BOUNDS FOR DISTRIBUTIONS WITH MONOTONE HAZARD RATE, I

By Ricaarp E. BARLOW! AND ALBERT W. MARSHALL

University of California, Berkeley, and Boeing Scientific Research Laboratories

1. Introduction. If F is a probability distribution such that F(0—) = 0 and
f3° 2" dF(z) = pu, < o, and if , £ > 0, then according to Markov’s inequality,

01— F(t) 24/, tZ

<1, t

(1.1)

A

Mr o

This inequality is known to be sharp; indeed, for each positive r and ¢ there
exist distributions satisfying the conditions of (1.1) and attaining equality.

A number of improvements of (1.1) have been obtained under additional
assumptions about the distribution F. Perhaps the most notable of these is the
result of Gauss (1821) which applies in case 1 — F(x) is convex in z = 0, and
predates any version of (1.1). Hypotheses similar to that of Gauss have been
used by a number of authors to obtain improvements; much of this work has
been summarized by Fréchet (1950). Improvements of the classical bounds were
studied by Mallows (1956) under restrictions on the number of sign changes of
some derivative of the distribution, and also with restrictions on the size of the
derivative. This work extends the result of Gauss as well as that of Markov (1898)
which utilized bounds on the density. Recently, Mallows (1963) has utilized the
methods and results of Krein (1951) to extend his earlier work, and has obtained
inequalities on distributions having n specified moments and whose first s
derivatives satisfy certain boundedness and sign change conditions.

In this paper, we obtain sharp upper and lower bounds for 1 — F(¢) under a
variety of conditions, particularly that the hazard rate is monotone. These con-
ditions are of interest for two reasons: First, they are sufficient to yield quite
striking improvements of (1.1), and second, they are natural to many situations
in life testing, reliability, actuarial science, and other areas of statistical interest.

A distribution F is said to have increasing (decreasing ) hazard rate, denoted by
IHR(DHR), if log[l — F(«)] is concave where finite (convex on [0, «)).
If F has a density f, then the ratio ¢(x) = f(x)/[1 — F(z)]is defined for F(z) < 1,
and is called the hazard rate. It is easily seen that log[l — F(z)] is concave
(convex) in ¢ = 0 if and only if there exists a version of the density f for which
g(z) is increasing (decreasing) inz = 0.

The practical interest of the hazard rate derives from its probabilistic in-
terpretation: If F is a life distribution, then ¢(x) de may be regarded as the
conditional probability of death in (z, x + dx) given survival to age x.

The property of monotone hazard rate is connected with the theory of total
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MONOTONE HAZARD RATE, I 1235

positivity in the following way. A distribution F is IHR if and only if 1 — F(z — y)
is totally positive of order 2 in real z and y (see Schoenberg (1951) for a definition
of terms). A distribution F is DHR if and only if 1 — F(x + y) is totally posi-
tive of order 2 in # + y = 0. Properties of distributions with monotone hazard
rate have been investigated by Barlow, Marshall and Proschan (1963).

We pay particular attention to the question of sharpness of the inequalities
given, and to the conditions for equality. Examples attaining equality serve
not only to prove sharpness, but also indicate what stronger assumptions may
yield a further improvement of the inequality. For if a property is enjoyed by a
distribution attaining equality, then the assumption of that property cannot
result in further improvement. Where uniqueness of a distribution attaining
equality can be shown, then of course strict inequality holds in all other cases.

The statement of (1.1) for » > 0 is in reality no more general than its state-
ment for » = 1. This is because of the fact that for r = 1, (1.1) may be written
in the form P{X = ¢} < p/t where y = E(X). With X = Y”, one then obtains
(1.1) for arbitrary » > 0. The results of this paper cannot be so simply extended,
because the property of monotone hazard rate need not be preserved under a
transformation of the form X = Y.

Throughout this paper we assume unless otherwise stated that distributions
are left continuous.

2. Methods of proof. If X is a random variable satisfying P{X ¢ I} = 1 and
certain moments of X are known, there is a standard method for obtaining a
sharp upper bound for the probability that X lies in some specified set 5 C I.
If @ is the class of polynomials h(z) = 2 aa’ where (i) @; = 0 unless the jth
moment of X is known, and (ii) 2(z) dominates the characteristic (indicator)
function of 3 on I, then

(2.1) P{X £5} < inf, Bh(X)

(see Marshall and Olkin (1961) for a more general discussion ). The usual proof
of Markov’s inequality (1.1) is of this form where the minimizing polynomial
is 2"/t

This proof of Markov’s inequality does not seem adaptable to the case in which
other kinds of information are available about the distribution 7. We consider
an alternate proof based upon the following lemma: If ¢ is an increasing function
on [0, ») and Gy, Gy are probability distributions satisfying Gi(z) < Ga(z) for
all x, then

(22) [ @) di(@) 2 [ () du(o).
0— 0—
To apply this, observe that
1—F(z) 21— Gz) =1, z <0
(2.3) =1— F(t), 0O=sz=t

I
=
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1236 RICHARD E. BARLOW AND ALBERT W. MARSHALL
Then since 27/¢' is increasing in z,
b= Far@ z [ Td6) =1 FQ).
0— 0—

Some kinds of information about F readily yield a sharpening of (2.3) with
consequent improvement of (1.1), and we illustrate with two simple examples.
Example 2.1. If F(z) is convex in (0, t), then

1—F(z) 21— zF@)/t, =t

20, x>t
Using this, one obtains
(24) 1—F(@) = w/t" — (1/r)(1 — /1),

an improvement of (1.1) due to Narumi (1923).

Example 2.2. If 1 — F(z) is convex, z = 0 (e.g., if F is the distribution of a
random variable X = |Y| where Y has a density with unique mode at 0), then
1 — F(z) has a supporting line at ¢ > 0, so that there exists « < 1 such that

(25) 1 —F(z) =1, <0
2a+[l—F)—al/t, 0 2z < at/la — 1+ F@)]
= 0, z Z at/la — 1 4+ F(2)].

Thus for some o < 1, pr 2 (at)™/(r + Dt(a — 1 + F())", or

(2.6) 1—F@) £ a—a™/r + 1) = o(a).

Though we have no way of obtaining & to satisfy (2.5), we do obtain a valid bound
by maximizing ¢(a) for @ < 1. This maximum oceurs at a = mi"/t(r + 1)
ift=rm/(r4+ 1) =t ,andat @ = 1if ¢ < 4. Thus

1—F(t) =1 —t/(r + 1)ul7 t < b
= [w/Cllr/(r + D] t=t.

This result was partially obtained by Camp (1922) and Meidell (1922) and has
been given by Fréchet (1950). For r = 2, it is essentially equivalent to Gauss’
result of 1821, and the method of the above proof is due to Gauss.

The method of Example 2.2 has the disadvantage of providing no inequality
unless the problem of maximizing ¢ can be solved; this is in contrast to the method
utilizing (2.1), where a valid bound is provided by any & satisfying (i) and (ii).

We mention two other useful methods. Inequality (3.8) can be obtained by an
application of Jensen’s inequality, as can (2.7) in case t < #,. Finally, we give
another proof of (1.1) which, suitably modified, yields a simple proof of Theorem
3.9. The distribution G defined by

1— G(z) =1, <0

IIA

2.7)



MONOTONE HAZARD RATE, I 1237

=/t 0=z2<t
=0, =t

has rth moment u, = f o " dF(x). Hence F and G must cross at least once;
such a crossing can occur only in the interval (0, t), and thus 1 — F(¢) =
1 — G(t) = u/t. The ideas of this proof are also useful in the following com-
panion paper (Barlow and Marshall (1964)), where more than one moment is
known.

3. Bounds for 1 — F when F has monotone hazard rate. We introduce this
section with some general lemmas that are later applied to obtain more specific

results.
Let ¢t > 0,

IA

1 — Guu(x)

2,

1; . X

— w(z—z)l(t-—z), z

1%

z?
and let 1 — Gz(a:) =1- G,;l._p(g)(x).

LemMa 3.1. Let F be IHR, F(0) = 0. Let { be a function strictly increasing on
[0, w ) such that [o ¢(x) dF (x) = v exists finitely. Then

¢(’ll)) = SUPo<-<:¢ .[)‘m f(x) dGz;w(x)

1s strictly increasing, and of ¢(1 — F(t)) < oo,
1—F(t) 2 ¢ (»), () = v

@1) 2 0, e(t) >,

where ¢ (v) = sup {w:¢(w) = »}.

Proor. Note that G...,(z) is decreasing in w for fixed x and 2. Since { is strictly
increasing, this means [¢ {(z) dG,w(x) is strictly increasing in w, so Y(w) is
strictly increasing. Since ¢(0) = ¢(¢), ¢ '(») is defined when {(¢) < ».

Since log[l — F(z)] is concave, there exists 2y, 0 < 2o < ¢ such that F(z) =
G, (z) for all z. Since ¢ is increasing,

v= [ et are) < | " (@) ()
(3.2) »
< supoggtfo ¢(z) dG.(z) = ¢(1 — F(1))

and (3.1) follows.||

Note that no use was made of the condition #(0) = 0 other than to confine
2o to [0, {] rather than (— o, ¢].

Lemma 3.1°. If £(t) < v and ¢ is continuous at v, equality is attained in (3.1)

uniquely by the distribution G.e.y-10y(x), where 2" is defined by

/0 §(@) dGosy—10 () = Supogz§t/0 ¢(@) dG.y—10)(2).
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If ¢(¢) > v and {(s) = v has a solution, then, e.g., the distribution degenerate at s
achieves equality.
Proor. If {(¢) < », then ¢ '(v) exists. Since y is continuous at »,

v = p(¥ () = supose=e [ £(2) dGiy-100 ()

= /0\ f(x) dGz";nl/_l(v)(x) = ‘l/[l - Gz‘;lﬁ_l(v)(t)]y

so that the hypotheses of Lemma 3.1 are satisfied when F = G,«.y-1( and equality
is attained. Uniqueness follows from the fact that equality must hold in (3.2)
if it holds in (3.1).]|

Lemma 3.2. If the conditions of Lemma 3.1 are satisfied and if, in addition,
¢ 4s convex, then (1 — F(t)) = [o ¢(x) dGo(x) whenever ¢(t) < .

Proor.

fo " (@) dx) = —t%é f ¢(z) exp (f—:f L) dx

=‘—Lf0m c(2(1 = y) + ty)e" dy = o(2),

where L = log[1 — F(t)]. Since { is convex, ¢ is also convex, and supo<.<: ¢(2) =
¢(0) or o(¢). If ¢(¢) < », then supo<.<: ¢(2) = ¢(t) implies by (3.2) that
Y(1 — F(t)) = ¢(t) = ¢(t) = », a contradiction, so that ¢(1 — F(¢)) =
Supo<.<t0(2) = (0) = [7 ¢(x) dGo(x). If £(t) = », the result follows by lim-
iting arguments. |

From (3.2) and Lemma 3.2, it follows that if { is strictly increasing and con-
vex on [0, »), and if {(¢) < », then

vy = /om ¢(x) dF(2) = /Om F(x)we ™ dx

where w = —¢ " log(1 — F(¢)). This inequality is to be compared with the
inequality
(33) [ 1@ are) s [ e Lea

0 0 M1

where y; = f8° 2z dF(x) and ¢ need only be convex. Inequality (3.3) follows from
an integration by parts and the fact (Karlin, Proschan and Barlow (1961))
that 1 — F(z) crosses ¢ “/* exactly once, the crossing being from above. In-
equality (3.3) is due to Karlin and Novikoff (1963).

LemMA 3.3. Let F be IHR, F(0) = 0. Let ¢ be a function strictly decreasing on
[0, = ) suchthat [ ¢(x) dF () = v exists finitely. Thenv = infoc.<; [o () dG.(2),

Pw) = infogezs [ £(2) dGunle)



MONOTONE HAZARD RATE, I 1239

18 strictly decreasing, and
1—F(t) =z ¢ (), O’
(3.4) ( () (
= 0, @) <,

where ¢ (v) = inf {w:y(w) = »}.

The proof of Lemma 3.3 is essentially the same as the proof of Lemma 3.1,
and will be omitted. The obvious analogs of Lemma 3.1" and of Lemma 3.2 with
concavity replacing convexity are also omitted. Let

1— Hi(z) =¢%, x =i
= 0, x>t

LeEmMmA 3.4. Let F be THR, F(0) = 0, and let ¢ be a function strictly increasing
on [0, ) such that [ ¢(z) dF (z) = v exists finitely. Then v = [5 ¢(z) dHa(x)
has a solution ay if and only if v < (1) ; in this case, ao ts unique, and

1-F@) =1 v = ¢(1)
L™ y < ¢(2).

lIA

(3.5)

Proor. There is at most one crossing of 1 — H,(xz) by 1 — F(z) in (0, ¢),
and if such a crossing exists, it is from above (Karlin, Proschan, Barlow (1961)).
If ao exists, » = [5 ¢(2) dF(z) = [o ¢(x) dHa(x) and ¢ strictly increasing
implies F and H,, are not stochastically ordered. Thus 1 — F(t) < ¢ ™.

If ao exists, then » = [7 ¢(z) dHoo(z) < [7 ¢(x) dHo(z) = £(2);if £(2) =
then ¢(t) = [7 ¢(x) dHo(z) = » = £(0) = limew [0 £(x) dHa(z) together
with continuity of f o {(x) dH,(z) implies ay exists. Uniqueness of ao follows
from the stochastic ordering of the H, and monotonicity of {.||

Remark. Examination of the above proof shows that (3.5) still holds if the hy-
pothesis that 7 is IHR is replaced by the weaker condition that z ' log[l — F(z)]
is decreasing in z < ¢.

Lemma 3.4". If ao exists, then equality in (3.5) is uniquely attained by H.,, .
If aq does not exist and ¢ is continuous, then {(s) = v has a solution sy > t and
the distribution degenerate at s, attains equality.

Proor. We need only prove uniqueness when a, exists. Since log[l — F(z)]
is concave, 1 — F(t) = 1 — H,,(¢) implies 1 — F(z) = 1 — Hq(z) forall z in
[0, ], and hence for all z. This together with » = [7 ¢(z) dHoao(z) = [7 ¢(z) dF (x)
implies 1 — F(z) = 1 — Hg () for all z.||

ReEMArk. In case » £ ¢(¢), and F is right continuous equality cannot be

attained in (3.5), but the bound can be approximated by a distribution of the
form

1— H(z) = ¢, z<t+e
= 0, zTZ1l+ ¢
where a, is determined by [¢ ¢(z) dH(z) = ».
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The analog of Lemma, 3.4 for decreasing ¢ is straightforward, and is omitted.
Let t > 0,
1 — Kaw(z) = a(w/a)™, 0z2w<azgl z=0
=1, z <0,
and let
1— Ko(z) =1 — Karrpy(x).
LemMmA 3.5. Let F be DHR, F(0—) = 0. Let { be a function strictly increasing
on [0, ) such that [o- ¢(x) dF(x) = v exists finitely. Then
$0) = vtz [ 1(2) dKaa(2)

1s strictly increasing, and
(3.6) 1 —F(t) =¥ (»),

where ¥ (v) = inf {wig(w) = »} < 1.
Proor. Since log[l — F(z)]is convex and ¢ > 0, there exists ap < 1 such that
1 — Kg(z) £ 1 — F(2) for all z. Since { is increasing,

v= [[t@ are) 2 [ s() dKu@)

2 infizoro [ §(2) dKL(2) = ¥(1 = F(D).

As in the proof of Lemma 3.1, ¢(w) is strictly increasing in w, so that (3.6)
follows if ¢ '(w) is defined. But {w:¢(w) = »} is not empty, since

limy 11 ¢(w) = lim“l"/o (z)ae™ dx

= limy-e limalof f(x)ae™™ dx = limyse (M) > .
M

Since lim,.: ¥ (w) > », there exists w < 1 satisfying ¢(w) > ». This implies
V) <1

Lemma 3.5, Equality is attained in (3.6) uniquely by the distribution
Koxy—10y(2), where o™ is defined by

fo (@) dK e g1 (2) = infasymin [ (@) dKagm10(2).

The proof of this is similar to the proof of Lemma 3.1". We omit the analog of
Lemma 3.5 for decreasing {; its statement is obtained by substituting the words
“decreasing” for “increasing’’ and “supremum”’ for “infimum” in the statement
of Lemma 3.5. The direction of inequality (3.6) is then unchanged.
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LemMMA 3.6. Let F be DHR, F(0) = 0, and let  be a strictly decreasing posi-
tive function on [0, ) such that [o- ¢ (x) dF (x) = v exists finitely. Then

Y(w) = ‘4 —;l%givwxltf(x) dz

is continuous and strictly increasing in w & [0, 1], and
(3.7) 1—F@t) =z ¢ '(») >0.

Proor. Since ¢ is positive and log[l — F(z)] is convex,

v= [ ¢ dFG) 2 [ t6e) artz)

2 [ Ct(@) d(1 — [1 = FOF") = y(1 — F()).

One concludes that ¢ is continuous and strictly decreasing, that lim,.o ¢(w) =
¢(0) > » and that lim,-; ¢(w) = O by considering the integrand in the defini-
tion of ¥. Thus ¢ '(») exists. Since » > 0, it follows that v (») > 0.

Lemma 3.6". Equality is attained in (3.7) uniquely by the (improper) distribu-
tion

1— G(z) = W), 0<z=t
= '/’_1(1')) r =t

If limpae [ ¢(x)ae ™ dz = 0 uniformly in a, 0 < a < & for some & > 0, then
for sufficiently small € > 0, there exists a proper distribution satisfying the condi-
tions of Lemma 3.6 with the value 1 — ¥~'(v) — e at t, so that no sharpening of

(3.7) is possible.
Before proving this result, we note that lim,.., {(z) = 0 implies

Tt f ¢(2)ae™ do < limpas £(m) = 0,

so that the limit is uniform in a.

Proor. Choose € so small that [o- ¢(z) d{1 — [W'(») + 7} > », possible
since lime.o [i- ¢(2) d{1 — W7() + 7 = [i- (@) dfl — WO} = »,
and since ¢(z) > 0 for all z. Choose ao to satisfy [% ¢(x) dGa(2z) = », where

1 — Go(z) = W) + 47, 0<z=st

= 7)) + g, x =t

In order to show that a, exists, note first that by choice of ¢, f o £(z) dGo(z) > »
when g = —¢* log[n//_l( ») + €. Then since {(z) is uniformly integrable with
respect to G,, @ < 8, lima.o [o-¢(x) dGa(z) = [o- ¢(x) dGo(z) < v [Lodve

(1960), p. 183]. By continuity of [¢-¢(z) dGa(x), ao exists. Since ao <
—t" logly ' (v) + €|, Go, is DHR.||

%
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We do not give an analog to Lemma 3.6 for {(¢) increasing; instead we prove
Lemma 3.7. Let F be DHR, F(0) = 0. If ¢(x) %s an increasing function on
[0, ) such that lim,.., {(z) = » and such that [¢-¢(z) dF(z) = v < o, then
the inequality 1 — F(t) = 0 is sharp for all t > 0. That is, no non-trivial lower

bound can be given.
ProoF. Since » < o, [¢ ¢(x)be ¥ dx < o for all b > by = limg.., F'(z)/
[1 — F(z)], where F'(z) = dF(z)/dz. Let

o= b= 01 /[ [ st e - SO

Then lim, 5, ¢ = [» — $(0)])/[limz,« $(x) — £(0)] = 0, so that for b — b, suf-
ficiently small,

1 — Gy(zx) =1, <0

= qe %, =0

is a distribution function satisfying the conditions of the lemma. But lim;.s, 1 —
Gy(t) = 0.

Lemma 3.7 is still true even when a density is required to exist, as can be
seen by considering distributions of the form

1— G(z) =", 0sz<t

— e_ﬂﬁ_(a—ﬂ)t’ T g ¢

where [¢ {(2)ae ** dz < v and B is determined by [7 ¢(x) dG(z) = ».

3.1. Bounds for 1 — F, rth moment given.
TreorEM 3.8. If Fis ITHR, F(0) = 0,r = 1 and f8° 2" dF (x) = p,, then

38 1 — F(t) = explt/\), t< "
3.
= 0) > 'u}‘/f’

where N, = u,/T'(r + 1). This inequality s sharp.

Proor. This theorem is an immediate application of Lemmas 3.1, 3.1" and
3.2, where {(z) = z".||

In case r = 1 and F is continuous, (3.8) has an elegant direct proof. Since
log[1 — F(z)] is concave, it follows from Jensen’s inequality that

logll — F(\)] = fom logll — F(z)] dF(z) = fol log(1 — u) du = —1,

hence 1 — F(\;) = ¢ . Since [I — F()]"* = [1 — FOW]"™ for¢t = N (see
Barlow, Proschan and Marshall, 1963), we have 1 — F(¢) = ¢ ‘™|

The above proof can be easily modified with limiting arguments to include the
case that F is not continuous. S. Karlin has pointed out that this proof can also
be generalized to include the cases r > 1.

THEOREM 3.9. Let F be IHR, F(0) = 0,7 > 0, and [ 2’ dF(x) = .. Then
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1
(3.9) wr = i f 2 w” da
0
has a solution wo if and only if ¢ = ui'™. In this ease, wo is unique, and
1—Fi) =1 t< ul”
(3.10) ’ ¥
= wo, t = pr.

This inequality vs sharp.

Proor. This theorem is a special case of Lemmas 3.4 and 3.4".|

Again we give a simple, direct proof different from that given for Lemma 3.4.
Since F is THR, [1 — F(z)]"* is decreasing, and

e = fw ra™ 1 — F(z)] de = ftm’"l[l — FO)J" dx
(3.11) o
= fo v — FOF dy = (1 — F(1)).

Differentiation easily yields the result that ¢(w) is strictly increasing in [0, 1];
furthermore, ¢(0) = 0, (1) = ¢ Since t" = u, , there exists a unique w, such
that o(wy) = u, . Monotonicity of ¢ together with (1 — F(¢)) = u, implies that
wo = 1 — F(t)”

Of course, bounds for distribution functions also yield bounds for percentiles.
Specifically, for 0 < p < 1, let £, be a solution of F(£,) < p < F(&+). If
L(t) £ F(t) = U(1), these inequalities together imply L(,) £ p < U(&+),
and if we define L™ (z) = sup {y:L(y) < «}, U (z) = inf {y:U(y) = z}, then
U'(p) £ & = L7\ (p). Bounds for £, obtainable in this way from (3.8) and
(3.9) are given in

CoRroLLARY 3.10. If F 4s IHR, F(0) = 0 and [¢ «" dF (x) = u,, then

1 —1/r
" [fo ry (1 — p)? dy] Z & = =N log(l — p),
(3.12) p =1 — exp{—[I'(r+ 1)]'"}

1/r
Br oy

p>1— exp{—[TI'(r+ 1)}

(\%

where \, = u,/T(r + 1).

Proor. The lower bound for £, follows directly from (3.8) and the definition
of U™". The upper bound follows from (3.11) with ¢ = &,, 1 — F(t) = p.||

Note that distributions which attain equality in (3.8) and (3.10) also attain
equality in Corollary 3.10.

The case p = %, r = 1is of special interest, and yields u; log2 £ M < 2y, log 2
where M is the median.

TurorEM 3.11. If F 4s DHR, F(0) = 0,7 > O and [7 2" dF(z) = u, < =,
then



1244 RICHARD E. BARLOW AND ALBERT W. MARSHALL

1 — F(t) £ exp(—t/\"), t < N

(313) r —r 'r r—r —7 1r
S [Fe7/T(r + Dlp/t] = 7t N, , t =N,

This inequality ts sharp.
Proor. We obtain the bound from Lemma 3.5, with {(z) = 2", and

f ¢(2) dKou(z) = ' T(r + 1)(log a/w)~,
|
so that

-7

we't'r T(r + 1), w<eé
T (r + 1)(—log w)™, w=e .

Computing ¢ (x,), we obtain (3.13) from (3.6). Sharpness follows from Lemma
3.5

TueoreMm 3.12. Under the hypotheses of Theorem 3.11, no non-trivial lower
bound for 1 — F(t) can be given.

Proor. This follows immediately from Lemma, 3.7.]|

3.2 Bounds for 1 — F, Laplace transform given at a point. In this section, we
compute explicitly the bounds of the various foregoing lemmas for thecase that
¢(@) = ¢ and v = [o-e¢**dF(z) = f*(s). Bounds of this kind do not seem
to be generally known even without the assumption of a monotone hazard rate,
although they are easily obtainable by standard methods.

We remark that inequalities given the first moment are obtained from those
given f*(s) by letting s — 0, F(0) = 0.

Before giving the improved bounds for distributions with monotone hazard
rate, we prove the following

Tueorem 3.13. If s > 0, [t~ e dF(z) = f*(s) and so = —s~* log f*(s),
then

It

Y(w)

fl

L—F@) S — L — e, t= s
(3.14)
= 1, t < So 5
1— F(t+) = 1 — [ (s)/e™, t < s
(3.15)
g 0) t > So .
Proor.

1— f*s) = /: (1 — e ™) dF(z) = f: (1 — e ™) dF(x)

2 (1= ¢ [ dF@) = (1= 0~ FQ)
which gives (3.14).
(s) = fo e R () = f T aP) = f T AFG) = PG

which gives (3.15).
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TuEOREM 3.13". Inequalities (3.14) and (3.15) are sharp.

Proor. For fixed s and ¢, we consider the following examples;

for (3}14), t = sy, place probability p at ¢, 1 — p at 0 where p = [1 — f*(s)]/
11—’

for (3.14), t < s, place probability 1 at s ;

for (3.15), t = s, place probability 1 at s ;

for (3.15), ¢ = s, place probability p. att, 1 — p, at m where pm =
(f*(s) — ™) /(" — ™). Then liMmw pm = f7(8)/"".

In each case the distributions satisfy the hypothesis of Theorem 3.13. Equality
is attained except in the last case, where the bound is approached asymptotically.

If F is IHR, it follows from (3.3) that f*(s) = [§ e = dF(z) < (1 + ms)™
so that f*(s) < o« for all s > —pu;". Thus the following theorem has meaning
for at least some values of s < 0. :

TuEOREM 3.14. Let F be IHR, F(0) = 0, let s = 0, and let f*(s) = [§ ¢ ** dF (z)
< . Then

1 — F(t) 2 exp[—stf*(s)/(1 — [*(s))], 0<t= (1—f%s))/s

z exp(Lo), ST = fH ()] < t = —s7 log f*(s)

4 and s > 0

(3.16) = 0, t> —s " log f*(s) and s > 0;or

t> sl — f*(s)] and s < 0,
where Lg 1s the unique solution satisfying —1 = L < 0 of
f*(s) = —Lexp(—st + 1+ L).

The inequality is sharp.
Proor. Suppose first that s > 0. We note for later reference that

ST = ()] £ =5 log f*(s) < s

the first inequality is the well-known inequality log ¢ < x — 1. The second in-
equality is equivalent to [ ¢ ** dF(z) = ¢ ***, which follows from the convexity
of ¢*° by Jensen’s inequality.

Now let {(z) = ¢ ™, so that the conditions of Lemma 3.3 are satisfied, and

£4(s) = infossse [ ¢ d0.(z) = infozass o(2)

where ¢(2) = —Le “/[s(t — 2) — L] and L = log[l — F(%)]. Since ¢ ™ is
convex, ¢ is also convex (see proof of Lemma 3.2). Setting (d/dz)e(2) |-z = 0,
we see that 3 = ¢ — (1 + L)/s. Note that 2 < ¢ whenever t £ —s " log f*(s),
since in this case t £ —s " log f*(s) < uiimplies 1 + L = 0 by (3.8) withr = 1.

In case s '[1 — f*(s)] = t, we claim 2 < 0. Suppose the contrary, 0 < z < t.
Then

(3.17) f*(s) = infoc.<e0(2) = @(20) = —L exp (—st + 1 + L),
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or f*(s)e"™ = —Le”, and since z > 0, —L > 1 — st. But 1 + L = 0 so that
1—st< — L =1.Hencef (s)e"‘_1 > —Le" > (1 — st)e " orf*(s) > 1 — s,
contradlctmg t < sl — f¥(s)]. Thus 2 < 0 and we conclude infoc. <t 0(2) =
©(0). But f*(s) = ¢(0) ylelds (3.16) for t < s7[1 — f*(s)] and s > 0.

Next, suppose that s '[1 — f*(s)] <t = — s 'log f*(s). The function ze ™"
is monotone increasing (decreasing) in z ¢ [0, 1] (in [1, «)), and attains the
maximum ¢ *atx = 1.Since t £ —s " log f*(s), there exist solutions 0 < ¢, < 1,
e > Lof f*(s) = ze™*" ™" and setting ¢ = — L we obtain from f*(s) = ce¢ ~oti=el
(ie., (3.17)) thatc < coorc = ¢;. But 1 + L > O impliesc¢ < 1,so that ¢ < ¢ .
This yields (3.16) in case s '[1 — f*(s)] < t £ —s ' log f*(s) and s> 0.

If s < 0, then let ¢(z) = ¢* — 1, and the inequality follows from Lemmas
3.1 and 3.2.

Sharpness of (3.16) follows from Lemma 3.1’, and its analog giving sharpness of
Lemma 3.3.||

TuroreM 3.15. If FisIHR, F(0) = 0,s 5 Oand [¢ ¢ ** dF () = f*(s) < =,
then

1, t £ —s'log f*(s)
e, t> —s " log f*(s)

where ao 1s the unique solution of f*(s) = [s/(s + a)le” ™' + a/(s + a). The
inequality vs sharp.

Proor. In case s < 0, the inequality follows from Lemma 3.4, and for s > 0,
it follows from the analog of Lemma 3.4 for decreasing ¢. Sharpness follows from
Lemma 3.4".||

TueorEM 3.16. If F is DHR, F(0) = 0, s * 0 and [; ¢ “dF(x) =
¥*(s) < =, then

1 — F(1)

IIA

(3.18)

IIA°

1 — F(t) £ exp {—stf*(s)/[1 — f*()}, t=[1—F"s)s
(3.19) < 7 = (9))/st, [L—Fs)l/s<tandst <1
1 —f%(s), st = 1.

lIA

The inequality ts sharp.

Proor. We compute fff_ e "dK.(x) = an/(st + n) + 1 — «a where y =
log o — log [1 — F(¢)]. The inequality then follows from Lemma 3.5 and its analog
for decreasing ¢. Sharpness follows from Lemma 3.5". In case t < [1 — f*(s)]/s,
the inequality is more easily obtained as follows. From the proof of Lemma 3.5
and its analog, sf*(s) < s [ € dK () for some &, 1 — F(t) < a < 1;solving
this for 1 — F(t) yields 1 — F(t) £ supi_r<a<i @ exp {[st(f* — 1) + ast]/
[f* — 1]}. From this one easily obtains (3.19) for st < 1.

If st = 1, the distribution achieving equality in (3.19) is improper, but can
be approximated by proper distribution functions.

Turorem 3.17. If Fis DHR, F(0) = 0,s > Oand [ ¢ < dF (z) = f*(s) < =,
then
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(3.20) 1— F(t) = e™
where Ly 1s the unique solution of f*(s) = L(1 — ¢*™*)/(L — st). The inequality
28 sharp.

Proor. This is a direct consequence of Lemmas 3.6 and 3.6".||
Note that by Lemma 3.7, a non-trivial lower bound cannot be given under the
conditions of Theorem 3.17 if s < 0.

4. Bounds for 1 — F utilizing bounds on the hazard rate. In this section, we
obtain bounds for 1 — F(t) utilizing a new condition on the hazard rate ¢(z),
i.e. on the slope of —log [1 — F(z)]. The condition, assumed both with and with-
out the IHR property, is that ¢(z) is bounded. In the IHR case, the inequalities
of Section 3 are applicable, but with the additional condition they are no longer
sharp.

TueoREM 4.1. IfF(0) = 0,¢(z) = aforallz = 0,and [§ xf(z) dz = u, then

41) 1—F@t)=e¢™, ¢t £ —(1/a) log (1 — ap) = &
' < ape™/(1 — ), =
1—F(t) 2 ap— 1+ ¢, t<t

(4.2)
>0, t= 4.

We remark that ¢(x) = « implies ap < 1 so that ¢, is defined. More generally,
by integrating both sides of zf(z) = a2'[1 — F(z)] it follows that

(4.3) pr = apryr/(r + 1), r> —1.

It will be seen from the proof that the bound 1 — F(t) < ¢ * is valid for all
¢; this is a sharp bound for all ¢ in case u is unknown.

ProoF oF (4.1). ¢(z) Z « implies 1 — F(t) = exp (— [5¢(z) dx) < ¢,
which is the upper bound for ¢ < ¢ . To obtain the upper bound for ¢ = ¢,
note first that ¢(w) = « implies for ¢ > =z,

1 —F@®)I/I1 — F(z)] = exp <—ft q(w) dw) < g2,
Thus

b= fot zf(x) dx + /:o zf(z) de 2 fot ro[l — F(z)] dx + {1 — F(2)]
= [[aall — PR ds + i1 = P(O) = L= PO — /s
Proor or (4.2).

p=[U-FeN@= [0 r@lat [ 1 - Fe)e

¢ g —at
<[y [ gy L= 1R
0 t 24

o 24
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TueoreM 4.1'. Equality is attained in (4.1) uniquely by the distribution

1—G(z) =™, 0=sz=t,
(44) t<h;
=0, x> h,
1 — Q(z) = aue /(1 — &), z =,
t=t.
=0, z >t

Equality is attained in (4.2) uniquely when t < to , by the distribution given by (4.4)
fort = t, and by
1 — G(z) =™, z <t
t=<t.
— (aﬂ -1 + e——at)e—a(x—t)’ r = t,
The remark following Lemma 3.4’ is appropriate to the above left continuous
distributions. The above distributions do not have densities at all points, but
can be approximated by distributions satisfying the hypotheses of Theorem 4.1
and having densities. Inequalities (4.1) and (4.2) hold when no density exists,
providing limao [F(z + A) — F(2)]/All — F(z)] 2 a.
Note that if ¢ < t,, under the hypotheses of Theorem 4.1,

(4.5) f@#) Z ol — F(t)] = alap — 1+ ).

TueoreM 4.2. If F(0) = 0, ¢(z) = a, ¢(z) is increasing and I3 zf(z) dz = g,
then

(46) L-F@) =€, t< —(1/a)log (1 — ap) = &,
e (2,

where y is determined by (1 — ¢ ") /y = n;
1—F(t) z ™ t < u,
(47) 2 ¢t p<t<t,
z 0, W,

where 2o 1s determined by 1 — ap = [1 — a(t — 20)]e.
Proor oF (4.6). For ¢t < t, (4.6) follows from (4.1); for ¢ = ¢, (4.6) follows

from (3.10) with r = 1.||
Proor or (4.7). For t < pu, (4.7) follows from (3.8) with » = 1. To obtain

the bound for p < t < t , note first that ¢(z) = «implieslog[l — F(z)] = —ax.
Since log[1l — F(z)] is concave, there exists z, 0 < z < ¢, such that

log[ll — F(z)] £ —a, 022
< {laz — (at + A)]/(t — 2)}(x — 2) — ez, z
where log[l — F(¢)] = —(at + 4).

1%

2,
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z t
0 ' ' X
| |
| |
| {
! |
|
l
—_—t———————— —_—— N\ ——— —axX
log [1-F(x )] :
I
| az—(aH—A)(x_z)_az
i t—z
|
|
At et e
Fi16. 4.1

Thus for some 2,0 < 2 < ¢,

,u=f0w[1— F(z)] dz = [exp(—ax) dé

+f;exp[———az_ (at + 4) (z —2) — az]dx

t— 2z

—oz

1—¢™ t— 2 o
a az — (at + A) ’

or
b — oa7(1 = ¢))/(t = 2)6 ™ = 1/[4 + a(t — 2)].
Since 2 £ t < ¢y, it follows that u — o™ (1 — ¢ **) > 0 and
AS(t—2)"/lp— o (1 =€) — alt —2) = o(2).

We compute that ¢'(2) = 0if and only if 1 — au = [1 — a(t — 2)]e” = ¢(2).
¥(2) is increasinginz;$(0) = 1 —at £ 1 — ausincet = u;¢(t) = ¢ > 1 — au
since ¢ < & . Thus for some 2, 0 < 2, < ¢, ¢'(2) = 0. Since (2) = o(2),
0=z2=t4 = ¢(2),or

(t — z)e ™™
— a7(1 — e™)

A—I—atéazo-l-“ =azo+l.”

TuroreM 4.2'. Equality is attained in (4.6) uniquely by the distribution given
in (44) fort < ty, and by

1—-G) =¢™,

8
IIA
VN

t> 1.

Il
o
8
\
v“
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Equality is attained in (4.7), uniquely when t < b, by the distribution given in
(4.4) for t > to, and by

1— G(z) = e, z=0,t = w
1— G(z) = e, 02 = 2,
=exp<—f:::—azo>, x> 2o, p<tb<h
Proor. For equality in (4.6) and ¢ > &, G has hazard rate
ge(z) = ¥, x =t
= x>t

To see that y = a, let 6(y, t) = (1 — ¢)/y. Then 80/3y < 0, 36/3t = 0, and
t = t, implies y = a. Therefore if 0(y,t) = pandt 2 b,y = @
For equality in (4.7) and p < t < b, G has hazard rate

IIA

qG(x) = a, z 20,

= (t — zo)—l, T

\Y

20 .

Since ap < 1, (1 — ap)e™ =1 — a(t — z) > 0,0r (t — 20)" = a
TrzorEM 4.3. If F(0) = 0, g(¢) < < = forallz 2 0, and {3 zf(x) do = p,
then
1—F(t) se™, t>u— 6,

S]., t=<-_N_B—1,

(4.8)

where 2o is the unique solution of (& — 2)e® = p— B satisfying 0 = 20 = &5
(4.9) 1— F(t) = €e".

Proor oF (4.9). ¢(z) = B implies immediately that 1 — F(i) =

exp(— [ g(z) dz) = |
ProorF oF (4.8). From (4.9), it follows that if 2 > 0,

fz [1— F(x)]de = fz P dr = (1 — &°)/8.

Since q(z) < 8, 1 — F(z) = B f(z), and 211 — F(x)]dz z 811 — F(D)].
Thus for 0 < 2z < i,

§= f - Flds+ [ 11— F@)ldz + [1-r@)a
> gl 1—e™) + (t—2) 11— FOl+ g1 — F(1)],

or

1— F(t) < [Bu — 1+ ¢™)/IB(t — 2) + 1 = ¢(2).

Setting ¢'(2) = 0 in order to minimize the bound, we obtain p — gt =



MONOTONE HAZARD RATE, I 1251

(t — 2)e ™ = Y(2). From the facts that ¢(2) is decreasing in0 £z £t ¢() =0,
¥(0) = t, it follows that for { = u — B7" the equation ¥(2) = p — B " hasa
unique solution z, satisfying 0 £ zo < t. To complete the proof, note that since
(t—20)6™ = u— B, 0(z0) = (Bu—1+¢7)/[(Bu— 1™ + 1] = ¢ ™/

Turorem 4.3". Equality is attained in (4.8), uniquely when t > p — 87, by
the distribution

1—G(z) =¢", 0=z =2, -
’ _g2 t>u— B )
=¢e ", <z <t
= Pt 22t
(4.10) 1— G(z) =1, z <t B
—a(e—1) t=p—6,
=e , x>t

where a = u — ¢t > 8. Equality is attained in (4.9) by the distribution
1—G(z) =€, 0<z =t
—t(B—a)—ax

=e , z >t

wherea = ¢ /lu — B8 (1 — ¢ ).
We omit a proof of this theorem.
If ¢t > u — ', then (4.8) yields

(4.11) 7(t) < BlL — F(1)] < ™.

In place of (4.8), it is possible to give the non-sharp, but explicit upper bound
1 — F(t) < u/(t + 7). To obtain this, note that

§ = f’u—p<x>1dx+f”u_m)]dx; (1 — F(1)]
o ¢

[ @) de = 14+ 67 11— FO).

The hypotheses of Theorem 4.3 yields the moment inequality u, < Bur+1/
(r 4+ 1), r > —1 which is to be compared with (4.3).
TurorEM 4.4. If F(0) = 0, ¢(z) = B, q s increasing and fff xf(x) dx = p, then

1— F(t) < 1, t<u—68,
(4.12) B
= Wo, t>u—8".

where wo is the unique solution of p = —[t(1 — w)/log w] + w/B;
1—F(t) = e t<
(+13) > P t> p.

Proor or (4.12). If L = log[l — F(#)] then since log[l — F(z)] is concave,
1— F(z) = e™!' x < t. Since g(z) £ 8,1 — F(z) 2 f(x)/B, so that
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z H*-LB__1 t «
: |
}—/3 (x—t)+L
|
log [1-F(x)] }
|
|
|
L ——————————————
Lix-z)
t-z
e
Fia. 4.2

M= fow[l—F(x)]dxé ./OJ exp (Lx/t)dx+‘/;wﬁ—lf(m)dx=L—1t(eL_1)

Q@) L= FQ@) _ g ppyy,

log[1 — F()] 8
Since limy.o o(w) = 0, limy.; o(w) = B + ¢ and p(w) is increasing in w, there
exists a unique wp satisfying ¢(w,) = p whenever { > u — g~". Furthermore,
1—F(t) = ’wo.“

Proo¥ oF (4.13). Again let L = log[l — F(¢)]. Since ¢(z) is increasing, there
exists 2 such that log[l — F(z)] £ L(z — 2)/(t — 2), ¢ Z 2. Since ¢(z) = B,
and F(Ol) = 0, it follows that 0 = 2 = ¢ + LB Thus for some 2, 0 < z <
t+ Lg,

+67'0 —F@®)] =

< exp(L(z — 2)/(t — 2)), z = 2
and
w= fw[l—F(x)]dx_S_z+ fwexp<Lf_:>dz=z— (t—2) L.
0 z —_

Since t > 2, ¥(z) = (n — 2)/(t — 2) £ =L ¥/(2) = (» — 1)/(t — 2)’, 80
that if ¢t = u, ¥(2) is decreasing and mino<, <zt ¥(2) = ¥( + LghH = —-L7,
orL = B(p — t) — 1. In case t < u the bound follows from (3.8) with r = L.

Tuporem 4.4, Bquality is attained in (4.12), uniquely fort > p — 8, by the
distribution given in (4.10) for t < u — 87, and by

1—G(x)=w3”, 0z=t L
—Ba—t) t>p— 6
= wWoe , z >t
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Equality is attained in (4.13) uniquely by the distribution
1— G(z) = ¢, t

=

1—G(x)=1, Il?éu—ﬁ—l
L, >

=exp[—B(x—p,)—1], rzp—F,

In the case of (4.12),t > u — 87", G has hazard rate

ge(x) = — ¢ og wo, 0sz=t
=8, z >t
and we note that —¢t " log we = (1 — wo) (4 — we/B) " < Bsince fu = 1 = wy.

5. Bounds in terms of percentiles. From the general results of Section 3,
bounds for expectations of monotone functions can be obtained in terms of
percentiles. In particular, it follows from (3.2) that if ' is IHR with F(0) = 0
and if ¢ is a function increasing on [0, =), then

(5.1) [s@are) s s [ " (@) d6.(a)
where 4
G.(z) = 1, =<z
= [1 — F()]“™“, Tz

Since @, has a density that is a Pélya frequency function of order 2 (PFs) (a
density g is PF, if log g(x) is concave on the support of G, an interval), (5.1) is
also sharp with this strengthened hypothesis.

With ¢(2) = X« (2), the characteristic function of [s, « ), it follows from
(5.1) that :

1—F(s) <[t — F(@)", st
1, s <t

this bound is also given by Barlow, Marshall and Proschan (1963). Here the
exponential and degenerate distributions achieve equality.
By interchanging s and ¢ in (5.2) it follows that

(5.2)

lIA

1 —F(s) = [1 — F@), s =t
(5.3)
=0, s>t
More generally, let
1— H(z) = [1 — F@)™", v <t
=Y x >t

Then by (5.2),1 — H(z) £ 1 — F(z), £ {, so that if ¢ is increasing,
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t

w + t+ @
4) [ t@dF@z [ @@z [ @) dHE = [ (@) k).
0 0 0 0
With ¢(2) = xps,09(2), (5.4) reduces to (5.3).
Note that equality in (5.4) is attained by the distribution function A which
does not have a PF, density, so that (5.4) can be improved in case F has a PF,
density. Such an improvement is given by (5.2), Barlow and Marshall (1964 ).

6. Some numerical comparisons. Extensive tables for various bounds of
Sections 3 and of Barlow and Marshall (1964) that have no explicit expressions
are given by Barlow and Marshall (1963).

We present here some numerical results in the form of graphs, and make
comparisons with several other bounds, which are listed below:

(1) If F(0) = 0, F is concave on [0, ) (i.e., the density f is decreasing on
[0, ©)), and p; = 1, then an upper bound for 1 — F(¢) due to Camp (1922)
and Meidell (1922) is given by (2.7).

(2) If f is unimodal (more generally, if F is convex on [0, m] and concave on
[m, ) for some unknown m), and u; = 1, then

1-F@#) =1, 0st=<1
(6.1) st -1, sts%
< 1/2t, t = 3.

This bound follows from the general theory given by Mallows (1962) and was
communicated to us by Professor Mallows. Inequality (6.1) may be proved using

-
o

o
@

0.6

0.4

UNIMODAL

0.2
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F1c. 6.1.Upper bounds for 1 — F(t),m = 1
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F1c. 6.2. Upper bounds for 1 — F(¢), ;s = 1

an appropriate modification of the method illustrated by Example 2.2 assuming
first that the location of the mode is known.

(3) If fis a Pélya frequency function of order 2(PF.) and u; = 1, an upper
bound for 1 — F(t) is given by (5.2), Barlow and Marshall (1964); although
the bound does not have an explicit form, it has been tabulated by Barlow and
Marshall (1963).

Assuming that u; = 1, the graphs of Figure 6.1 give upper bounds on 1 — F(¢)
in the cases of: (1.1), general F; (6.1), unimodal f; (3.10), IHR F; (5.2) of
Barlow and Marshall (1964), PF. f. Recall that f is PF. implies both that F is
IHR (Barlow, Marshall, and Proschan, 1963), and that f is unimodal (Schoen-
berg, 1951). However, IHR distributions need not have unimodal densities
(Barlow, Marshall, and Proschan, 1963).

Figure 6.2 again gives upper bounds for 1 — F(¢) with u; = 1. Here Markov’s
inequality (1.1) is given together with the improvements in case f is decreasing
(2.7), and in case F is DHR (3.13). We recall that F is DHR implies that F is
concave (f is decreasing).

7. Some remarks on generalizations. The arguments of this paper which
depend on convexity properties of log[l — F(z)] have been in several instances
illustrated in Section 2 assuming convexity properties of F itself. This suggests
that the two theories can be unified by appropriate generalizations, and in this
section we indicate how this can be done.

A central role in the theory of distributions with monotone hazard rate is
played by the exponential distribution. The simultaneous importance of the
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exponential function and the log function (which appears in the definition of
ITHR) suggests the following

TuEOREM 7.1. Let G be a distribution function with G(0) = 0, suppose that the
support of G is an interval, and let 3 [I — G(z)]dz = 1. Then H(z) =
(1 — @) Yz) is defined for all x satisfying 0 < G(z) < 1. If H(1 — F(x)) is
convez, F(0) = 0,and t < uy = [¢ [1 — F(z)] dz, then

(7.1) 1= F(t) 21— G(t/m).

The inequality is reversed if H(1 — F(x)) is concave.

Similar results can be obtained in case u; is replaced by the expectation of an
arbitrary increasing function. Inequality (7.1) can be proved using the method
of Example 2.2; it is sharp, with equality attained by the distribution G(z/u1).

Inequality (7.1) is to be compared with (3.8), in which case G(z) = 1 — ¢".
Choosing G(z) = 2/2,0 < z £ 2, and assuming H(1 — F(z)) is concave, one
obtains the first bound of (2.7) with r = 1.

The direct proof given for (3.10) actually utilized only the condition that
' log[l — F(z)] = ¢ log[ll — F($)], « < t, which is satisfied, e.g., by ITHR
distributions. Let ¢.(-) be a strictly decreasing continuous function on [0, 1]
(in particular, we may take y,(u) = 2 ' log u), and suppose that ¢(z) =
[6¢2"(2) da is continuous. Let ¥(z) = ¢,(1 — F(z)).

TueorEM 7.2. If [z dF(z) = m < », if ¥(z) < ¥({),0 £ z < t, and if
0(0) = w1 = o(®), then there exists a unique 2o satisfying ¢(z0) = w1 . For 2o so
defined,

(72) 1 — F(t) £ ¢; ().

The proof of (7.2) is essentially the same as the direct proof given for (3.10).
If Y5 '(20) < 1 and ;" (2) is deereasing in z, the distribution

1 — G(z) = ¥5'(20), z

=0, x

t

A

t

\%

attains equality in (7.2).

As previously indicated, (7.2) reduces to (3.10) with » = 1 in case ¥.(u) =
—2 " log u; the condition ¢(0) = u; = ¢( » ) is satisfied when ¢ = py . If Yo (u) =
Y(u) for all z, (7.2) reduces to (1.1) with » = 1. With ¢.(u) = (1 — u)/z,
¥(z) < ¥(t) becomes 2 'F(z) < t'F(t), z < t, which is true if F is convex in
z = t, and (7.2) reduces to (2.4) with » = 1. Again the condition ¢(0) = u; =
() is satisfied when ¢ = yu; .
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