
precise, it is the only measure of linear relationship on 9 which does satisfy both
requirements. This is the characterization of p(X) we have called Property 2.

Let V be the class of all ordered pairs (V, «) where V is a function such that
Dy, the domain of V, contains the subset ® = {(z, y, 2)| 2| < zy, 2 = 0, y
= 0} of complex Euclidean 3 space, and « is an equivalence relation on V(D).
Similarly, let W be the class of all ordered pairs (W, ) where W is a function
such that Dy contains the real (closed) interval § = [0, 1] and 8 is an equivalence
relation on W(9).

TureoreMm 2. If H(X) is any function defined on X which satisfies the conditions,
(1) H(X) a V(| Xall, IXall, (X1, X2)), and (i) H(TX) a H(X) for all T ¢ Ts,
then there exists (W, 8) € W such that W(9) € V(D), B = a restricted to W(9),
and

H(X) a W(p(X)).
Proor. For each X & & let
a(X) = exp (— darg (X1, X2))/[| Xl
ax(X) = 1/[Xa],
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where —7 < arg 2 < m, arg 0 = 0, and let T be defined on 5 by

TX; = a;(X)X;,j = 1,2. Then, Conditions (i) and (ii) imply
H(X)aH(TX)
a V(Jlar(X) X, [laz(X) Xol|, (a2(X) X1, a2(X) X))
a V(1,1, (X1, Xo)|/l|1Xu]| [|Xe]])-

Thus,
W(P) « V(l) 1, P))

and the theorem is established.

The class of functions which would make reasonable measures of linear relation-
ship is much smaller than the one described, in that V(9) and W(d) should,
at least, possess complete linear orders. However, such a requirement is not
needed in the proof of the Theorem.

In order to obtain the analogous result for the coefficient of coherence we must
augment our previous notation slightly to permit the discussion of a class of
stochastic processes. As before, u will be a fixed Lebesgue-Stieltjes measure.

Let %, be the class of all bivariate, weakly stationary stochastic processes
whose spectral distributions are absolutely continuous with respect to u. With
the usual identification of Radon-Nikodym derivatives according to u-equiv-
alence, the class &, is in one-to-one correspondence with the set of spectral
densities, f*, of processes X ¢ %, . Now, each X ¢ &, determines a group of uni-
tary operators, U¥ = {Uf] — o < ¢ < «}, on is span, 5T", and the classes
G* and T* and the spaces 3] and 5T can be defined as in Section 3.

Let H(X) be a function defined for all X ¢ %, . As in the case of the correlation
coefficient, in order that H(X) qualify as an admissible measure of linear relation-
ship for the component processes of X, it will be required to satisfy two con-
ditions. First, for each X, H(X) must depend on X through the intrinsic £:(P)
inner product structure in the subspace 5. By Expression (3), this requirement
will be met if, for each X ¢ &, , H(X) is a function, H(X, X\), of the spectral
density of X. The precise form to be assumed for this dependence will be given
shortly.

Second, H(X) will be required to be invariant under the class of non-trivial
operators in T* which do not “intermix” the component processes of X. That is,
H(X) is to be invariant for all 7" in the class

TZ = {TeT*|Tonf C 5 and 9(T) NFWT = {0},5 = 1,2}

Physically, this means that the components of a bivariate time series can be
independently passed through a series of possibly unknown linear filters and the
linear relationship of the original components can be recovered by a measurement
on the final time series. The first requirement implies that this measurement can
be obtained from an analysis of the spectrum of the bivariate time series. This is
an appealing property from a practical standpoint as time series analysts are
generally well equipped to estimate power spectra.
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The coefficient of coherence clearly satisfies the first requirement. The fol-
lowing lemma will be needed to establish that it also satisfies the second.

LemMA 1. Let X be an element of X, with spectral density £* = [fi]. If g =
lgi] <> T & T*, then T & Tt if and only if

(l) Ji2 = Ja = 0 a.e. (fX)

(i) g;; # 0 ae. (ff),7 = 1, 2.

Proor. We delete the superscript X in the proof. It will be shown that Con-
dition (i) is equivalent to 7911; C 9;, 7 = 1, 2, and Condition (ii) is equivalent
to 9U(T) NI, = {0},7 = 1,2.

1. Let T e T be such that T9n; & f,;,7 = 1, 2, and let 7 <> g. Let T; be

the restriction of T' to 917; . Then by Theorem A; there exist functions, 4; , such
that [ |&,|*fijdu < « and T;X,;(t) = [exp(it\) h; dZ;,j = 1, 2.

Let,
. [h o
£ 70 nl

Then tr [ g'fg™ du = D =1 [ |hi]’fi;du < o, which implies g’ ¢ G. Thus,
there exists 7" ¢ T such that T° <> g’ and T; = T;,; = 1, 2. But, by definition
of M, every T ¢ T is uniquely determined on 9 by its restrictions to 91; and
M, , and uniquely determines g up to f equivalence by its values on 9. Thus,
g = g'. The converse result is obtained by an easy application of Theorems A
and A; .

2. Let R; be the projection on 9N determined by setting S = [g;; = 0] in
Corollary B, and let 9] be the linear manifold generated by Xj = R,X;,j =
1, 2. By Corollary B, || X3(t)|* = [ I.f;;du, where I; is the set characteristic
function of [g;, = 0]. Thus, 9; = M7 = {0} if and only if g;; < 0 a.e. (f;;). The
proof of the lemma will be completed by showing that

my; S w(T) N; S Sy for j=1,2.
By Theorem A, , M7 € D(T) and |TX;(#)||> = [ |g;i* 1.f; du. But, by defini-
tion of I, , |g;;* I;fi; = 0 a.e. (u). Thus TN = {0}, which implies 91 < 9(T).
By the one dimensional version of Corollary B, Xj C 5%, . Thus, o) S 9¢(T)
NM;,j = 1,2 Let Y;eq(T) N M. Then, as indicated in Section 3 for the
bivariate case, there exists a measurable, complex valued function y; on ® such
that [ |y/*fijdu < w and V; = [y,dZ;.

Now, Y; e 9(T) implies TY; = [ g;;y,dZ, = 0, where T <> g = [g;]. But,
Y, =R;Y;+ (1 — R;) Y;, where R; is the above defined projection. Thus,
T(1—R;)Y; =0, and [[T(1 —R)) Y,|* = [lgss* (1 — I,) ly,I* fis du = 0,
which implies that |g,,]* (1 — I,) |y;| = 0 a.e. (f;;). But |g;;|* (1 — I;) > 0 on
l[g;; # 0] by definition of I;, thus y;(1 — I;) = 0 a.e. (f;;). This implies (1
—R,;)Y,;=0; hence, Y; = R,Y, ¢ 9} From this we obtain the inclusion
N(T) NF; C My, 7 = 1,2, and the lemma is proved.

THEOREM 3. Let the coefficient of coherence for X € X, be denoted by p(X, \).
Then

o(TX,\) = p(X,\) a.e. (u) forall TeTs.
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Proor. Let T ¢ Ts and g <> T'. Then, by Lemma 1 and Theorem A, the spectral

density of TX is
lgul2fu g1 G2 fiz
gfg* = [ i Nt
11 go2 for lgzzl Joo

where |g;;] > Oa.e. (u)on[f;; > 01,7 = 1, 2.
Thus,

p'(TX, ) = |gufnaful’/lgul* fu lgel’ for = Ifuel/fufor = (X, +)

a.e. (u) on Mj-1lfi; > 0]

On U%i [f5; = 0], o(TX,A) = 0 = p(X, 7) a.e. (u) independent of the values
of gjj .

We now establish the analog of Property 2, as given by Theorem 2, for the
coefficient of coherence. In order to insure that the functions H(X, -) will be
measurable and to make allowance for the possible zeros of the spectral densities
f1;, we will modify the classes V and W defined above in the following manner.

Let V' be the class of all ordered triples (V, , ®v) such that ®y is a sigma
field of subsets of V(D) satisfying the following conditions:

(i) ®y contains the elements of the partition of V(D) induced by «,

(ii) V is measurable with respect to ®y and the restriction of the Borel sets of
complex Euclidean 3 space to 9.

(iii) (0,0,0) «V(1,0,0) 2 V(0, 1,0) « V(1, 1, 0).

Let W’ be the class of all ordered triples (W, 8, %) such that Gy is a sigma
field of subsets of W(4g) satisfying the conditions:

(i) ®w contains the elements of the partition of W(g) induced by 8,

(ii) W is measurable with respect to ®» and the restriction of the Borel sets of
® to 4.

TrEOREM 4. If H(X, \) s a function on X, X ® such that there exists (V, a,
®v) € V' which satisfy the conditions:

mgi) H(X, \) a V(fii(A), f2(N), f2(V)) a.e. (u)
a

(ii) H(TX,\) e« H(X, \) a.e. (u) for all T ¢ T3,
then there exists (W, 8, ®w) ¢ W' such that W(3) C V(D), B = « restricted to
W(g), Bw & By and .

H(X,\) aW(p(X,1)) ae (n).

Proor. Fix X ¢ X, . Define the bi-sequence of 2 X 2 matrix valued functions

{8 — © <n < o} by
[hl,n O ]
g = ’
0 h2,n

hin = Linexp(— darg fio) /[(FE) + (1 — L))+ (1 = ),
how = La/l(fR) + (1 = L)+ (1 = L), ae. (u),

where
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and ;. is the set characteristic function of [f;; > 0] N [n < X < n + 1]. Now,
it is easily verified that

2
trfg,,fxgj dp = ), f hsalf3s du < 2 + trffx du < .
j=1

Since %j., % 0 a.e. (1), g <> T» € TY, by Lemma 1. Thus, the application of
Conditions (i) and (ii) of the theorem statement yields, by a straightforward
computation,

H(X, ") a H(T.X, -) « V(L, 1, |f5l/(fif2)?), ae. (u)
onn§=1[ff,~>0]ﬂ[n<>\§n+l], for n=0,+1,4+2,---.Thus
H(X,\) aW(p(X,)\)) ae. (u)

on Ni=11f5 > 0], where W(p) a V(1,1,p).
Now, Ul [f5; = 0] € [o(X, ) = 0]. But Condition (iii) on the elements of
V' guarantees that

H(X,\) aW(0) ae. (u) on [p(X, ) =0]
Thus, the theorem is proved.

6. Special cases. The class of possible dominating measures, u, for a given
stochastic process is determined by an extension of Lebesgue’s decomposition
theorem to matrix valued functions due to Cramér (1940, Theorem 2). We quote
a version of this theorem due to Masani (1959).

TueorReM B. Let F = [Fy;] be a ¢ X q matriz valued function on [a, b] which is
monotone increasing, i.e. F(\) — F(\') is non-negative definite and hermitian for
A > N, and let

FO = [Fi), B9 = [F), F® = [P,

where F$P, F$P, F are the absolutely continuous, discrete and singular parts of
the function F:; (which is necessarily of bounded variation). Then F, F® and
F® are themselves monotone increasing on [a, b].

This theorem with Corollary B provides an easy proof to a corresponding
decomposition of g-variate, weakly stationary stochastic processes originally
established by Rozanov (1958) in the case of discrete time. We give the proof
for the bivariate case.

TureoreM 5. Let X be a bivariate, weakly stationary stochastic process with
spectral distribution function F, and let F®, F® and F® be the components of F
giwen in Theorem B. Then

X = X? 4 X@ 4 X,

where X® is a bivariate, weakly stationary process with spectral distribution function
F? 2z = a,d,s.

Proor. Let u? be the signed measure induced on (®, ®) by the component
F2 of F® and let 4@ = u? + u$s, = a, d, s. Then, it follows from Theorem
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B that u® dominates uf;’ for 7, j = 1, 2, and that there exists a measurable
partition { S, §?, 8} of @& such that x® (8®) = 0 for z = y.

Let p = u® + u + 4. Then F is absolutely continuous with respect to
and possesses a u-spectral density function f. We are now in a situation where
Theorem A applies to X and f.

Two applications of Corollary B with § = 8, and § = S yield

X = TX + T9X 4 T“X,

where T is the projection determined by 8. This is the desired decomposition
with X® = T@X.

The spectral density of X with respect to g, is f© = I'“f, where I is the
se(t)characteristic function of 8. Thus, the spectral distribution function of
X is

)N A A
G(l)(}\) = f I(I)f d/.L — f I(I) dF = f dF(z) — F(I)(X),

since p® (8®) = 0 implies that ﬂi I® dF® = 0 for all @ < b. The theorem is
proved.

Let ux denote the measure, defined in Theorem 5, which dominates the spec-
tral distribution F* of a bivariate process X. It is easily seen that a Lebesgue-
Stieltjes measure u dominates F* if and only if it dominates ux . Thus, the class
of measures for which the u-coefficient of coherence for X is defined, is M* =
{u | ux <K u.

We now show that the coefficient of coherence is, in a sense, independent of the
particular measure u ¢ M* chosen to define it.

THEOREM 6. If p.(\) denotes the u-coefficient of coherence of X, then

pu(X) = puy(N) a.e. (ux)

for all p e M*,

Proor. Fix u ¢ M*. Let £* be the spectral density of F* with respect to ux ,
f the spectral density of F* with respect to u, and let a(\) be the Radon-Nikodym
derivative of ux with respect to u. Then, the chain rule for these derivatives
yields

f(N) = aMFF(\)  ae. (u).

Now, a straightforward argument paralleling that of the proof of Theorem 3
implies that, except for a ux null set, [p, # o] € A = [@ = 0]. But
ux(4) = f I4adu = 0, where I, is the set characteristic function of A. Thus,
ux([os # pug]) = 0 as was to be shown.

The special cases of particular interest from the viewpoint of physical appli-
cations are the following:

1. ;1 = Lebesgue measure. X,, contains all processes of the form X = X
(Theorem 5).
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2. u is point measure on a countable set S (i.e. ux({z}) = 1 for all z £ S).
Then &,, contains all processes X = X such that
if S7 is the set of discontinuity points of F; ,j = 1, 2, then

ST U Sy C 8.

3. us = m + p2. X, contains all processes X = X + X where X ¢ «,,, ,
X9 ea,,.
If p; is the u;-coefficient of coherence of X ¢ &, , then it can be shown that

ps(A) = p(A) + ;(N)  ae. (u + ui”).

Several applications in which the coefficient of coherence occurs as an im-
portant parameter are given in (Amos and Koopmans. 1963).
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